JPH07244529A - Linear driving device - Google Patents

Linear driving device

Info

Publication number
JPH07244529A
JPH07244529A JP3558494A JP3558494A JPH07244529A JP H07244529 A JPH07244529 A JP H07244529A JP 3558494 A JP3558494 A JP 3558494A JP 3558494 A JP3558494 A JP 3558494A JP H07244529 A JPH07244529 A JP H07244529A
Authority
JP
Japan
Prior art keywords
driven body
drive
displacement
drive shaft
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3558494A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kawaguchi
佳久 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3558494A priority Critical patent/JPH07244529A/en
Priority to EP95301394A priority patent/EP0671614A1/en
Priority to EP98110960A priority patent/EP0869340A3/en
Priority to US08/399,025 priority patent/US5671058A/en
Publication of JPH07244529A publication Critical patent/JPH07244529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To attain highly reliable operation control by improving the detection accuracy of displacement of a driven body. CONSTITUTION:A centroid position target value corresponding to the moving distance of the driven body 20 in a driving shaft direction is set up, the centroid position of the driven body 20 and a rotational angle around the centroid are controlled based upon the centroid position target value and detection values detected by 1st and 2nd displacement sensors 25a, 25b to control directivity. Consequently gap length between the sensors 25a, 25b and the driven body 20 can be held at an approximately fixed length without being influenced by the moving distance of the driven body 20 in the driving axis direction and the detection characteristics of the sensors 25a, 25b can be set up to approximately fixed values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば波長等の光の
成分を観測する干渉計に係り、特に、その駆動鏡を直線
的に駆動するのに用いる直線駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for observing a light component such as a wavelength, and more particularly to a linear drive device used for linearly driving a drive mirror of the interferometer.

【0002】[0002]

【従来の技術】干渉計は、図3に示すように観測光の入
射光路上に周知のビームスプリッタ1が配設され、この
ビームスプリッタ1の反射光路には固定鏡2が配設され
る。また、ビームスプリッタ1の透過光路上には、後述
する直線駆動装置を介して駆動鏡3が直線駆動自在に配
設される。そして、ビームスプリッタ3の他の光路上に
は、光検出器4が配設される。これにより、観測光は、
ビームスプリッタ1で反射されて固定鏡2に導かれ、こ
の固定鏡2で反射された反射光が再びビームスプリッタ
1を透過して光検出器4に入射される。同時に、ビーム
スプリッタ1を透過した観測光は、駆動鏡3で反射され
た後、再びビームスプリッタ1で反射されて光検出器4
に入射される。ここで、駆動鏡3は、詳細を後述する上
記直線駆動駆動装置により駆動軸上に指向制御されると
共に、駆動軸方向(矢印方向)に直線的に駆動される。
この結果、光検出器4には、固定鏡2からの光と、駆動
鏡3からの光が干渉縞として入力され、電圧信号として
検出される。この光検出器4で検出した電圧信号は、演
算部5に導かれてフーリエ変換(FFT)され、ここに
観測光の光成分が検出される。
2. Description of the Related Art In an interferometer, as shown in FIG. 3, a known beam splitter 1 is arranged on the incident light path of observation light, and a fixed mirror 2 is arranged on the reflected light path of this beam splitter 1. Further, a drive mirror 3 is linearly driven on the transmitted light path of the beam splitter 1 via a linear drive device described later. The photodetector 4 is arranged on the other optical path of the beam splitter 3. As a result, the observation light becomes
The light reflected by the beam splitter 1 is guided to the fixed mirror 2, and the reflected light reflected by the fixed mirror 2 again passes through the beam splitter 1 and is incident on the photodetector 4. At the same time, the observation light that has passed through the beam splitter 1 is reflected by the drive mirror 3 and then again by the beam splitter 1 to be detected by the photodetector 4
Is incident on. Here, the drive mirror 3 is linearly driven in the drive axis direction (arrow direction) while being direct-controlled on the drive axis by the above-described linear drive drive device which will be described in detail later.
As a result, the light from the fixed mirror 2 and the light from the drive mirror 3 are input to the photodetector 4 as interference fringes and detected as a voltage signal. The voltage signal detected by the photodetector 4 is guided to the arithmetic unit 5 and Fourier transformed (FFT), and the optical component of the observation light is detected there.

