JPH0724328A - Catalyst particle and use thereof - Google Patents

Catalyst particle and use thereof

Info

Publication number
JPH0724328A
JPH0724328A JP5168138A JP16813893A JPH0724328A JP H0724328 A JPH0724328 A JP H0724328A JP 5168138 A JP5168138 A JP 5168138A JP 16813893 A JP16813893 A JP 16813893A JP H0724328 A JPH0724328 A JP H0724328A
Authority
JP
Japan
Prior art keywords
metal oxide
metal
catalyst
reaction
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5168138A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Imai
井 達 裕 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Kagaku KK
Original Assignee
Soken Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kagaku KK filed Critical Soken Kagaku KK
Priority to JP5168138A priority Critical patent/JPH0724328A/en
Publication of JPH0724328A publication Critical patent/JPH0724328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a catalyst particle hardly lowered in catalytic activity and usable for a long time by providing a core material composed of a resin particle specified in its particle size, the metal oxide layer formed on the surface of the core material and the metal layer with a specific thickness formed on the metal oxide layer. CONSTITUTION:A catalyst particle is constituted of a resin particle with a particle size of 0.05-5mm being a core material, the metal oxide layer 2 formed on the surface of the core material 1 and the metal layer 3 with a thickness of 0.01-5mum formed on the surface of the metal oxide layer 2. At that time, the wt. ratio of the resin particle and the metal oxide layer is set to the range of 99.9:0.1-90:10. A metal component selected from a group consisting of palladium, platinum, nickel, copper and an alloy based on at least one of those metals is added to the metal layer. This catalyst particle is used in the reaction in a gas-liquid mixed phase system, that is, oxidation reaction in water treatment, the reforming of petroleum for a fuel battery and the oxidation treatment reaction of dissolved gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒状の形態を有する新
規な触媒粒子およびこの使用方法に関する。さらに詳し
くは本発明は、気液混相反応のように異なる相間での反
応に特に好適な触媒粒子およびこの使用方法に関する。
FIELD OF THE INVENTION The present invention relates to novel catalyst particles having a granular morphology and their use. More specifically, the present invention relates to catalyst particles particularly suitable for reaction between different phases such as a gas-liquid mixed phase reaction and a method for using the same.

【0002】[0002]

【発明の技術的背景およびその問題点】化学反応には、
気相反応、液相反応、気液混相反応等の種々の相の反応
があり、工業的には、多くの場合、反応を効率的に行う
ため触媒が用いられている。こうした触媒を用いた反応
の内、固体触媒を用いる不均一触媒反応では、反応原料
と触媒との接触性によって反応速度等が著しく変動す
る。
TECHNICAL BACKGROUND OF THE INVENTION AND PROBLEMS THEREOF
There are various phase reactions such as gas phase reaction, liquid phase reaction, gas-liquid mixed phase reaction, etc., and in many cases, catalysts are used industrially in order to carry out the reaction efficiently. Among the reactions using such a catalyst, in a heterogeneous catalytic reaction using a solid catalyst, the reaction rate and the like remarkably vary depending on the contact property between the reaction raw material and the catalyst.

【0003】一般に、化学反応は触媒と反応原料との接
触の程度が高い程全体の反応速度が大きくなることか
ら、多孔質物質に触媒を担持させて、触媒と反応原料と
の接触面積を大きくしている。こうした方法は、気相反
応、液相反応で非常に有効であり、既にシリカ、アルミ
ナ等数多くの多孔質担体が用いられている。
Generally, in a chemical reaction, the higher the degree of contact between the catalyst and the reaction raw material, the higher the overall reaction rate. Therefore, the catalyst is supported on the porous material to increase the contact area between the catalyst and the reaction raw material. is doing. Such a method is very effective in a gas phase reaction and a liquid phase reaction, and many porous carriers such as silica and alumina have already been used.

【0004】しかしながら、気液混相反応のように反応
系に気相と液相とが混在する系における反応では、気泡
の表面張力のために多孔質担体の深部にまで反応原料が
侵入しないために、上記のような多孔質担体を用いて単
位体積当たりの表面積を大きくしても、触媒粒子内部へ
気相の拡散が妨害され全体の反応速度はそれほど改善さ
れない。例えば特開昭58-122046号、同62-38245号公報
等には気液混相反応で使用する触媒に撥水性多孔質担体
を使用して、水滴で孔口が閉塞されないようにして、反
応性を確保した気液混相反応における触媒が開示されて
おり、こうした提案から明らかなように、気液混相反応
における触媒の反応性は、一般的な触媒のように単に比
表面積を高くすることによっては改善されない。
However, in a reaction in a system in which a gas phase and a liquid phase coexist in the reaction system such as a gas-liquid mixed phase reaction, the reaction raw materials do not penetrate into the deep portion of the porous carrier due to the surface tension of bubbles. Even if the surface area per unit volume is increased by using the porous carrier as described above, the diffusion of the gas phase into the inside of the catalyst particles is hindered and the overall reaction rate is not improved so much. For example, in JP-A-58-122046 and JP-A-62-38245, a water-repellent porous carrier is used as a catalyst used in a gas-liquid mixed phase reaction to prevent pores from being blocked by water droplets and to improve reactivity. A catalyst for a gas-liquid mixed phase reaction that secures the above is disclosed, and as is clear from these proposals, the reactivity of the catalyst in the gas-liquid mixed phase reaction depends on simply increasing the specific surface area like a general catalyst. Not improved.

【0005】近年、CODまたはBOD値を低減させる
ため溶存物質を酸化処理し、環境汚染の低減を図ろうと
する要請が強く、一般水処理等においてさえも酸化処理
した後に排水することが必要になってきている。こうし
た一般水処理における酸化処理では気液混相反応が利用
されており、しかもこの気液混相反応で著しく多量の水
を処理する必要がある。従って、こうした気液混相反応
では、より活性の高い触媒を使用することが必要である
とともに、さらにその活性をできるだけ長時間維持する
ことが必要になる。
In recent years, there has been a strong demand to oxidize a dissolved substance in order to reduce the COD or BOD value and to reduce environmental pollution. Therefore, even in general water treatment or the like, it is necessary to drain water after the oxidization treatment. Is coming. A gas-liquid mixed phase reaction is used in the oxidation treatment in such a general water treatment, and it is necessary to treat a remarkably large amount of water in this gas-liquid mixed phase reaction. Therefore, in such a gas-liquid mixed phase reaction, it is necessary to use a catalyst having a higher activity, and further it is necessary to maintain the activity for as long as possible.

【0006】こうした気液混相系における反応の触媒と
して、例えば、特開平4-166215号公報には、電気式脱イ
オン水製造装置から排出される電極水の処理方法の発明
が開示されている。
As a catalyst for the reaction in such a gas-liquid mixed phase system, for example, Japanese Patent Application Laid-Open No. 4-166215 discloses an invention of a method for treating electrode water discharged from an electric deionized water producing apparatus.

