JPH07244530A - Linear driving device - Google Patents

Linear driving device

Info

Publication number
JPH07244530A
JPH07244530A JP3558594A JP3558594A JPH07244530A JP H07244530 A JPH07244530 A JP H07244530A JP 3558594 A JP3558594 A JP 3558594A JP 3558594 A JP3558594 A JP 3558594A JP H07244530 A JPH07244530 A JP H07244530A
Authority
JP
Japan
Prior art keywords
displacement
driven body
drive
control
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3558594A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kawaguchi
佳久 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3558594A priority Critical patent/JPH07244530A/en
Priority to EP95301394A priority patent/EP0671614A1/en
Priority to EP98110960A priority patent/EP0869340A3/en
Priority to US08/399,025 priority patent/US5671058A/en
Publication of JPH07244530A publication Critical patent/JPH07244530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To obtain a liner driving device capable of attaining stable and highly accurate directivity control by simple constitution by calculating disturbance based upon control force applied around a driving shaft of a driven body, compensating a disturbance value from a detection value and controlling the steering direction of the driven body. CONSTITUTION:First and second compensation control parts 26, 27 generate compensation signals obtained by removing disturbance due to control force following the driving of an actuator 30 from displacement drive signals outputted from 1st and 2nd displacement control parts 24a, 24b based upon a rotational angle driving signal outputted from a rotation control part 9. The steering direction of a driven body 20 is controlled by driving the first and second actuator 21a, 21b. The actuator 21a, 21b is driven by calculating the disturbance generated based on the control force applied around the riving shaft of the body 20 by driving the actuator 30 and compensating the disturbance from the displacement driving signal. Thus, the steering direction of the body 20 is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば波長等の光の
成分を観測する干渉計に係り、特に、その駆動鏡を直線
的に駆動するのに用いる直線駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for observing a light component such as a wavelength, and more particularly to a linear drive device used for linearly driving a drive mirror of the interferometer.

【0002】[0002]

【従来の技術】干渉計は、図3に示すように観測光の入
射光路上に周知のビームスプリッタ1が配設され、この
ビームスプリッタ1の反射光路には固定鏡2が配設され
る。また、ビームスプリッタ1の透過光路上には、後述
する直線駆動装置を介して駆動鏡3が直線駆動自在に配
設される。そして、ビームスプリッタ3の他の光路上に
は、光検出器4が配設される。これにより、観測光は、
ビームスプリッタ1で反射されて固定鏡2に導かれ、こ
の固定鏡2で反射された反射光が再びビームスプリッタ
1を透過して光検出器4に入射される。同時に、ビーム
スプリッタ1を透過した観測光は、駆動鏡3で反射され
た後、再びビームスプリッタ1で反射されて光検出器4
に入射される。ここで、駆動鏡3は、詳細を後述する上
記直線駆動駆動装置により駆動軸上に指向制御されると
共に、駆動軸方向(矢印方向)に直線的に駆動される。
この結果、光検出器4には、固定鏡2からの光と、駆動
鏡3からの光が干渉縞として入力され、電圧信号として
検出される。この光検出器4で検出した電圧信号は、演
算部5に導かれてフーリエ変換(FFT)され、ここに
観測光の光成分が検出される。
2. Description of the Related Art In an interferometer, as shown in FIG. 3, a known beam splitter 1 is arranged on the incident light path of observation light, and a fixed mirror 2 is arranged on the reflected light path of this beam splitter 1. Further, a drive mirror 3 is linearly driven on the transmitted light path of the beam splitter 1 via a linear drive device described later. The photodetector 4 is arranged on the other optical path of the beam splitter 3. As a result, the observation light becomes
The light reflected by the beam splitter 1 is guided to the fixed mirror 2, and the reflected light reflected by the fixed mirror 2 again passes through the beam splitter 1 and is incident on the photodetector 4. At the same time, the observation light that has passed through the beam splitter 1 is reflected by the drive mirror 3 and then again by the beam splitter 1 to be detected by the photodetector 4
Is incident on. Here, the drive mirror 3 is linearly driven in the drive axis direction (arrow direction) while being direct-controlled on the drive axis by the above-described linear drive drive device which will be described in detail later.
As a result, the light from the fixed mirror 2 and the light from the drive mirror 3 are input to the photodetector 4 as interference fringes and detected as a voltage signal. The voltage signal detected by the photodetector 4 is guided to the arithmetic unit 5 and Fourier transformed (FFT), and the optical component of the observation light is detected there.