【0003】図4は、このような従来の直線駆動装置を
示すもので、図中6は、上記駆動鏡3が支持される被駆
動体である。この被駆動体6には、例えば電磁石で形成
される浮上支持用第1及び第2のアクチュエータ7a,
7bが駆動軸方向に所定の間隔を有して対向配置され、
この第1及び第2のアクチュエータ7a,7bにより駆
動軸上に浮上支持される。
FIG. 4 shows such a conventional linear drive device, and 6 in the figure is a driven body on which the drive mirror 3 is supported. The driven body 6 includes, for example, first and second levitation-supporting actuators 7a formed of electromagnets,
7b are arranged facing each other with a predetermined space in the drive axis direction,
The first and second actuators 7a and 7b are levitationally supported on the drive shaft.

【0004】そして、上記被駆動体6には、第1及び第
2の変位センサ8a,8bが駆動軸方向に所定の間隔を
有して対向配置される。この第1及び第2の変位センサ
8a,8bは、その出力端にセンサ処理回路9が接続さ
れ、被駆動体6との間隔(ギャップ長)の変位を検出し
て、その検出信号をセンサ処理回路9に出力する。セン
サ処理回路9は、その出力端に第1及び第2の変位制御
部10a,10bが接続され、入力した検出信号に基づ
いて被駆動体6の重心位置及び重心回りの回転角を算出
して、第1及び第2の変位制御部10a,10bに出力
する。この第1及び第2の変位制御部10a,10b
は、その出力端に上記第1及び第2のアクチュエータ7
a,7bが接続され、入力した被駆動体6の重心位置及
び重心回りの回転角に基づいて重心位置補償用駆動信号
及び回転角補償用駆動信号を生成して、それぞれを駆動
制御し、被駆動体6を所定の方向に指向制御する。
The driven body 6 is provided with first and second displacement sensors 8a and 8b which are opposed to each other at a predetermined interval in the drive axis direction. A sensor processing circuit 9 is connected to the output ends of the first and second displacement sensors 8a and 8b, detects a displacement of a space (gap length) from the driven body 6, and processes the detection signal by the sensor processing. Output to the circuit 9. The sensor processing circuit 9 has first and second displacement control units 10a and 10b connected to its output end, and calculates the center of gravity position of the driven body 6 and the rotation angle around the center of gravity based on the input detection signal. , And output to the first and second displacement control units 10a and 10b. The first and second displacement control units 10a and 10b
Is connected to the output end of the first and second actuators 7
a and 7b are connected to generate a center-of-gravity position compensating drive signal and a rotation angle compensating drive signal based on the input center-of-gravity position of the driven body 6 and the rotation angle around the center of gravity. Directional control of the driving body 6 is performed in a predetermined direction.

【0005】また、上記被駆動体6には、回転センサ1
1が対向配置される。この回転センサ11は、その出力
端に回転制御部12が接続され、被駆動体6の駆動軸回
りの回転角を検出して該回転制御部12に出力する。回
転制御部12の出力端には、アクチュエータ13が接続
され、入力した検出信号に基づいて回転角駆動信号を生
成してアクチュエータ13を駆動制御し、被駆動体6の
駆動軸回りの回転角を制御する。
Further, the driven body 6 is provided with a rotation sensor 1
1 are arranged to face each other. The rotation sensor 11 is connected to the output end of the rotation sensor 11, detects the rotation angle of the driven body 6 around the drive axis, and outputs the rotation angle to the rotation control unit 12. An actuator 13 is connected to the output end of the rotation control unit 12, and a rotation angle drive signal is generated based on the input detection signal to drive and control the actuator 13 to change the rotation angle of the driven body 6 around the drive axis. Control.