【0007】この方法では、イオン交換樹脂にパラジウ
ムを担持させた触媒の存在下に、水素ガスを含む陰極水
と酸素ガスを含有する陽極水とを接触させることにより
水素ガスと酸素ガスとを反応させて水処理を行ってい
る。
In this method, hydrogen gas and oxygen gas are reacted by contacting cathode water containing hydrogen gas and anode water containing oxygen gas in the presence of a catalyst in which palladium is supported on an ion exchange resin. Let's do water treatment.

【0008】このような水処理では、非常に多量の水を
処理しなければならず、さらにパラジウムが高価である
ことから、触媒の活性をできるだけ長時間維持する必要
がある。
In such water treatment, a very large amount of water must be treated, and since palladium is expensive, it is necessary to maintain the activity of the catalyst as long as possible.

【0009】また、気液混相反応における反応性を向上
させるために、反応系における気液混合状態を改善する
方法等、種々の提案がある(特開昭53-110968号、同63-
252540号、特開平3-196832号、同4-156937号等の公報参
照)。しかしながら、これらの公報には、触媒自体の構
造を変えて反応性を改善しようとする試みは開示されて
いない。
Further, in order to improve the reactivity in the gas-liquid mixed phase reaction, there are various proposals such as a method for improving the gas-liquid mixed state in the reaction system (JP-A-53-110968, 63-63).
252540, JP-A-3-196832, JP-A-4-156937, etc.). However, these publications do not disclose an attempt to change the structure of the catalyst itself to improve the reactivity.

【0010】ところで、樹脂からなる芯材としてこの芯
材上に無電解メッキ法で金属層を形成する際に、芯材の
濡れ性を向上させるために芯材上に金属酸化物層を形成
する方法およびこのような構造を有する金属被覆粒子は
既に知られている(例えば特開平4-228503号、同4-1838
04号公報参照)。
By the way, when forming a metal layer as a resin core material on this core material by electroless plating, a metal oxide layer is formed on the core material in order to improve the wettability of the core material. Methods and metal-coated particles having such a structure are already known (for example, JP-A-4-228503 and 4-1838).
(See Publication 04).

【0011】しかしながら、これらの公報において、金
属酸化物層は、金属層を形成する際の芯材の濡れ性を改
善するために設けられているのであり、さらにこれらの
金属被覆粒子は塗料、接着剤、粉末冶金、射出成形、電
磁波シールド材、分散強化材、静電複写トナー、粉体塗
料および化粧料等としての使用が提案されているだけで
あり、触媒としての用途に関しては全く検討されていな
い。
However, in these publications, the metal oxide layer is provided in order to improve the wettability of the core material when the metal layer is formed. It has only been proposed for use as an agent, powder metallurgy, injection molding, electromagnetic shielding material, dispersion strengthening material, electrostatic copying toner, powder coating material, cosmetics, etc., and its use as a catalyst has not been studied at all. Absent.

【0012】本発明者はこうした金属被覆粒子について
従来全く検討されていなかった触媒の分野において種々
検討を行った結果、樹脂芯材表面に金属酸化物層を介し
て特定の金属から形成された金属層を有する粒子が優れ
た触媒作用を有すると共に、その触媒作用が長期間維持
されるとの知見を得て本発明を完成するに至った。
The present inventor has conducted various studies in the field of catalysts, which had never been studied for such metal-coated particles, and as a result, found that a metal formed from a specific metal via a metal oxide layer on the surface of the resin core material. The present invention has been completed based on the finding that the particles having a layer have an excellent catalytic action and that the catalytic action is maintained for a long period of time.

【0013】[0013]

【発明の目的】本発明は、新規な形態の触媒粒子および
その触媒粒子を使用する方法を提供することを目的とす
る。さらに詳しくは本発明は、触媒活性が低下しにくく
長時間使用することができる触媒粒子およびこの触媒粒
子を使用する方法を提供することを目的としている。
OBJECTS OF THE INVENTION It is an object of the present invention to provide novel forms of catalyst particles and methods of using the catalyst particles. More specifically, it is an object of the present invention to provide a catalyst particle in which the catalytic activity is less likely to decrease and which can be used for a long time, and a method of using the catalyst particle.

【0014】[0014]

【発明の概要】本発明の触媒粒子は、芯材である平均粒
子径0.05〜5mmの樹脂粒子と、該芯材の表面に形成
された金属酸化物層と、該金属酸化物層の表面に形成さ
れた厚さ0.01〜5μmの金属層とからなり、該樹脂
粒子と金属酸化物層を形成する金属酸化物との重量比が
99.9:0.1〜90:10の範囲内にあり、そして、該
金属層が、パラジウム、白金、ニッケル、銅および少な
くとも一種類の該金属を主成分とする合金よりなる群か
ら選ばれる金属成分を含有することを特徴としている。
SUMMARY OF THE INVENTION A catalyst particle of the present invention comprises a core material, resin particles having an average particle size of 0.05 to 5 mm, a metal oxide layer formed on the surface of the core material, and a metal oxide layer. A metal layer having a thickness of 0.01 to 5 μm formed on the surface, and the weight ratio of the resin particles to the metal oxide forming the metal oxide layer is 99.9: 0.1 to 90:10. Is in the range, and the metal layer contains a metal component selected from the group consisting of palladium, platinum, nickel, copper, and at least one alloy containing the metal as a main component.

【0015】また、本発明の触媒粒子の使用方法は、芯
材である平均粒子径0.05〜5mmの樹脂粒子と、該芯
材の表面に形成された金属酸化物層と、該金属酸化物層
の表面に形成された厚さ0.01〜5μmの金属層とか
らなり、該樹脂粒子と金属酸化物層を形成する金属酸化
物との重量比が99.9:0.1〜90:10の範囲内にあ
り、そして、該金属層が、パラジウム、白金、ニッケ
ル、銅および少なくとも一種類の該金属を主成分とする
合金よりなる群から選ばれる金属成分を含有する触媒粒
子の存在下に、気液混相系で、反応を行うことを特徴と
している。
Further, the method of using the catalyst particles of the present invention is to use resin particles having an average particle diameter of 0.05 to 5 mm, which are core materials, a metal oxide layer formed on the surface of the core materials, and the metal oxide. A metal layer having a thickness of 0.01 to 5 μm formed on the surface of the object layer, and the weight ratio of the resin particles to the metal oxide forming the metal oxide layer is 99.9: 0.1 to 90. The presence of catalyst particles in the range of: 10 and the metal layer contains a metal component selected from the group consisting of palladium, platinum, nickel, copper and at least one metal-based alloy. The feature below is that the reaction is performed in a gas-liquid mixed phase system.