【0003】図4は、このような従来の直線駆動装置を
示すもので、図中6は、上記駆動鏡3が支持される被駆
動体である。この被駆動体6には、例えば電磁石で形成
される浮上支持用第1及び第2のアクチュエータ7a,
7bが駆動軸方向に所定の間隔を有して対向配置され、
この第1及び第2のアクチュエータ7a,7bにより駆
動軸上に浮上支持される。
FIG. 4 shows such a conventional linear drive device, and 6 in the figure is a driven body on which the drive mirror 3 is supported. The driven body 6 includes, for example, first and second levitation-supporting actuators 7a formed of electromagnets,
7b are arranged facing each other with a predetermined space in the drive axis direction,
The first and second actuators 7a and 7b are levitationally supported on the drive shaft.

【0004】そして、上記被駆動体6には、第1及び第
2の変位センサ8a,8bが駆動軸方向に所定の間隔を
有して対向配置される。この第1及び第2の変位センサ
8a,8bは、その出力端にセンサ処理回路9が接続さ
れ、被駆動体6との間隔(ギャップ長)の変位を検出し
て、その検出信号をセンサ処理回路9に出力する。セン
サ処理回路9は、その出力端に第1及び第2の変位制御
部10a,10bが接続され、入力した検出信号に基づ
いて被駆動体6の重心位置及び重心回りの回転角を算出
して、第1及び第2の変位制御部10a,10bに出力
する。この第1及び第2の変位制御部10a,10b
は、その出力端に上記第1及び第2のアクチュエータ7
a,7bが接続され、入力した被駆動体6の重心位置及
び重心回りの回転角に基づいて重心位置補償及び回転角
補償用の変位駆動信号を生成して、それぞれを駆動制御
し、被駆動体6を所定の方向に指向制御する。
The driven body 6 is provided with first and second displacement sensors 8a and 8b which are opposed to each other at a predetermined interval in the drive axis direction. A sensor processing circuit 9 is connected to the output ends of the first and second displacement sensors 8a and 8b, detects a displacement of a space (gap length) from the driven body 6, and processes the detection signal by the sensor processing. Output to the circuit 9. The sensor processing circuit 9 has first and second displacement control units 10a and 10b connected to its output end, and calculates the center of gravity position of the driven body 6 and the rotation angle around the center of gravity based on the input detection signal. , And output to the first and second displacement control units 10a and 10b. The first and second displacement control units 10a and 10b
Is connected to the output end of the first and second actuators 7
a and 7b are connected to generate a displacement drive signal for gravity center position compensation and rotation angle compensation based on the input center of gravity position of the driven body 6 and the rotation angle around the center of gravity, and drive and control the respective displacement drive signals. The direction of the body 6 is controlled in a predetermined direction.

【0005】また、上記被駆動体6には、回転センサ1
1が対向配置される。この回転センサ11は、その出力
端に回転制御部12が接続され、被駆動体6の駆動軸回
りの回転角を検出して該回転制御部12に出力する。回
転制御部12の出力端には、アクチュエータ13が接続
され、入力した検出信号に基づいて回転角駆動信号を生
成してアクチュエータ13を駆動制御し、被駆動体6の
駆動軸回りの回転角を制御する。
Further, the driven body 6 is provided with a rotation sensor 1
1 are arranged to face each other. The rotation sensor 11 is connected to the output end of the rotation sensor 11, detects the rotation angle of the driven body 6 around the drive axis, and outputs the rotation angle to the rotation control unit 12. An actuator 13 is connected to the output end of the rotation control unit 12, and a rotation angle drive signal is generated based on the input detection signal to drive and control the actuator 13 to change the rotation angle of the driven body 6 around the drive axis. Control.