【0006】さらに、被駆動体6には、駆動軸方向変位
検出用変位センサ14が対向配置され、この変位センサ
14の出力端には、駆動制御部15が接続される。変位
センサ14は、被駆動体6の駆動軸方向の移動量を検出
して駆動制御部15に出力する。この駆動制御部15に
は、駆動用のアクチュエータ16が接続され、入力した
検出信号に応じた直線駆動信号を生成して、アクチュエ
ータ16を駆動し、被駆動体6を駆動軸方向に直線駆動
する。
Further, a displacement sensor 14 for detecting a displacement in the drive axis direction is arranged opposite to the driven body 6, and a drive controller 15 is connected to an output end of the displacement sensor 14. The displacement sensor 14 detects the amount of movement of the driven body 6 in the drive axis direction and outputs it to the drive control unit 15. An actuator 16 for driving is connected to the drive control unit 15, generates a linear drive signal according to the input detection signal, drives the actuator 16, and linearly drives the driven body 6 in the drive axis direction. .

【0007】そして、このように指向制御される被駆動
体6は、駆動軸に対して、その重心位置及び重心回りの
回転角を一定にするために、予め角度バイアス(角度目
標値)が設定されて、この角度バイアスと、上記第1及
び第2の変位センサ8a,8bの検出値に基づいて、そ
の重心位置が一定となるように制御される。
In the driven body 6 whose direction is controlled in this manner, an angle bias (angle target value) is set in advance in order to make the center of gravity position and the rotation angle around the center of gravity constant with respect to the drive shaft. Then, based on the angular bias and the detection values of the first and second displacement sensors 8a and 8b, the position of the center of gravity is controlled to be constant.

【0008】しかしながら、上記直線駆動装置では、そ
の指向制御方式上、被駆動体6が駆動軸方向に直線移動
すると、図5に示すようにその駆動位置に応じて、第1
及び第2の変位センサ8a,8bと被駆動体6との間隔
(ギャップ長)L1 〜L2 と変化するために、そのセン
サ出力特性が劣化され、検出精度が低下されるという問
題を有する。即ち、第1及び第2の変位センサ8a,8
bは、そのセンサ出力特性が図6に示すように、ギャッ
プ長L1 ,L2 に対して非直線性を有することで、ギャ
ップ長が大きくなると、その検出精度が低下され、高精
度な動作制御に悪影響を及ぼす。
However, in the above-described linear drive device, when the driven body 6 linearly moves in the drive axis direction due to its directivity control system, the first position is changed according to the drive position as shown in FIG.
In addition, since the distance (gap length) L1 to L2 between the second displacement sensors 8a and 8b and the driven body 6 changes, the sensor output characteristic is deteriorated and the detection accuracy is lowered. That is, the first and second displacement sensors 8a, 8
As shown in FIG. 6, the sensor output characteristic b is non-linear with respect to the gap lengths L1 and L2. Therefore, when the gap length becomes large, the detection accuracy of the sensor is lowered, and highly accurate operation control is achieved. Adversely affect.

【0009】[0009]

【発明が解決しようとする課題】以上述べたように、従
来の直線駆動装置では、駆動軸方向の直線駆動に連動し
て、被駆動体の変位検出精度が低下されるという問題を
有する。この発明は上記の事情に鑑みてなされたもの
で、簡易な構成で、被駆動体の変位検出精度の高精度化
を図り得るようにして、信頼性の高い動作制御を実現し
た直線駆動装置を提供することを目的とする。
As described above, the conventional linear drive device has a problem that the displacement detection accuracy of the driven body is lowered in conjunction with the linear drive in the drive axis direction. The present invention has been made in view of the above circumstances, and provides a linear drive device that realizes highly reliable operation control with a simple configuration and can achieve high accuracy in displacement detection of a driven body. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】この発明は、被駆動体を
駆動軸上に直線駆動自在に浮上支持する浮上支持手段
と、前記駆動軸上に浮上支持される被駆動体を駆動軸方
向に直線駆動する直線駆動手段と、前記被駆動体の駆動
軸方向の少なくとも2位置における駆動軸に対する姿勢
角の変位及び駆動軸と略直交する方向の変位を検出して
なる変位検出手段と、前記被駆動体の駆動軸方向の移動
量に応じて該被駆動体の重心位置目標値を設定し、この
重心位置目標値と前記変位検出手段で検出した検出値と
に基づいて前記被駆動体の指向方向を制御する指向制御
手段とを備えて直線駆動装置を構成したものである。
SUMMARY OF THE INVENTION According to the present invention, a levitation support means for levitationally supporting a driven body to be linearly driven on a drive shaft, and a driven body levitationally supported on the drive shaft in the drive axis direction. Linear driving means for linearly driving, displacement detecting means for detecting displacement of an attitude angle with respect to the drive shaft at at least two positions of the driven body in the drive shaft direction, and displacement in a direction substantially orthogonal to the drive shaft; The center of gravity position target value of the driven body is set in accordance with the amount of movement of the drive body in the drive axis direction, and the orientation of the driven body is determined based on this center of gravity position target value and the detection value detected by the displacement detection means. A linear drive device is provided with a directivity control means for controlling the direction.