【0016】本発明の触媒粒子は、上記のように樹脂粒
子の表面に金属酸化物層および金属層がこの順序で積層
された断面構造を有する。このように芯材の表面に金属
酸化物からなる薄層を形成し、さらにこの金属酸化物層
の上に金属層を形成することにより、触媒活性が経時的
に低下しにくくなる。
The catalyst particle of the present invention has a cross-sectional structure in which the metal oxide layer and the metal layer are laminated in this order on the surface of the resin particle as described above. By thus forming a thin layer of a metal oxide on the surface of the core material and further forming a metal layer on the metal oxide layer, the catalytic activity is less likely to decrease with time.

【0017】また、芯材として樹脂粒子を使用している
ので、この触媒粒子の比重が低くなり、移動層または流
動層のようにこの触媒を固定しないで使用する場合に
は、反応系に対する分散が非常に容易になる。
Further, since the resin particles are used as the core material, the specific gravity of the catalyst particles becomes low, and when the catalyst is used without being fixed like a moving bed or a fluidized bed, it is dispersed in the reaction system. Becomes very easy.

【0018】特に本発明の触媒粒子は、気液混相系にお
ける反応触媒、気液混相反応、さらに詳しくは原料系ま
たは生成系の少なくとも一方が気体または液体である気
液混相反応における触媒として有用性が高い。
In particular, the catalyst particles of the present invention are useful as a reaction catalyst in a gas-liquid mixed phase system, a gas-liquid mixed phase reaction, and more specifically a catalyst in a gas-liquid mixed phase reaction in which at least one of a raw material system and a production system is gas or liquid. Is high.

【0019】[0019]

【発明の具体的説明】次に本発明の触媒粒子およびその
使用方法について具体的に説明する。本発明の触媒粒子
は、図1に示すように、芯材1、この芯材1表面に形成
された金属酸化物層2、および、この金属酸化物層2上
に形成された金属層3からなる。
DETAILED DESCRIPTION OF THE INVENTION Next, the catalyst particles of the present invention and the method of using the same will be specifically described. As shown in FIG. 1, the catalyst particles of the present invention include a core material 1, a metal oxide layer 2 formed on the surface of the core material 1, and a metal layer 3 formed on the metal oxide layer 2. Become.

【0020】本発明の触媒粒子において、芯材は樹脂か
ら形成されている。この芯材は、0.05〜5mmの範囲
内の平均粒子径を有しており、さらに0.1〜5mmの平
均粒子径を有する樹脂粒子が好ましく、0.2〜2mmの
平均粒子径を有する樹脂粒子が特に好ましい。上記のよ
うな平均粒子径を有する樹脂粒子は、曲率半径があまり
小さくならないので、この樹脂粒子表面に均一な金属層
を例えば無電解メッキ法で容易に形成することができ
る。
In the catalyst particles of the present invention, the core material is made of resin. This core material has an average particle diameter within the range of 0.05 to 5 mm, preferably resin particles having an average particle diameter of 0.1 to 5 mm, and an average particle diameter of 0.2 to 2 mm. The resin particles having are particularly preferable. The radius of curvature of the resin particles having the average particle diameter as described above does not become so small that a uniform metal layer can be easily formed on the surface of the resin particles by, for example, electroless plating.

【0021】この芯材を形成する樹脂の例としては、
(メタ)アクリル系樹脂、スチレン系樹脂、スチレン/
(メタ)アクリル系樹脂、ポリエチレン系樹脂、ポリプ
ロピレン系樹脂、ABS樹脂、AS樹脂、ポリアセター
ル樹脂、ポリカーボネート系樹脂、フェノール系樹脂、
ベンゾグアナミン系樹脂、エポキシ系樹脂、ポリエステ
ル系樹脂、ポリアミド系樹脂、ウレタン系樹脂およびポ
リイミド系樹脂を挙げることができる。この有機重合体
は、架橋重合体または非架橋重合体のいずれであっても
よい。これらの中でも(メタ)アクリル系樹脂(例:メ
チルメタクリレート)およびスチレン/(メタ)アクリ
ル系樹脂のようなアクリル系樹脂が好ましい。
As an example of the resin forming the core material,
(Meth) acrylic resin, styrene resin, styrene /
(Meth) acrylic resin, polyethylene resin, polypropylene resin, ABS resin, AS resin, polyacetal resin, polycarbonate resin, phenol resin,
Examples thereof include benzoguanamine resin, epoxy resin, polyester resin, polyamide resin, urethane resin and polyimide resin. The organic polymer may be either a crosslinked polymer or a non-crosslinked polymer. Among these, acrylic resins such as (meth) acrylic resins (eg, methyl methacrylate) and styrene / (meth) acrylic resins are preferable.

【0022】このように芯材として樹脂粒子を用いるこ
とにより、本発明の触媒粒子の比重が低くなり反応系へ
の分散が容易になると共に、例えば芯材としてガラスビ
ーズなど用いた場合よりも触媒活性を長時間維持するこ
とができる。
By using the resin particles as the core material in this way, the specific gravity of the catalyst particles of the present invention is lowered and the dispersion in the reaction system is facilitated. For example, the catalyst particles are used as compared with the case where glass beads are used as the core material. The activity can be maintained for a long time.

【0023】本発明の触媒粒子には、上記のような芯材
表面に金属酸化物層が形成されている。この金属酸化物
層は、通常は4価金属の酸化物から形成されており、こ
のような4価金属の酸化物の好適な例としては、酸化ス
ズ、酸化ケイ素、酸化チタンおよび酸化ジルコニウムを
挙げることができる。ここで金属酸化物としては、通常
は0.001〜1μm、好ましくは0.02〜0.1μm
の平均粒子径を有する粒子が使用される。すなわち、通
常、芯材である樹脂粒子の1/5,000,000〜1/50程
度、好ましくは1/10,000〜1/5,000程度の平均粒子
径を有する金属酸化物粒子が使用される。
The catalyst particles of the present invention have a metal oxide layer formed on the surface of the core material as described above. This metal oxide layer is usually formed of a tetravalent metal oxide, and suitable examples of such a tetravalent metal oxide include tin oxide, silicon oxide, titanium oxide and zirconium oxide. be able to. Here, the metal oxide is usually 0.001 to 1 μm, preferably 0.02 to 0.1 μm.
Particles having an average particle size of are used. That is, usually, metal oxide particles having an average particle size of about 1 / 5,000,000 to 1/50, preferably about 1 / 10,000 to 1 / 5,000 of the resin particles as the core material are used.