【0006】さらに、被駆動体6には、駆動軸方向変位
検出用変位センサ14が対向配置され、この変位センサ
14の出力端には、駆動制御部15が接続される。変位
センサ14は、被駆動体6の駆動軸方向の移動量を検出
して駆動制御部15に出力する。この駆動制御部15に
は、駆動用のアクチュエータ16が接続され、入力した
検出信号に応じた直線駆動信号を生成して、アクチュエ
ータ16を駆動し、被駆動体6を駆動軸方向に直線駆動
する。
Further, a displacement sensor 14 for detecting a displacement in the drive axis direction is arranged opposite to the driven body 6, and a drive controller 15 is connected to an output end of the displacement sensor 14. The displacement sensor 14 detects the amount of movement of the driven body 6 in the drive axis direction and outputs it to the drive control unit 15. An actuator 16 for driving is connected to the drive control unit 15, generates a linear drive signal according to the input detection signal, drives the actuator 16, and linearly drives the driven body 6 in the drive axis direction. .

【0007】上記構成において、被駆動体6は、第1及
び第2のアクチュエータ7a,7bで駆動軸に対する姿
勢角及び駆動軸と略直交する方向が制御されると共に、
アクチュエータ13で駆動軸回りの回転角が制御されて
6自由度の運動を制御され、所定の方向に指向制御され
る。同時に、被駆動体6は、アクチュエータ16により
駆動軸方向に直線的に駆動される。
In the above structure, the driven body 6 is controlled by the first and second actuators 7a and 7b in the attitude angle with respect to the drive shaft and the direction substantially orthogonal to the drive shaft.
The actuator 13 controls the rotation angle around the drive axis to control the movement of 6 degrees of freedom, and the direction is controlled in a predetermined direction. At the same time, the driven body 6 is linearly driven in the drive axis direction by the actuator 16.

【0008】しかしながら、上記直線駆動装置では、そ
の指向制御方式上、アクチュエータ13が駆動されて被
駆動体6の駆動軸回りの回転角が制御されると、図5に
示すように、そのアクチュエータ13の回転制御力Fが
被駆動体6の駆動軸に対する姿勢角及び駆動軸と略直交
する方向の外乱となり、この外乱が被駆動体6の姿勢角
及び駆動軸と略直交する方向の制御力に悪影響を及ぼし
て、高精度な指向制御を困難とするという問題を有す
る。
However, in the above linear drive device, when the actuator 13 is driven and the rotation angle of the driven body 6 around the drive axis is controlled due to its directivity control system, as shown in FIG. The rotational control force F becomes a disturbance in a direction substantially orthogonal to the posture angle and the drive axis of the driven body 6, and this disturbance becomes a control force in a direction substantially orthogonal to the posture angle and the drive axis of the driven body 6. There is a problem that it has an adverse effect and makes it difficult to perform highly accurate pointing control.

【0009】[0009]

【発明が解決しようとする課題】以上述べたように、従
来の直線駆動装置では、駆動軸回りの回転角制御の制御
力が外乱となり、指向制御精度を低下させるという問題
を有する。この発明は上記の事情に鑑みてなされたもの
で、構成簡易にして、安定した高精度な指向制御を実現
し得るようにした直線駆動装置を提供することを目的と
する。
As described above, the conventional linear drive device has a problem in that the control force for controlling the rotation angle around the drive shaft becomes a disturbance and the pointing control accuracy is degraded. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a linear drive device having a simple structure and capable of realizing stable and highly accurate pointing control.

【0010】[0010]

【課題を解決するための手段】この発明は、被駆動体を
駆動軸上に直線駆動自在に浮上支持する浮上支持手段
と、前記駆動軸上に浮上支持される被駆動体を駆動軸方
向に直線駆動する直線駆動手段と、前記被駆動体の駆動
軸方向の少なくとも2位置における駆動軸に対する姿勢
角の変位及び駆動軸と略直交する方向の変位を検出して
なる変位検出手段と、前記被駆動体の駆動軸回りの回転
角を検出して駆動軸回りの回転角を制御する回転角制御
手段と、この回転角制御手段の制御力に基づいて外乱を
算出して、この外乱分を前記変位検出手段で検出した検
出値から補償し、前記被駆動体の指向方向を制御する指
向制御手段とを備えて直線駆動装置を構成したものであ
る。
SUMMARY OF THE INVENTION According to the present invention, a levitation support means for levitationally supporting a driven body to be linearly driven on a drive shaft, and a driven body levitationally supported on the drive shaft in the drive axis direction. Linear driving means for linearly driving, displacement detecting means for detecting displacement of an attitude angle with respect to the drive shaft at at least two positions of the driven body in the drive shaft direction, and displacement in a direction substantially orthogonal to the drive shaft; Rotation angle control means for detecting the rotation angle of the drive body around the drive axis and controlling the rotation angle around the drive axis, and disturbance is calculated based on the control force of the rotation angle control means, and this disturbance component is A linear drive device is configured to include a directivity control unit that compensates for a detection value detected by the displacement detection unit and controls the directivity direction of the driven body.