【0011】[0011]

【作用】上記構成によれば、指向制御手段は、被駆動体
が駆動軸方向に直線的に駆動されると、その移動量に対
応した重心位置目標値を設定して、この重心位置目標値
と変位検出手段で検出した検出値に基づいて被駆動体を
指向制御することにより、変位検出手段と被駆動体との
ギャップ長が略一定に保たれる。従って、変位検出手段
の検出特性が略一定に保たれ、安定した高精度な変位検
出が実現されて、信頼性の高い指向制御が可能となる。
According to the above construction, when the driven body is linearly driven in the drive axis direction, the pointing control means sets the center-of-gravity position target value corresponding to the amount of movement of the driven body, and the center-of-gravity position target value is set. By controlling the orientation of the driven body based on the detection value detected by the displacement detection means, the gap length between the displacement detection means and the driven body is kept substantially constant. Therefore, the detection characteristic of the displacement detecting means is kept substantially constant, stable and highly accurate displacement detection is realized, and highly reliable pointing control becomes possible.

【0012】[0012]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。図1はこの発明の一実施例に係
る赤外線検出装置を示すもので、前記駆動鏡3が支持さ
れる被駆動体20には、例えば電磁石で形成される浮上
支持用の第1及び第2のアクチュエータ21a,21b
が駆動軸方向に所定の間隔を有して対向配置され、この
第1及び第2のアクチュエータ21a,21bにより駆
動軸上に浮上支持される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an infrared detector according to an embodiment of the present invention, in which a driven body 20 on which the drive mirror 3 is supported includes first and second levitation supporting members formed of, for example, electromagnets. Actuators 21a and 21b
Are arranged to face each other with a predetermined space in the drive shaft direction, and are levitationally supported on the drive shaft by the first and second actuators 21a and 21b.

【0013】上記被駆動体20には、駆動軸方向変位検
出用変位センサ22が対向配置され、この変位センサ2
2の出力端には、駆動制御部23が接続される。変位セ
ンサ22は、被駆動体20の駆動軸方向の変位を検出し
て検出信号を駆動制御部23に出力する。この駆動制御
部23には、駆動駆動用のアクチュエータ24が接続さ
れ、入力した検出信号に応じた直線駆動信号を生成し
て、アクチュエータ24を駆動し、被駆動体20を駆動
軸方向に直線駆動する。
A displacement sensor 22 for detecting a displacement in the drive axis direction is arranged opposite to the driven body 20, and the displacement sensor 2
The drive control unit 23 is connected to the output terminal of 2. The displacement sensor 22 detects the displacement of the driven body 20 in the drive axis direction and outputs a detection signal to the drive control unit 23. An actuator 24 for drive driving is connected to the drive control unit 23, and a linear drive signal corresponding to the input detection signal is generated to drive the actuator 24 to linearly drive the driven body 20 in the drive axis direction. To do.

【0014】また、上記被駆動体20には、第1及び第
2の変位センサ25a,25bが駆動軸方向に所定の間
隔を有して対向配置される。この第1及び第2の変位セ
ンサ25a,25bは、その出力端にセンサ処理回路2
6が接続され、被駆動体20の姿勢角の変位及び駆動軸
と略直交する方向の変位を検出して、その検出信号をセ
ンサ処理回路26に出力する。
Further, the driven body 20 is provided with first and second displacement sensors 25a and 25b which are opposed to each other at a predetermined interval in the drive axis direction. The first and second displacement sensors 25a and 25b have the sensor processing circuit 2 at the output end thereof.
6 is connected to detect the displacement of the posture angle of the driven body 20 and the displacement in the direction substantially orthogonal to the drive axis, and outputs the detection signal to the sensor processing circuit 26.