【0024】この金属酸化物層は、樹脂粒子と金属酸化
物粉末とを、ボールミル等の混合機を用いて乾式混合法
(ドライブレンド法、メカノケミカル法)により形成す
ることができる。ここで乾式混合法の例としては、ハイ
ブリダイゼーションシステム(株式会社奈良機械製作所
製)、メカノフュージョンシステム(ホソカワミクロン
株式会社製)、コスモス(川崎重工業株式会社製)等の
粒子複合化装置を用いた方法を挙げることができる。こ
のような乾式混合法で樹脂粒子と金属酸化物粒子とを混
合することにより樹脂粒子表面に連続性の高い金属酸化
物層を形成することができる。
This metal oxide layer can be formed by a dry mixing method (dry blending method, mechanochemical method) of resin particles and metal oxide powder using a mixer such as a ball mill. Here, as an example of the dry mixing method, a method using a particle compounding device such as a hybridization system (manufactured by Nara Machinery Co., Ltd.), a mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.), or a cosmos (manufactured by Kawasaki Heavy Industries, Ltd.) Can be mentioned. By mixing the resin particles and the metal oxide particles by such a dry mixing method, a metal oxide layer having high continuity can be formed on the surface of the resin particles.

【0025】さらに、樹脂と金属酸化物を不均一に溶融
混練し、その後に粉砕すると金属酸化物が表面に固定さ
れた樹脂粒子が得られる。上記の方法の他、金属酸化物
が水およびモノマーに不溶もしくは難溶の場合には、こ
の金属酸化物粒子を水性溶媒に分散させ、この水性溶媒
中にモノマーを入れて懸濁重合することにより、金属酸
化物が分散安定剤として作用するため、重合させながら
表面に金属酸化物が固定された樹脂粒子が得られる。こ
のように重合させることにより、金属酸化物は、その界
面作用により殆どが樹脂粒子表面に薄層を形成して固定
され、均一な金属酸化物層を形成する。
Further, when the resin and the metal oxide are non-uniformly melt-kneaded and then pulverized, resin particles having the metal oxide fixed on the surface are obtained. In addition to the above method, when the metal oxide is insoluble or poorly soluble in water and the monomer, the metal oxide particles are dispersed in an aqueous solvent, and the monomer is put in the aqueous solvent to carry out suspension polymerization. Since the metal oxide acts as a dispersion stabilizer, resin particles having the metal oxide fixed on the surface while polymerizing can be obtained. By polymerizing in this manner, most of the metal oxide is fixed by forming a thin layer on the surface of the resin particles due to the interfacial action, and forms a uniform metal oxide layer.

【0026】特に本発明では粒子複合化装置で形成され
た金属酸化物層、および、懸濁重合の際に金属酸化物を
配合して重合させることにより形成された金属酸化物層
が好ましい。
In the present invention, the metal oxide layer formed by the particle compounding device and the metal oxide layer formed by blending and polymerizing the metal oxide during the suspension polymerization are particularly preferable.

【0027】このように樹脂芯材上に金属酸化物層を介
して金属層を形成することにより、触媒活性を長時間維
持することができる。しかも例えば無電解メッキ法によ
り均一性の高い金属層を容易に形成することができる。
By thus forming the metal layer on the resin core material via the metal oxide layer, the catalytic activity can be maintained for a long time. Moreover, for example, a highly uniform metal layer can be easily formed by an electroless plating method.

【0028】本発明の触媒粒子は、上記の金属酸化物層
上に金属層を有している。この金属層は、触媒作用を有
する金属により形成されており、金属酸化物層における
金属とは別の金属である。
The catalyst particles of the present invention have a metal layer on the above metal oxide layer. This metal layer is formed of a metal having a catalytic action, and is a metal different from the metal in the metal oxide layer.

【0029】このような触媒作用を有する金属として、
パラジウム、白金、ニッケル、銅およびこれらの金属を
主成分として含有する合金を挙げることができる。すな
わち、この金属層は、パラジウム、白金、ニッケルまた
は銅のいずれかの金属単独で形成されていてもよいし、
これらの金属の合金であってもよい。さらに、この金属
層には、触媒作用が損なわれない範囲内で、他の成分が
含有されていてもよい。ここで、上記金属または合金と
共に金属層を形成することができる他の成分の例として
は、B、P、Co、Fe、Ag、Au、Rh、Ru、C
r、Cd、Pb、Sn、Zn、W、InおよびIrを挙
げることができる。このような他の成分は、金属層に通
常は25重量%以下、好ましくは13重量%以下、さら
に好ましくは4重量%以下の量で含有されることができ
る。
As the metal having such a catalytic action,
Palladium, platinum, nickel, copper and alloys containing these metals as main components can be mentioned. That is, this metal layer, palladium, platinum, may be formed of any metal alone nickel or copper,
It may be an alloy of these metals. Further, the metal layer may contain other components as long as the catalytic action is not impaired. Here, examples of other components capable of forming a metal layer together with the above metal or alloy include B, P, Co, Fe, Ag, Au, Rh, Ru and C.
There may be mentioned r, Cd, Pb, Sn, Zn, W, In and Ir. Such other components can be contained in the metal layer in an amount of usually 25% by weight or less, preferably 13% by weight or less, more preferably 4% by weight or less.

【0030】この金属層は、例えば真空蒸着法、スパッ
タリング法、PVDおよびCVD法等により形成するこ
とができるが、特に本発明では無電解メッキ法により形
成することが好ましい。
This metal layer can be formed by, for example, a vacuum vapor deposition method, a sputtering method, a PVD method, a CVD method, or the like, but it is particularly preferable in the present invention to form the electroless plating method.

【0031】無電解メッキ法は、金属イオンを含有する
水溶液に還元剤を加えて加温乃至加熱することにより電
流を流すことなく金属を析出させる方法であり、この無
電解メッキ法により形成された金属層は非常に均一性が
高くなる。
The electroless plating method is a method in which a reducing agent is added to an aqueous solution containing metal ions and heated or heated to deposit a metal without passing an electric current, and is formed by this electroless plating method. The metal layer is very uniform.

【0032】金属層は、0.01〜5μmの平均層厚を
有しており、さらにこの平均層厚が0.1〜1.5μmの
範囲内にあることが好ましい。また、この金属層を形成
する金属と前記金属酸化物層を形成する金属酸化物との
重量比は99.9:0.1〜90:10の範囲内にある。金
属と金属酸化物とを上記のような量で用いることによ
り、触媒の活性が長時間維持される。
The metal layer has an average layer thickness of 0.01 to 5 μm, and the average layer thickness is preferably in the range of 0.1 to 1.5 μm. The weight ratio of the metal forming the metal layer to the metal oxide forming the metal oxide layer is in the range of 99.9: 0.1 to 90:10. By using the metal and the metal oxide in the above amounts, the activity of the catalyst is maintained for a long time.