【0011】[0011]

【作用】上記構成によれば、指向制御手段は、被駆動体
の駆動軸回りに付与される制御力に基づいて外乱を算出
し、外乱分を変位検出手段で検出値から補償して、被駆
動体の指向方向を制御する。従って、回転角制御手段の
動作に伴い被駆動体に付与される外乱分が取除かれて、
6自由度の安定した高精度な制御が可能となり、高精度
な指向制御が実現される。
According to the above construction, the directivity control means calculates the disturbance on the basis of the control force applied around the drive axis of the driven body, compensates the disturbance component from the detected value by the displacement detection means, and Controls the pointing direction of the driver. Therefore, the disturbance component given to the driven body due to the operation of the rotation angle control means is removed,
Stable and highly accurate control with 6 degrees of freedom becomes possible, and highly accurate pointing control is realized.

【0012】[0012]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。図1はこの発明の一実施例に係
る赤外線検出装置を示すもので、前記駆動鏡3が支持さ
れる被駆動体20には、例えば電磁石で形成される浮上
支持用の第1及び第2のアクチュエータ21a,21b
が駆動軸方向に所定の間隔を有して対向配置され、この
第1及び第2のアクチュエータ21a,21bにより駆
動軸上に浮上支持される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an infrared detector according to an embodiment of the present invention, in which a driven body 20 on which the drive mirror 3 is supported includes first and second levitation supporting members formed of, for example, electromagnets. Actuators 21a and 21b
Are arranged to face each other with a predetermined space in the drive shaft direction, and are levitationally supported on the drive shaft by the first and second actuators 21a and 21b.

【0013】上記被駆動体20には、第1及び第2の変
位センサ22a,22bが駆動軸方向に所定の間隔を有
して対向配置される。この第1及び第2の変位センサ2
2a,22bは、その出力端にセンサ処理回路23が接
続され、被駆動体20の姿勢角の変位及び駆動軸と略直
交する方向の変位を検出して、その検出信号をセンサ処
理回路23に出力する。
First and second displacement sensors 22a and 22b are arranged to face the driven body 20 so as to face each other with a predetermined interval in the drive axis direction. The first and second displacement sensors 2
The sensor processing circuit 23 is connected to the output ends of the 2a and 22b, detects the displacement of the posture angle of the driven body 20 and the displacement in the direction substantially orthogonal to the drive axis, and outputs the detection signal to the sensor processing circuit 23. Output.

【0014】センサ処理回路23には、上記第1及び第
2の変位センサ22a,22bの出力が接続されされて
おり、その出力端に第1及び第2の変位制御部24a,
24bが接続される。センサ処理回路23は、第1及び
第2の変位センサ22a,22bからの駆動軸方向の検
出信号に基づいて被駆動体20の重心位置及び重心回り
の回転角を算出して、第1及び第2の変位制御部24
a,24bに出力する。この第1及び第2の変位制御部
24a,24bは、その出力端が後述する第1及び第2
の補償変換部26,27にそれぞれ接続される。
The outputs of the first and second displacement sensors 22a and 22b are connected to the sensor processing circuit 23, and the output ends of the first and second displacement control sections 24a and 24a are connected to the output ends thereof.
24b is connected. The sensor processing circuit 23 calculates the center of gravity position of the driven body 20 and the rotation angle around the center of gravity based on the detection signals in the drive axis direction from the first and second displacement sensors 22a and 22b, and then the first and second 2 displacement control unit 24
a and 24b. The output ends of the first and second displacement control units 24a and 24b are first and second
Are connected to the compensation conversion units 26 and 27, respectively.