【0015】センサ処理回路26には、上記変位センサ
22の出力が接続されされており、その出力端に第1及
び第2の変位制御部27a,27bが接続される。セン
サ処理回路26は、図2に示すように変位センサ22か
らの駆動軸方向の検出信号に応じて被駆動体20の角度
バイアスをAとし、駆動軸方向の移動量をBとすると、
重心位置目標値Cを A×B=C の如く求める。次に、センサ処理回路26は、この重心
位置目標値Cと第1及び第2の変位センサ25a,25
bで検出した検出信号に基づいて被駆動体20の重心位
置及び重心回りの回転角を算出して、第1及び第2の変
位制御部27a,27bに出力する。この第1及び第2
の変位制御部27a,27bは、その出力端に上記第1
及び第2のアクチュエータ21a,21bが接続され、
入力した被駆動体20の重心位置及び重心回りの回転角
に基づいて重心位置補償用駆動信号及び回転角補償用駆
動信号を生成して、それぞれを駆動制御し、被駆動体2
0を所定の方向に指向制御する。
The output of the displacement sensor 22 is connected to the sensor processing circuit 26, and the first and second displacement control units 27a and 27b are connected to the output ends thereof. When the sensor processing circuit 26 sets the angular bias of the driven body 20 to A and the moving amount in the drive axis direction to B according to the detection signal from the displacement sensor 22 in the drive axis direction as shown in FIG.
The center-of-gravity position target value C is calculated as A × B = C. Next, the sensor processing circuit 26 uses the center-of-gravity position target value C and the first and second displacement sensors 25a, 25
The center of gravity position of the driven body 20 and the rotation angle around the center of gravity are calculated based on the detection signal detected in b, and are output to the first and second displacement control units 27a and 27b. This first and second
The displacement control units 27a and 27b of the
And the second actuators 21a and 21b are connected,
A center of gravity position compensating drive signal and a rotation angle compensating drive signal are generated based on the input center of gravity position of the driven body 20 and the rotation angle around the center of gravity, and drive control is performed for each to drive the driven body 2
Direction control of 0 is performed in a predetermined direction.

【0016】さらに、上記被駆動体20には、回転セン
サ28が対向配置される。この回転センサ28は、その
出力端に回転制御部29が接続され、被駆動体20の駆
動軸回りの回転角を検出して該回転制御部29に出力す
る。回転制御部29の出力端には、アクチュエータ30
が接続され、入力したセンサ信号に基づいて回転角駆動
信号を生成してアクチュエータ30を駆動制御し、被駆
動体20の駆動軸回りの回転角を制御する。
Further, a rotation sensor 28 is arranged opposite to the driven body 20. A rotation control unit 29 is connected to the output end of the rotation sensor 28, detects a rotation angle of the driven body 20 around the drive axis, and outputs the rotation angle to the rotation control unit 29. The actuator 30 is provided at the output end of the rotation control unit 29.
Are connected to generate a rotation angle drive signal based on the input sensor signal to drive and control the actuator 30 and control the rotation angle of the driven body 20 around the drive axis.