【0033】この金属層は、前述のようにして芯材の表
面に金属酸化物層を形成した後、通常は感応化処理およ
び活性化処理を施し、次いで無電解メッキ法により金属
層を形成する。ここで感応化処理は被メッキ物を塩化第
1スズ塩酸溶液等に浸漬する処理であり、活性化処理は
感応化処理した被メッキ物を塩化パラジウム塩酸溶液等
に浸漬する処理である。
This metal layer is usually subjected to a sensitizing treatment and an activating treatment after forming the metal oxide layer on the surface of the core material as described above, and then forming the metal layer by the electroless plating method. . Here, the sensitizing treatment is a treatment of immersing the object to be plated in a stannous chloride hydrochloric acid solution or the like, and the activating treatment is a treatment of immersing the object to be plated in the stannous chloride solution in palladium chloride hydrochloric acid or the like.

【0034】こうして感応化処理および活性化処理が施
された被メッキ体、即ち金属酸化物層が形成された芯材
を、室温〜90℃の範囲内の温度に維持された無電解メ
ッキ液中に投入して、攪拌下に10分〜24時間反応さ
せることにより、金属層を形成することができる。
The object to be plated thus subjected to the sensitizing treatment and the activating treatment, that is, the core material on which the metal oxide layer is formed, is placed in an electroless plating solution maintained at a temperature within the range of room temperature to 90 ° C. Then, the metal layer can be formed by reacting the solution with stirring for 10 minutes to 24 hours under stirring.

【0035】本発明の触媒粒子は、上記のように芯材と
して樹脂粒子を用いているので、比重が低くなり、反応
系への触媒粒子の分散が容易になる。さらにこのように
芯材として樹脂粒子を用い、さらに金属酸化物層を介し
て触媒となる金属層を形成することにより、触媒粒子の
活性を長時間維持することができる。本発明の触媒粒子
において触媒活性の低下が少なく、その活性が長時間維
持されることについての機構は明確ではないが、後述す
るように実施例と比較例との対比から明らかなように、
樹脂芯材および金属酸化物層が互いに共同することによ
り触媒活性が低下しにくくなっていることがわかる。
Since the catalyst particles of the present invention use the resin particles as the core material as described above, the specific gravity becomes low and the catalyst particles can be easily dispersed in the reaction system. Further, by using the resin particles as the core material and further forming the metal layer serving as the catalyst through the metal oxide layer, the activity of the catalyst particles can be maintained for a long time. In the catalyst particles of the present invention, there is little reduction in catalytic activity, and the mechanism for maintaining that activity for a long time is not clear, but as will be apparent from the comparison between the example and the comparative example as described later,
It can be seen that the catalytic activity is less likely to decrease due to the fact that the resin core material and the metal oxide layer cooperate with each other.

【0036】本発明の触媒粒子は、表面にある金属層を
形成する金属の種類によって種々の反応に対する触媒活
性を有し、液相反応、気相反応のような単一相での触
媒、特に酸化触媒として使用することができるが、特に
異なる相間で進行する反応の触媒として好適である。こ
のような異なる相間で進行する反応の例としては、原料
系または生成系の少なくとも一方が気体または液体であ
る気液混相反応を挙げることができる。さらに本発明の
触媒粒子は、このような気液混相反応における酸化触媒
として有用性が高い。
The catalyst particles of the present invention have a catalytic activity for various reactions depending on the kind of metal forming the metal layer on the surface, and a single phase catalyst such as liquid phase reaction or gas phase reaction, especially Although it can be used as an oxidation catalyst, it is particularly suitable as a catalyst for a reaction that proceeds between different phases. Examples of such a reaction that proceeds between different phases include a gas-liquid mixed phase reaction in which at least one of the raw material system and the production system is gas or liquid. Furthermore, the catalyst particles of the present invention are highly useful as an oxidation catalyst in such a gas-liquid mixed phase reaction.

【0037】こうした気液混相反応の例としては、水処
理における酸化反応、水素または窒素化合物の酸化処
理、溶存二酸化炭素の固定反応、燃料電池用石油の改
質、溶存ガスの酸化処理反応、アルデヒド類の酸化反
応、アルコール類の酸化反応およびアルコール類の脱水
素反応を挙げることができる。これらの中でも本発明の
触媒粒子は、水処理における酸化反応、水素または窒素
化合物の酸化処理、溶存二酸化炭素の固定反応、燃料電
池用石油の改質および溶存ガスの酸化処理反応における
酸化触媒としての有用性が高い。
Examples of such a gas-liquid mixed phase reaction include an oxidation reaction in water treatment, an oxidation treatment of hydrogen or a nitrogen compound, a fixed reaction of dissolved carbon dioxide, a reforming of petroleum for fuel cells, an oxidation treatment reaction of dissolved gas, an aldehyde. Examples thereof include oxidation reactions of alcohols, oxidation reactions of alcohols, and dehydrogenation reactions of alcohols. Among these, the catalyst particles of the present invention, as an oxidation catalyst in the oxidation reaction in water treatment, the oxidation treatment of hydrogen or nitrogen compounds, the fixation reaction of dissolved carbon dioxide, the reforming of petroleum for fuel cells and the oxidation treatment reaction of dissolved gas Highly useful.

【0038】図2に窒素化合物であるヒドラジンを含有
する水の酸化処理の例を示す。タンク11からヒドラジ
ンを含有する処理水を送液ポンプ12で下端部から処理
塔13に導入する。これとは別に空気をブロア14で同
様に処理塔13の下端部から導入し、処理塔13内で処
理水と空気とを混合する。この処理塔13内には、アク
リル系樹脂芯材の表面に酸化ケイ素層およびパラジウム
層がこの順序で積層された本発明の触媒粒子が充填され
ており、この触媒粒子と前記処理水および空気とは気液
混相状態で接触する。この処理水と空気とは上昇流で触
媒粒子と接触することが好ましい。このように処理する
ことにより、ヒドラジンは酸化分解されて窒素と水とに
なり、排水口15から排出される。なお、このヒドラジ
ンの酸化分解における平均滞留時間は通常は0.1〜5
分間、反応温度は通常は30〜80℃である。
FIG. 2 shows an example of oxidation treatment of water containing hydrazine which is a nitrogen compound. Treated water containing hydrazine is introduced from the tank 11 into the treatment tower 13 from the lower end by the liquid feed pump 12. Separately from this, air is similarly introduced from the lower end of the treatment tower 13 by the blower 14, and the treated water and air are mixed in the treatment tower 13. The treatment tower 13 is filled with the catalyst particles of the present invention in which a silicon oxide layer and a palladium layer are laminated in this order on the surface of an acrylic resin core material, and the catalyst particles and the treated water and air are Contact in a gas-liquid mixed phase. It is preferable that the treated water and air come into contact with the catalyst particles in an upward flow. By such treatment, hydrazine is oxidatively decomposed into nitrogen and water, which are discharged from the drainage port 15. The average residence time in the oxidative decomposition of hydrazine is usually 0.1 to 5
The reaction temperature is usually 30 to 80 ° C. for a minute.