【0015】また、上記被駆動体20には、回転センサ
28が対向配置される。この回転センサ28は、その出
力端に回転制御部29が接続され、被駆動体20の駆動
軸回りの回転角を検出して該回転制御部29に出力す
る。回転制御部29の出力端には、アクチュエータ30
が接続され、入力したセンサ信号に基づいて回転角駆動
信号を生成してアクチュエータ30を駆動制御し、被駆
動体20の駆動軸回りの回転角を制御する。また、回転
制御部29は、その出力端が上記第1及び第2の補償変
換部26,27に接続される。
A rotation sensor 28 is arranged opposite to the driven body 20. A rotation control unit 29 is connected to the output end of the rotation sensor 28, detects a rotation angle of the driven body 20 around the drive axis, and outputs the rotation angle to the rotation control unit 29. The actuator 30 is provided at the output end of the rotation control unit 29.
Are connected to generate a rotation angle drive signal based on the input sensor signal to drive and control the actuator 30 and control the rotation angle of the driven body 20 around the drive axis. The rotation controller 29 has its output end connected to the first and second compensation converters 26 and 27.

【0016】第1及び第2の補償変換部26,27は、
略同様に構成される。但し、ここでは、一方の第1の補
償変換部26を代表して説明する。即ち、第1の補償変
換部26は、図2に示すように上記第1及び第2の変位
制御部24a,24bの出力端が加算器26aの入力端
に接続される。加算器26aは、その出力端が減算器2
6bの一方の入力端に接続され、第1及び第2の変位制
御部24a,24bで算出した重心位置及び重心回りの
回転角を補償する変位駆動信号を加算して減算器26b
に出力する。減算器26bは、その他方の入力端にスケ
ール変換部26cの出力端が接続され、その出力端には
上記第1のアクチュエータ21aが接続される。
The first and second compensation conversion units 26 and 27 are
The configurations are substantially the same. However, here, the one first compensation conversion unit 26 will be described as a representative. That is, in the first compensation conversion unit 26, the output ends of the first and second displacement control units 24a and 24b are connected to the input end of the adder 26a, as shown in FIG. The output terminal of the adder 26a is the subtractor 2
6b, which is connected to one input terminal of 6b, adds a displacement drive signal for compensating the center of gravity position and the rotation angle around the center of gravity calculated by the first and second displacement control units 24a, 24b, and subtracts the subtracter 26b.
Output to. The subtracter 26b has the other input end connected to the output end of the scale conversion unit 26c, and the output end connected to the first actuator 21a.

【0017】上記スケール変換部26cは、その入力端
に上記回転制御部27の出力端が接続される。スケール
変換部26cは、アクチュエータ30と第1のアクチュ
エータ21aの単位電流当りの制御力の比を採り、回転
制御部27からの回転補償用駆動信号からアクチュエー
タ30で発生する制御力を第1のアクチュエータ21a
で補償する電流信号を算出して減算器26bに出力す
る。減算器26bは、入力した電流信号と、加算器26
aからの入力信号を減算した駆動信号を生成して第1の
アクチュエータ21aを駆動制御する。
The output terminal of the rotation control section 27 is connected to the input terminal of the scale converting section 26c. The scale conversion unit 26c takes the ratio of the control force per unit current of the actuator 30 and the first actuator 21a, and the control force generated by the actuator 30 from the rotation compensation drive signal from the rotation control unit 27 is applied to the first actuator. 21a
The current signal to be compensated is calculated and output to the subtractor 26b. The subtractor 26b receives the input current signal and the adder 26b.
A drive signal obtained by subtracting the input signal from a is generated to drive and control the first actuator 21a.

【0018】このように、第1及び第2の補償変換部2
6,27は、回転制御部27からの回転角駆動信号に基
づいてアクチュエータ30の駆動に伴う制御力による外
乱を第1及び第2の変位制御部24a,24bからの変
位駆動信号から取除いた補償信号を生成して、第1及び
第2のアクチュエータ21a,21bを駆動し、被駆動
体20の指向方向を制御する。
As described above, the first and second compensation conversion units 2
Reference numerals 6 and 27 remove the disturbance due to the control force associated with the driving of the actuator 30 from the displacement drive signals from the first and second displacement control units 24a and 24b based on the rotation angle drive signal from the rotation control unit 27. A compensation signal is generated to drive the first and second actuators 21a and 21b to control the pointing direction of the driven body 20.