【0017】上記構成において、駆動軸に対して、被駆
動体20の重心位置及び重心回りの回転角を一定にする
ために、上述したように変位センサ22からの駆動軸方
向の検出信号に基づいて該被駆動体20の重心位置目標
値Cを求める。そして、センサ処理回路26は、この重
心位置目標値Cと第1及び第2の変位センサ25a,2
5bで検出した検出信号に基づいて被駆動体20の重心
位置及び重心回りの回転角を算出して、第1及び第2の
変位制御部27a,27bに出力する。この第1及び第
2の変位制御部27a,27bは、入力した被駆動体2
0の重心位置及び重心回りの回転角に基づいて重心位置
補償用駆動信号及び回転角補償用駆動信号を生成して、
第1及び第2のアクチュエータ21a,21bを駆動制
御し、被駆動体20を所定の方向に指向制御する。
In the above structure, in order to make the center of gravity of the driven body 20 and the rotation angle around the center of gravity constant with respect to the drive shaft, as described above, based on the detection signal in the drive shaft direction from the displacement sensor 22. Then, the center of gravity position target value C of the driven body 20 is obtained. Then, the sensor processing circuit 26 uses the center-of-gravity position target value C and the first and second displacement sensors 25a, 2
The center of gravity position of the driven body 20 and the rotation angle around the center of gravity are calculated based on the detection signal detected in 5b and output to the first and second displacement control units 27a and 27b. The first and second displacement control units 27a and 27b are used to input the driven body 2
A center of gravity position compensation drive signal and a rotation angle compensation drive signal are generated based on the center of gravity position of 0 and the rotation angle around the center of gravity,
The first and second actuators 21a and 21b are drive-controlled to control the direction of the driven body 20 in a predetermined direction.

【0018】同時に、回転センサ28は、被駆動体20
の駆動軸回りの回転角を検出して回転制御部29に出力
する。回転制御部29は、入力した検出信号に基づいて
回転角駆動信号を生成してアクチュエータ30を駆動制
御し、被駆動体20の駆動軸回りの回転角を制御する。
At the same time, the rotation sensor 28 controls the driven body 20.
The rotation angle about the drive axis of is detected and output to the rotation control unit 29. The rotation control unit 29 generates a rotation angle drive signal based on the input detection signal to drive and control the actuator 30, and controls the rotation angle of the driven body 20 around the drive axis.

【0019】ここで、被駆動体20は、その駆動軸方向
の移動量が変位センサ22で検出され、その検出信号が
駆動制御部23に入力される。この駆動制御部23は、
入力した検出信号に基づいて直線駆動信号を生成して、
アクチュエータ24を駆動し、被駆動体20を駆動軸方
向に直線駆動する。
Here, the amount of movement of the driven body 20 in the drive axis direction is detected by the displacement sensor 22, and the detection signal is input to the drive control section 23. This drive control unit 23
Generate a linear drive signal based on the input detection signal,
The actuator 24 is driven to linearly drive the driven body 20 in the drive axis direction.

【0020】このように、上記直線駆動装置は、被駆動
体20の駆動軸方向の移動位置に対応した重心位置目標
値を設定して、この重心位置目標値と、第1及び第2の
変位センサ25a,25bで検出した変位に基づいて被
駆動体20の重心位置及び重心回りの回転角を制御して
指向制御するように構成した。
As described above, the linear drive device sets the center-of-gravity position target value corresponding to the movement position of the driven body 20 in the drive axis direction, and the center-of-gravity position target value and the first and second displacements are set. Based on the displacement detected by the sensors 25a and 25b, the position of the center of gravity of the driven body 20 and the rotation angle around the center of gravity are controlled to control the orientation.

【0021】これによれば、第1及び第2の変位センサ
25a,25bと被駆動体20とのギャップ長が該被駆
動体20の駆動軸方向の移動距離に影響されることな
く、略一定に制御設定することが可能となることによ
り、第1及び第2の変位センサ25a,25bの検出特
性が略一定に保たれ、安定した高精度な変位検出が実現
される。従って、駆動軸方向に直線的に駆動される被駆
動体20の高精度で、信頼性の高い指向制御が実現され
る。
According to this, the gap length between the first and second displacement sensors 25a and 25b and the driven body 20 is substantially constant without being influenced by the moving distance of the driven body 20 in the drive axis direction. By making it possible to set the control to, the detection characteristics of the first and second displacement sensors 25a and 25b are kept substantially constant, and stable and highly accurate displacement detection is realized. Therefore, highly accurate and highly reliable pointing control of the driven body 20 that is driven linearly in the drive axis direction is realized.