【0039】上記ヒドラジンを含有する水の酸化処理の
例で示すような気液混相反応において、本発明の触媒粒
子の触媒活性は非常に長時間維持される。すなわち、芯
材として樹脂粒子を使用せずに、例えばガラスビーズ等
の表面に金属酸化物層を形成し、この金属酸化物層上に
金属層を設けた粒子、または、樹脂粒子の表面に直接金
属層を形成した粒子等では、反応開始当初の触媒活性が
非常に短時間で低下するが、本発明の触媒粒子は触媒活
性が低下しにくく、上記のような粒子の2倍以上の触媒
能力を有するものが多い。
In the gas-liquid mixed phase reaction as shown in the example of the oxidation treatment of water containing hydrazine, the catalytic activity of the catalyst particles of the present invention is maintained for a very long time. That is, without using resin particles as the core material, for example, a metal oxide layer is formed on the surface of glass beads or the like, and a metal layer is provided on the metal oxide layer, or directly on the surface of the resin particles. In the case of particles having a metal layer formed thereon, the catalytic activity at the beginning of the reaction decreases in a very short time, but the catalytic activity of the catalyst particles of the present invention is less likely to decrease, and the catalytic activity is more than twice that of the particles as described above. Many have.

【0040】本発明の触媒粒子は、ヒドラジンの酸化処
理に限らず、種々の気液混相反応において上記の例と同
等の効果を奏する。例えば上記図2において、ヒドラジ
ンを含有する処理水の代わりに、タンク11内に水素ガ
スが溶存している液を投入することにより水素を酸化処
理することができ、また燃料電池用石油原料を投入する
ことにより燃料電池用石油の改質を行うことができ、さ
らに二酸化炭素が溶存している海水を投入することによ
り二酸化炭素の固定・改質を行うことができ、ガス吸収
スクラバーでガスを吸収した液を投入することによりこ
のガスを酸化処理することができる。
The catalyst particles of the present invention exhibit the same effects as those of the above-mentioned examples in various gas-liquid mixed phase reactions, not limited to the oxidation treatment of hydrazine. For example, in FIG. 2 described above, hydrogen can be oxidized by introducing a liquid in which hydrogen gas is dissolved into the tank 11 in place of the treated water containing hydrazine, and the petroleum raw material for fuel cells can be introduced. By doing so, the petroleum for fuel cells can be reformed, and by adding seawater in which carbon dioxide is dissolved, the carbon dioxide can be fixed and reformed, and the gas absorption scrubber absorbs the gas. This gas can be oxidized by adding the liquid.

【0041】また、本発明の触媒粒子を用いて濡れ壁塔
の内壁材を形成することにより、この濡れ壁塔における
ガスの吸収および酸化を同時に行うことができる。さら
に、本発明の触媒粒子は、通常1.2〜2.5g/cm3程度
の比重を有しており、この比重は処理液の比重と近似し
ているため、例えばこの触媒を気液混合相流における移
動層もしくは流動層で使用する際に触媒粒子と処理液と
を有効に接触させることができる。
Further, by forming the inner wall material of the wet wall tower using the catalyst particles of the present invention, it is possible to simultaneously absorb and oxidize the gas in the wet wall tower. Further, the catalyst particles of the present invention usually have a specific gravity of about 1.2 to 2.5 g / cm 3, which is close to the specific gravity of the treatment liquid. When used in a moving bed or a fluidized bed in a phase flow, the catalyst particles and the treatment liquid can be effectively brought into contact with each other.

【0042】[0042]

【発明の効果】本発明の触媒粒子では、樹脂粒子からな
る芯材およびこの芯材表面に金属酸化物層を有し、この
金属酸化物層の上に金属層が形成されているので、異な
る相が相接する相間における反応、特に気液混相におけ
る酸化反応において、有効な触媒活性が長期期間維持さ
れる。
The catalyst particles of the present invention have a core material made of resin particles and a metal oxide layer on the surface of the core material, and the metal layer is formed on the metal oxide layer. In the reaction between the phases where the phases are in contact with each other, particularly in the oxidation reaction in the gas-liquid mixed phase, effective catalytic activity is maintained for a long period.

【0043】また、この触媒粒子は、芯材が樹脂粒子か
らなるので、比重が低く、反応させようとする液体と近
似した比重を有する。従って、例えば本発明の触媒粒子
を用いることにより、処理物質と触媒粒子とを有効に接
触させることができる。
Further, since the core material of the catalyst particles is made of resin particles, the specific gravity is low, and the specific gravity is similar to that of the liquid to be reacted. Therefore, for example, by using the catalyst particles of the present invention, the treatment substance and the catalyst particles can be effectively brought into contact with each other.

【0044】本発明の触媒粒子は、特に気液混相におけ
る反応触媒として有用性が高い。
The catalyst particles of the present invention are particularly useful as a reaction catalyst in a gas-liquid mixed phase.

【0045】[0045]

【実施例】次に実施例を示して本発明を説明するが、本
発明はこれにより限定されるものではない。
The present invention will now be described with reference to examples, but the present invention is not limited thereto.

【0046】[0046]

【製造例1】攪拌装置、温度計および窒素ガス導入管を
有するステンレス製の容量5リットルの重合容器中に、
水1400重量部を仕込んだ。次いでこの水にポリビニ
ルアルコール3.3重量部を溶解させた後、この溶液に
ベンゾイルパーオキサイド6重量部を溶解させたメチル
メタクリレート600重量部を添加し、ゆっくりとした
一定の攪拌条件下で75℃で5時間加熱し、懸濁重合を
完了させた。
[Production Example 1] A polymerization vessel made of stainless steel and having a stirrer, a thermometer, and a nitrogen gas inlet tube and having a capacity of 5 liters was used.
1400 parts by weight of water was charged. Then, 3.3 parts by weight of polyvinyl alcohol was dissolved in this water, and then 600 parts by weight of methyl methacrylate in which 6 parts by weight of benzoyl peroxide was dissolved was added to this solution, and the mixture was slowly stirred at 75 ° C. under constant stirring conditions. The suspension polymerization was completed by heating for 5 hours.

【0047】得られた懸濁液を、遠心脱水後、水洗乾燥
して平均粒子径200μmのポリメチルメタクリレート
粉体を得た。
The resulting suspension was dehydrated by centrifugation, washed with water and dried to obtain a polymethylmethacrylate powder having an average particle diameter of 200 μm.

【0048】[0048]

【製造例2】製造例1において、水1400重量部の代
わりに、水1400重量部および酸化ケイ素18重量部
を仕込んだ以外は同様にして懸濁重合を行い、平均粒子
径200μmの粉体を得た。
Production Example 2 Suspension polymerization was performed in the same manner as in Production Example 1 except that 1400 parts by weight of water and 18 parts by weight of silicon oxide were charged instead of 1400 parts by weight of water to obtain a powder having an average particle diameter of 200 μm. Obtained.