【0019】さらに、上記被駆動体20には、駆動軸方
向変位検出用変位センサ31が対向配置され、この変位
センサ31の出力端には、駆動制御部32が接続され
る。変位センサ31は、被駆動体20の駆動軸方向の変
位を検出して検出信号を駆動制御部32に出力する。こ
の駆動制御部32には、駆動用のアクチュエータ33が
接続され、入力した検出信号に応じた直線駆動信号を生
成してアクチュエータ33を駆動し、被駆動体20を駆
動軸方向に直線駆動する。
Further, a displacement sensor 31 for detecting a displacement in the drive axis direction is arranged opposite to the driven body 20, and a drive controller 32 is connected to an output end of the displacement sensor 31. The displacement sensor 31 detects the displacement of the driven body 20 in the drive axis direction and outputs a detection signal to the drive control unit 32. An actuator 33 for driving is connected to the drive controller 32, generates a linear drive signal according to the input detection signal, drives the actuator 33, and linearly drives the driven body 20 in the drive axis direction.

【0020】上記構成において、第1及び第2のアクチ
ュエータ21a,21bが駆動され、被駆動体20が浮
上の駆動軸上に浮上支持されると、第1及び第の変位セ
ンサ22a,22bがそれぞれ被駆動体20の駆動軸に
対する姿勢角及び駆動軸と略直交する方向の各変位を検
出してセンサ処理回路23に出力する。センサ処理回路
23は入力した検出信号に基づいて重心位置及び重心回
りの回転角を算出して第1及び第2の変位制御部24
a,24bに出力する。第1及び第2の変位制御部24
a,24bは、入力した重心位置及び重心回りの回転角
に基づいた変位駆動信号を生成して第1及び第2の補償
変換部26,27にそれぞれ出力する。
In the above structure, when the first and second actuators 21a and 21b are driven and the driven body 20 is levitationally supported on the levitation drive shaft, the first and second displacement sensors 22a and 22b are respectively activated. The posture angle of the driven body 20 with respect to the drive axis and each displacement in a direction substantially orthogonal to the drive axis are detected and output to the sensor processing circuit 23. The sensor processing circuit 23 calculates the center-of-gravity position and the rotation angle around the center of gravity based on the input detection signal to calculate the first and second displacement control units 24.
a and 24b. First and second displacement control section 24
The a and 24b generate displacement drive signals based on the input center-of-gravity position and rotation angle around the center of gravity, and output the displacement-drive signals to the first and second compensation conversion units 26 and 27, respectively.

【0021】同時に、被駆動体20は、回転センサ28
で駆動軸回りの回転角が検出され、その検出信号に基づ
いて回転制御部29が回転角駆動信号を生成し、アクチ
ュエータ30を駆動して駆動軸回りの回転角が制御され
る。この際、回転制御部29は、回転角駆動信号を第1
及び第2の補償変換部26,27に出力する。この第1
及び第2の補償変換部26,27は、上述したように変
位駆動信号から回転角制御に伴って発生する制御力によ
る外乱分を取除く如いた補償信号を生成して、第1及び
第2のアクチュエータ21a,21bを駆動し、被駆動
体20の指向方向を制御する。
At the same time, the driven body 20 has a rotation sensor 28.
The rotation angle around the drive axis is detected at, and the rotation control unit 29 generates a rotation angle drive signal based on the detection signal and drives the actuator 30 to control the rotation angle around the drive axis. At this time, the rotation control unit 29 sends the rotation angle drive signal to the first
And to the second compensation conversion units 26 and 27. This first
The second compensation conversion units 26 and 27 generate the compensation signal for removing the disturbance component due to the control force generated by the rotation angle control from the displacement driving signal as described above, and the first and second compensation conversion units 26 and 27 are generated. The actuators 21a and 21b are driven to control the pointing direction of the driven body 20.

【0022】ここで、被駆動体20は、その駆動軸方向
の移動量が変位センサ31で検出され、その検出信号が
駆動制御部32に入力される。この駆動制御部32は、
入力した検出信号に基づいて直線駆動信号を生成して、
アクチュエータ33を駆動し、被駆動体20を駆動軸方
向に直線駆動する。
The amount of movement of the driven body 20 in the drive axis direction is detected by the displacement sensor 31, and the detection signal is input to the drive control section 32. This drive control unit 32 is
Generate a linear drive signal based on the input detection signal,
The actuator 33 is driven to linearly drive the driven body 20 in the drive axis direction.