【0022】なお、上記実施例では、指向制御方式とし
て、被駆動体20の駆動軸と略直交する方向の移動量及
び駆動軸に対する姿勢角の変位と、駆動軸回りの回転角
の回転変位を検出して、これらに対する指向制御を行う
ものに適用した場合で説明したが、この指向制御方式に
限ることなく、少なくとも駆動軸に対する変位を指向制
御する方式の被駆動体の直線駆動に適用が可能であり、
同様の効果が期待される。
It should be noted that in the above embodiment, as the directivity control method, the amount of movement of the driven body 20 in the direction substantially orthogonal to the drive axis, the displacement of the posture angle with respect to the drive axis, and the rotational displacement of the rotation angle around the drive axis are used. Although it has been described that the present invention is applied to those that detect and control the directivity for these, the present invention is not limited to this directivity control method, and can be applied to linear drive of a driven body of a method in which the displacement of at least the drive axis is directivity controlled. And
A similar effect is expected.

【0023】また、上記実施例では、変位検出手段とし
て、第1及び第2の変位センサ25a,25bの2個を
配設するように構成したが、これに限ることなく、2個
以上配設するように構成することも可能である。
Further, in the above embodiment, the two displacement sensors 25a and 25b are arranged as the displacement detecting means, but the invention is not limited to this, and two or more displacement sensors are arranged. It can also be configured to do so.

【0024】さらに、上記実施例では、干渉計の駆動鏡
3を駆動する被駆動体20を直線駆動するように構成し
た場合で説明したが、これに限ることなく、その他、被
駆動体を浮上させて、所望の方向に指向制御した状態
で、駆動軸方向に直線的に走査駆動する各種の被駆動体
において適用可能である。よって、この発明は、上記実
施例に限ることなく、その他、この発明の要旨を逸脱し
ない範囲で種々の変形を実施し得ることは勿論である。
Further, in the above embodiment, the case where the driven body 20 for driving the driving mirror 3 of the interferometer is linearly driven has been described, but the present invention is not limited to this, and the driven body is levitated. Thus, the present invention can be applied to various types of driven bodies that linearly scan and drive in the drive axis direction in the state where the orientation is controlled in a desired direction. Therefore, the present invention is not limited to the above-described embodiments, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

【0025】[0025]

【発明の効果】以上詳述したように、この発明によれ
ば、簡易な構成で、被駆動体の変位検出精度の高精度化
を図り得るようにして、信頼性の高い動作制御を実現し
た直線駆動装置を提供することができる。
As described above in detail, according to the present invention, it is possible to realize a highly reliable operation control with a simple structure so that the displacement detection accuracy of the driven body can be improved. A linear drive device can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る直線駆動装置を示し
た図。
FIG. 1 is a diagram showing a linear drive device according to an embodiment of the present invention.

【図2】図1の制御方式を説明するために示した図。FIG. 2 is a diagram shown for explaining the control method of FIG.

【図3】この発明の適用される干渉計を説明するために
示した図。
FIG. 3 is a diagram shown for explaining an interferometer to which the present invention is applied.

【図4】従来の直線駆動装置を示した図。FIG. 4 is a diagram showing a conventional linear drive device.

【図5】図4の制御方式を説明するために示した図。FIG. 5 is a diagram shown for explaining the control method of FIG.

【図6】変位センサのセンサ出力特性を示した図。FIG. 6 is a diagram showing sensor output characteristics of a displacement sensor.

【符号の説明】[Explanation of symbols]