【0049】得られた粉体を走査型電子顕微鏡で観察し
たところ、粒子表面が酸化ケイ素で被覆されたポリメチ
ルメタクリレート粉体であった。
When the obtained powder was observed with a scanning electron microscope, it was a polymethylmethacrylate powder whose surface was coated with silicon oxide.

【0050】[0050]

【製造例3】製造例1で得られたポリメチルメタアクリ
レート粉体100gと酸化ケイ素3gとを市販の容量5
00ccポリ瓶に入れ、ポリ瓶の回転数が60ppmにな
るように回転速度を調節し、60分間処理した。
[Manufacturing Example 3] 100 g of the polymethylmethacrylate powder obtained in Manufacturing Example 1 and 3 g of silicon oxide were put on the market at a volume of 5
The mixture was placed in a 00 cc plastic bottle, the rotation speed was adjusted so that the rotation speed of the plastic bottle was 60 ppm, and treatment was performed for 60 minutes.

【0051】得られた粉体を走査型電子顕微鏡で観察し
たところ、製造例1で得られたのと同様の酸化ケイ素で
被覆されたポリメチルメタクリレート粉体であった。
When the obtained powder was observed with a scanning electron microscope, it was the same polymethylmethacrylate powder coated with silicon oxide as that obtained in Production Example 1.

【0052】[0052]

【比較例1】製造例1で得られた粉体を塩化第1すず塩
酸溶液に浸漬し、感応化処理を施した後、塩化パラジウ
ム塩酸溶液に浸漬し、活性化処理を施した。
COMPARATIVE EXAMPLE 1 The powder obtained in Production Example 1 was dipped in a first tin chloride solution of hydrochloric acid for sensitization treatment, and then dipped in a hydrochloric acid solution of palladium chloride for activation treatment.

【0053】次いで、処理粉体50gを、塩化パラジウ
ム32g、25%アンモニア水400g、エチレンジア
ミン四酢酸二ナトリウム68g、ヒドラジン5.8gお
よびイオン交換水600gからなるメッキ液で、40℃
で1時間かけて無電解メッキを行った。その後、遠心脱
水し、水洗乾燥してパラジウムメッキ粒子を得た。得ら
れたメッキ粒子のパラジウム層の厚さは、1.1μmで
あった。
Next, 50 g of the treated powder was plated at 40 ° C. with a plating solution consisting of 32 g of palladium chloride, 400 g of 25% ammonia water, 68 g of disodium ethylenediaminetetraacetate, 5.8 g of hydrazine and 600 g of ion-exchanged water.
Electroless plating was performed for 1 hour. Then, it was centrifugally dehydrated, washed with water and dried to obtain palladium-plated particles. The thickness of the palladium layer of the obtained plated particles was 1.1 μm.

【0054】得られた粉体を用いて、図2に示すヒドラ
ジン分解能測定装置により、ヒドラジンの分解速度を測
定したところ、表1に示すように、反応開始直後のヒド
ラジン分解速度は高かったが、触媒活性が短時間で低下
して24時間経過後では実用的に有効な触媒活性は示さ
なくなった。結果を表1に示す。
The obtained powder was used to measure the decomposition rate of hydrazine with the hydrazine resolution measuring device shown in FIG. 2. As shown in Table 1, the decomposition rate of hydrazine immediately after the initiation of the reaction was high. The catalytic activity decreased in a short time, and after 24 hours, the practically effective catalytic activity was not exhibited. The results are shown in Table 1.

【0055】[0055]

【実施例1】製造例2で得られた粉体を塩化第1すず塩
酸溶液に浸漬し、感応化処理を施した後、塩化パラジウ
ム塩酸溶液に浸漬し、活性化処理を施した。
Example 1 The powder obtained in Production Example 2 was dipped in a first tin chloride solution of hydrochloric acid for sensitization, and then dipped in a hydrochloric acid solution of palladium chloride for activation.

【0056】次いで、処理粉体50gを、塩化パラジウ
ム32g、25%アンモニア水400g、エチレンジア
ミン四酢酸二ナトリウム68g、ヒドラジン5.8gお
よびイオン交換水600gからなるメッキ液で、40℃
で1時間かけて無電解メッキを行った。
Next, 50 g of the treated powder was plated at 40 ° C. with a plating solution consisting of 32 g of palladium chloride, 400 g of 25% ammonia water, 68 g of disodium ethylenediaminetetraacetate, 5.8 g of hydrazine and 600 g of ion-exchanged water.
Electroless plating was performed for 1 hour.

【0057】その後、遠心脱水し、水洗乾燥してパラジ
ウムメッキ粒子を得た。得られたメッキ粒子のパラジウ
ム層の厚さは、1.1μmであった。得られた粉体を用
いて、図2に示すヒドラジン分解能測定装置により、ヒ
ドラジンの分解速度を測定したところ、表1に示すよう
に、24時間経過の触媒活性と28日経過後の触媒活性
との間に殆ど差がなく、長期間この触媒を使用すること
ができた。結果を表1に示す。
Then, the product was centrifugally dehydrated, washed with water and dried to obtain palladium-plated particles. The thickness of the palladium layer of the obtained plated particles was 1.1 μm. The obtained powder was used to measure the decomposition rate of hydrazine with a hydrazine-degrading measuring device shown in FIG. 2. As shown in Table 1, the catalyst activity after 24 hours and the catalyst activity after 28 days were measured. There was almost no difference between them, and this catalyst could be used for a long time. The results are shown in Table 1.

【0058】[0058]

【実施例2】製造例3で得られた粉体を塩化第1すず塩
酸溶液に浸漬し、感応化処理を施した後、塩化パラジウ
ム塩酸溶液に浸漬し、活性化処理を施した。
Example 2 The powder obtained in Production Example 3 was dipped in a solution of stannous chloride and subjected to a sensitizing treatment, and then dipped in a hydrochloric acid solution of palladium chloride to be activated.

【0059】次いで、処理粉体50gを、塩化パラジウ
ム32g、25%アンモニア水400g、エチレンジア
ミン四酢酸二ナトリウム68g、ヒドラジン5.8gお
よびイオン交換水600gからなるメッキ液で、40℃
で1時間かけて無電解メッキを行った。
Then, 50 g of the treated powder was plated at 40 ° C. with a plating solution consisting of 32 g of palladium chloride, 400 g of 25% ammonia water, 68 g of disodium ethylenediaminetetraacetate, 5.8 g of hydrazine and 600 g of ion-exchanged water.
Electroless plating was performed for 1 hour.