【0023】このように、上記直線駆動装置は、アクチ
ュエータ30を駆動して被駆動体20の駆動軸回りに付
与する制御力に基づいて発生する外乱を算出して、この
外乱分を変位駆動信号から補償し、第1及び第2のアク
チュエータ21a,21bを駆動することにより、被駆
動体20の指向方向を制御するように構成した。これに
よれば、被駆動体20の駆動軸回りの駆動に伴い被駆動
体に付与される外乱分が確実に取除かれて、6自由度の
安定した高精度な制御が実現されて、高精度な指向制御
が実現される。
As described above, the linear drive device drives the actuator 30 to calculate the disturbance generated based on the control force applied around the drive shaft of the driven body 20, and calculates the disturbance component as the displacement drive signal. The directivity of the driven body 20 is controlled by driving the first and second actuators 21a and 21b. According to this, the disturbance component applied to the driven body due to the driving of the driven body 20 around the drive axis is reliably removed, and stable and highly accurate control with 6 degrees of freedom is realized, and Accurate pointing control is realized.

【0024】なお、上記実施例では、変位検出手段とし
て、第1及び第2の変位センサ22a,22bの2個を
配設するように構成したが、これに限ることなく、2個
以上配設するように構成することも可能である。
In the above embodiment, the first and second displacement sensors 22a and 22b are arranged as the displacement detecting means, but the present invention is not limited to this, and two or more are arranged. It can also be configured to do so.

【0025】また、上記実施例では、干渉計の駆動鏡3
を駆動する被駆動体20を直線駆動するように構成した
場合で説明したが、これに限ることなく、その他、被駆
動体を浮上させて、所望の方向に指向制御した状態で、
駆動軸方向に直線的に駆動駆動する各種の被駆動体にお
いて適用可能である。よって、この発明は、上記実施例
に限ることなく、その他、この発明の要旨を逸脱しない
範囲で種々の変形を実施し得ることは勿論である。
In the above embodiment, the driving mirror 3 of the interferometer is used.
The case where the driven body 20 that drives the is configured to be linearly driven has been described, but the present invention is not limited to this. In addition, the driven body is levitated, and the direction is controlled in a desired direction.
It can be applied to various driven bodies that are driven and driven linearly in the drive axis direction. Therefore, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】以上詳述したように、この発明によれ
ば、構成簡易にして、安定した高精度な指向制御を実現
し得るようにした直線駆動装置を提供することができ
る。
As described in detail above, according to the present invention, it is possible to provide a linear drive device having a simple structure and capable of realizing stable and highly accurate pointing control.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る直線駆動装置を示し
た図。
FIG. 1 is a diagram showing a linear drive device according to an embodiment of the present invention.

【図2】図1の要部の詳細を示した図。FIG. 2 is a diagram showing details of a main part of FIG.

【図3】この発明の適用される干渉計を説明するために
示した図。
FIG. 3 is a diagram shown for explaining an interferometer to which the present invention is applied.

【図4】従来の直線駆動装置を示した図。FIG. 4 is a diagram showing a conventional linear drive device.

【図5】図4の制御方式の問題点を説明するために示し
た図。
FIG. 5 is a diagram shown for explaining a problem of the control method of FIG.

【符号の説明】[Explanation of symbols]