1…ビームスプリッタ。 2…固定鏡。 3…駆動鏡。 4…光検出器。 5…演算部。 20…被駆動体。 21a,21b…第1及び第2のアクチュエータ。 22…変位センサ。 23…駆動制御部。 24…アクチュエータ。 25a,25b…第1及び第2の変位センサ。 26…センサ処理回路。 27a,27b…第1及び第2の変位制御部。 28…回転センサ。 29…回転制御部。 30…アクチュエータ。 1 ... Beam splitter. 2 ... Fixed mirror. 3 ... Drive mirror. 4 ... Photodetector. 5 ... Calculation unit. 20 ... Driven body. 21a, 21b ... First and second actuators. 22 ... Displacement sensor. 23 ... Drive control unit. 24 ... Actuator. 25a, 25b ... First and second displacement sensors. 26 ... Sensor processing circuit. 27a, 27b ... 1st and 2nd displacement control parts. 28 ... Rotation sensor. 29 ... Rotation control unit. 30 ... Actuator.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05D 3/12 S 7609−3H Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G05D 3/12 S 7609-3H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被駆動体を駆動軸上に直線駆動自在に浮
上支持する浮上支持手段と、 前記駆動軸上に浮上支持される被駆動体を駆動軸方向に
直線駆動する直線駆動手段と、 前記被駆動体の駆動軸方向の少なくとも2位置における
駆動軸に対する姿勢角の変位及び駆動軸と略直交する方
向の変位を検出してなる変位検出手段と、 前記被駆動体の駆動軸方向の移動量に応じて該被駆動体
の重心位置目標値を設定し、この重心位置目標値と前記
変位検出手段で検出した検出値とに基づいて前記被駆動
体の指向方向を制御する指向制御手段とを具備した直線
駆動装置。
1. A levitation support means for levitationally supporting a driven body to be linearly driven on a drive shaft, and a linear driving means for linearly driving a driven body levitationally supported on the drive shaft in a drive axis direction. Displacement detecting means for detecting displacement of the attitude angle with respect to the drive shaft and displacement in a direction substantially orthogonal to the drive shaft at at least two positions in the drive shaft direction of the driven body, and movement of the driven body in the drive shaft direction. A directivity control means for setting a barycentric position target value of the driven body according to the amount, and controlling a directing direction of the driven body based on the barycentric position target value and the detection value detected by the displacement detecting means; A linear drive device equipped with.
JP3558494A 1994-03-07 1994-03-07 Linear driving device Pending JPH07244529A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3558494A JPH07244529A (en) 1994-03-07 1994-03-07 Linear driving device
EP95301394A EP0671614A1 (en) 1994-03-07 1995-03-03 A device for supporting and linearly moving a movable member
EP98110960A EP0869340A3 (en) 1994-03-07 1995-03-03 A device for supporting and linearly moving a movable member
US08/399,025 US5671058A (en) 1994-03-07 1995-03-06 Device for supporting linearly moving a movable member and a controlling system for the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3558494A JPH07244529A (en) 1994-03-07 1994-03-07 Linear driving device

Publications (1)

Publication Number Publication Date
JPH07244529A true JPH07244529A (en) 1995-09-19

Family

ID=12445829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3558494A Pending JPH07244529A (en) 1994-03-07 1994-03-07 Linear driving device

Country Status (1)

Country Link
JP (1) JPH07244529A (en)

Similar Documents

Publication Publication Date Title
US6288381B1 (en) Integrated system for line-of-sight stabilization and auto-alignment of off-gimbal passive and active electro-optical sensors
CN108205193B (en) Two-dimensional control reflector, control method thereof and laser scanner comprising two-dimensional control reflector
US11307294B2 (en) Scanning assembly for a detection system
US4798461A (en) System for monitoring the geometry of a mechanical structure
JP2000296485A (en) Micromanipulator
JP2601698B2 (en) Laser scanner rotation detection mechanism
US3326619A (en) Gyro stabilized sight system utilizing a mirror with front and back reflecting surfaces
US5383368A (en) Deflection sensor for robot links
JPH07244529A (en) Linear driving device
JPH11264834A (en) Raster mode scanning apparatus for compensating disturbance effect of mechanical vibration affecting scanning step
US5671058A (en) Device for supporting linearly moving a movable member and a controlling system for the device
JPH10104681A (en) Image stabilizing device
JPH07244528A (en) Linear driving device
JP3038707B1 (en) Swing drive
JPH07226354A (en) Positioning device and manufacture of semiconductor device using this positioning device
JP2001194235A (en) Moving mirror support device for optical interferometer
JP2001091858A (en) Image stabilizer
JP2673293B2 (en) Semi Strap Down Seeker
KR20180041495A (en) Gas foil bearing using piezoelectric array and active control system thereof
JP3662099B2 (en) Parallel link mechanism
JPH07244530A (en) Linear driving device
JP2001100106A (en) Image stabilizer
US6376820B1 (en) Two axis gimbal having a spherical bearing
JP3800541B2 (en) Beam tracking type laser interferometric length measuring device by swinging optical lever using spherical motor and coordinate measuring method using the device
JPH07260585A (en) Moving mirror driving device