1…ビームスプリッタ。 2…固定鏡。 3…駆動鏡。 4…光検出器。 5…演算部。 20…被駆動体。 21a,21b…第1及び第2のアクチュエータ。 22a,22b…第1及び第2の変位センサ。 23…センサ処理回路。 24a,24b…第1及び第2の変位制御部。 26,27…第1及び第2の補償変換部。 26a…加算器。 26b…減算器。 26c…スケール変換部。 28…回転センサ。 29…回転制御部。 30…アクチュエータ。 31…変位センサ。 32…駆動制御部。 33…アクチュエータ。 1 ... Beam splitter. 2 ... Fixed mirror. 3 ... Drive mirror. 4 ... Photodetector. 5 ... Calculation unit. 20 ... Driven body. 21a, 21b ... First and second actuators. 22a, 22b ... First and second displacement sensors. 23 ... Sensor processing circuit. 24a, 24b ... 1st and 2nd displacement control parts. 26, 27 ... First and second compensation conversion units. 26a ... Adder. 26b ... Subtractor. 26c ... Scale conversion unit. 28 ... Rotation sensor. 29 ... Rotation control unit. 30 ... Actuator. 31 ... Displacement sensor. 32 ... Drive control unit. 33 ... Actuator.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05D 3/12 T 7609−3H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G05D 3/12 T 7609-3H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被駆動体を駆動軸上に直線駆動自在に浮
上支持する浮上支持手段と、 前記駆動軸上に浮上支持される被駆動体を駆動軸方向に
直線駆動する直線駆動手段と、 前記被駆動体の駆動軸方向の少なくとも2位置における
駆動軸に対する姿勢角の変位及び駆動軸と略直交する方
向の変位を検出してなる変位検出手段と、 前記被駆動体の駆動軸回りの回転角を検出して駆動軸回
りの回転角を制御する回転角制御手段と、 この回転角制御手段の制御力に基づいて外乱を算出し
て、この外乱分を前記変位検出手段で検出した検出値か
ら補償し、前記被駆動体の指向方向を制御する指向制御
手段とを具備した直線駆動装置。
1. A levitation support means for levitationally supporting a driven body to be linearly driven on a drive shaft, and a linear driving means for linearly driving a driven body levitationally supported on the drive shaft in a drive axis direction. Displacement detecting means for detecting displacement of the attitude angle with respect to the drive shaft at least at two positions in the drive shaft direction of the driven body and displacement in a direction substantially orthogonal to the drive shaft, and rotation of the driven body around the drive shaft. The rotation angle control means for detecting the angle and controlling the rotation angle around the drive axis, the disturbance is calculated based on the control force of the rotation angle control means, and this disturbance amount is detected by the displacement detection means. And a directivity control means for controlling the directivity direction of the driven body.
JP3558594A 1994-03-07 1994-03-07 Linear driving device Pending JPH07244530A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3558594A JPH07244530A (en) 1994-03-07 1994-03-07 Linear driving device
EP95301394A EP0671614A1 (en) 1994-03-07 1995-03-03 A device for supporting and linearly moving a movable member
EP98110960A EP0869340A3 (en) 1994-03-07 1995-03-03 A device for supporting and linearly moving a movable member
US08/399,025 US5671058A (en) 1994-03-07 1995-03-06 Device for supporting linearly moving a movable member and a controlling system for the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3558594A JPH07244530A (en) 1994-03-07 1994-03-07 Linear driving device

Publications (1)

Publication Number Publication Date
JPH07244530A true JPH07244530A (en) 1995-09-19

Family

ID=12445861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3558594A Pending JPH07244530A (en) 1994-03-07 1994-03-07 Linear driving device

Country Status (1)

Country Link
JP (1) JPH07244530A (en)

Similar Documents

Publication Publication Date Title
JP5562789B2 (en) High-speed precision positioning device
JP4493709B2 (en) Apparatus and method for dampening vibration of an elevator box
KR100218129B1 (en) Motor control device
ATE207401T1 (en) HIGH BANDWIDTH AND DYNAMIC RIGIDITY MEASURING SYSTEM FOR MEASURING AND CONTROLLING INTELLIGENT INDUSTRIAL PROCESSES
EP0677184A1 (en) Position dependent rate dampening in an active hand controller.
KR970008468A (en) Stage drive control device
JPH07244530A (en) Linear driving device
US5671058A (en) Device for supporting linearly moving a movable member and a controlling system for the device
JPH11264834A (en) Raster mode scanning apparatus for compensating disturbance effect of mechanical vibration affecting scanning step
JPH07244528A (en) Linear driving device
JPH07244529A (en) Linear driving device
EP1111489B1 (en) Two-dimensional positioning apparatus and method for measuring laser light from the apparatus
JPH07260585A (en) Moving mirror driving device
JPH08282598A (en) Posture control device for artificial satellite
JPH01238604A (en) Active supporting device for specular surface
JP4501115B2 (en) Positioning control method
JPH0717496A (en) Attitude control mode of artificial satellite
KR100311070B1 (en) XY-stage using linear step mortor and control system thereof
JP2005284867A (en) Drive control device and method, and aligner
JP4340895B2 (en) XY stage
JP2000163130A (en) Self-weight compensating device
KR100207601B1 (en) Apparatus for stabilizer system using gyroscope
JP2007213342A (en) Table position control device and table moving device
JPH11160150A (en) Displacement detecting device
RU1802356C (en) Control system of support-rotation device