【0060】その後、遠心脱水し、水洗乾燥してパラジ
ウムメッキ粒子を得た。得られたメッキ粒子のパラジウ
ム層の厚さは、1.1μmであった。得られた粉体を用
いて、図2に示すヒドラジン分解能測定装置により、ヒ
ドラジンの分解速度を測定したところ、表1に示すよう
に、24時間経過の触媒活性と28日経過後の触媒活性
との間に殆ど差がなく、長期間この触媒を使用すること
ができた。結果を表1に示す。
Then, the product was centrifugally dehydrated, washed with water and dried to obtain palladium-plated particles. The thickness of the palladium layer of the obtained plated particles was 1.1 μm. The obtained powder was used to measure the decomposition rate of hydrazine with a hydrazine-degrading measuring device shown in FIG. 2. As shown in Table 1, the catalyst activity after 24 hours and the catalyst activity after 28 days were measured. There was almost no difference between them, and this catalyst could be used for a long time. The results are shown in Table 1.

【0061】[0061]

【比較例2】実施例1において、製造例2で得られた粉
体の代わりに、市販のガラスビーズ(平均粒子径0.2m
m)を用いた以外は同様にして触媒粒子を製造した。
[Comparative Example 2] In Example 1, instead of the powder obtained in Production Example 2, commercially available glass beads (average particle size: 0.2 m) were used.
Catalyst particles were produced in the same manner except that m) was used.

【0062】この触媒粒子を用いて実施例1と同様にし
てヒドラジンの分解速度を測定したが、反応開始直後の
分解速度もそれほど高くはなく、さらに24時間後には
比較例1の分解速度以下になったので、この段階で反応
を中止した。結果を表1に示す。
The catalyst particles were used to measure the decomposition rate of hydrazine in the same manner as in Example 1. The decomposition rate immediately after the start of the reaction was not so high, and after 24 hours, the decomposition rate was lower than that in Comparative Example 1. Therefore, the reaction was stopped at this stage. The results are shown in Table 1.

【0063】[0063]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は本発明の触媒粒子の断面形状を模式的
に示す断面図である。
FIG. 1 is a sectional view schematically showing a sectional shape of a catalyst particle of the present invention.

【図2】 図2は本発明の触媒粒子を用いたヒドラジン
含有水の処理装置の例を模式的に示す図である。
FIG. 2 is a diagram schematically showing an example of a treatment apparatus for hydrazine-containing water using the catalyst particles of the present invention.

【符号の説明】[Explanation of symbols]

1・・・芯材 2・・・金属酸化物層 3・・・金属層 11・・・タンク 12・・・ポンプ 13・・・処理装置 14・・・ブロア 15・・・排出口 DESCRIPTION OF SYMBOLS 1 ... Core material 2 ... Metal oxide layer 3 ... Metal layer 11 ... Tank 12 ... Pump 13 ... Processing device 14 ... Blower 15 ... Discharge port

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 芯材である粒子径0.05〜5mmの樹脂
粒子と、該芯材の表面に形成された金属酸化物層と、該
金属酸化物層の表面に形成された厚さ0.01〜5μm
の金属層とからなり、該樹脂粒子と金属酸化物層を形成
する金属酸化物との重量比が99.9:0.1〜90:10
の範囲内にあり、そして、該金属層が、パラジウム、白
金、ニッケル、銅および少なくとも一種類の該金属を主
成分とする合金よりなる群から選ばれる金属成分を含有
することを特徴とする触媒粒子。
1. A core material, which is a resin particle having a particle diameter of 0.05 to 5 mm, a metal oxide layer formed on the surface of the core material, and a thickness of 0 formed on the surface of the metal oxide layer. 0.01 to 5 μm
Of the resin particles and the metal oxide forming the metal oxide layer have a weight ratio of 99.9: 0.1 to 90:10.
And a catalyst in which the metal layer contains a metal component selected from the group consisting of palladium, platinum, nickel, copper and at least one alloy containing the metal as a main component. particle.
【請求項2】 芯材がアクリル系樹脂粒子であることを
特徴とする請求項第1項記載の触媒粒子。
2. The catalyst particles according to claim 1, wherein the core material is acrylic resin particles.
【請求項3】 金属酸化物が4価金属の酸化物であるこ
とを特徴とする請求項第1項記載の触媒粒子。
3. The catalyst particles according to claim 1, wherein the metal oxide is a tetravalent metal oxide.
【請求項4】 金属酸化物が、酸化スズ、酸化ケイ素、
酸化チタンおよび酸化ジルコニウムよりなる群から選ば
れる少なくとも一種類の金属酸化物であることを特徴と
する請求項第1項または第3項記載の触媒粒子。
4. The metal oxide is tin oxide, silicon oxide,
The catalyst particles according to claim 1 or 3, which is at least one kind of metal oxide selected from the group consisting of titanium oxide and zirconium oxide.
【請求項5】 金属層が、無電解メッキ法により形成さ
れた層であることを特徴とする請求項第1項記載の触媒
粒子。
5. The catalyst particle according to claim 1, wherein the metal layer is a layer formed by an electroless plating method.
【請求項6】 芯材である粒子径0.05〜5mmの樹脂
粒子と、該芯材の表面に形成された金属酸化物層と、該
金属酸化物層の表面に形成された厚さ0.01〜5μm
の金属層とからなり、該樹脂粒子と金属酸化物層を形成
する金属酸化物との重量比が99.9:0.1〜90:10
の範囲内にあり、そして、該金属層が、パラジウム、白
金、ニッケル、銅および少なくとも一種類の該金属を主
成分とする合金よりなる群から選ばれる金属成分を含有
する触媒粒子の存在下に、気液混相系で、反応を行うこ
とを特徴とする触媒粒子の使用方法。
6. A resin material having a particle size of 0.05 to 5 mm as a core material, a metal oxide layer formed on the surface of the core material, and a thickness of 0 formed on the surface of the metal oxide layer. 0.01 to 5 μm
Of the resin particles and the metal oxide forming the metal oxide layer have a weight ratio of 99.9: 0.1 to 90:10.
In the range of, and the metal layer in the presence of catalyst particles containing a metal component selected from the group consisting of palladium, platinum, nickel, copper and at least one metal-based alloy. A method for using catalyst particles, characterized in that the reaction is carried out in a gas-liquid mixed phase system.
【請求項7】 気液混相系における反応が、水処理にお
ける酸化反応、水素または窒素化合物の酸化処理、溶存
二酸化炭素の固定反応、燃料電池用石油の改質、また
は、溶存ガスの酸化処理反応のいずれかであることを特
徴とする請求項第6項記載の触媒粒子の使用方法。
7. The reaction in a gas-liquid mixed phase system includes an oxidation reaction in water treatment, an oxidation treatment of hydrogen or nitrogen compounds, a fixed reaction of dissolved carbon dioxide, reforming of petroleum for fuel cells, or an oxidation treatment reaction of dissolved gas. 7. The method for using the catalyst particles according to claim 6, which is any one of the above.
JP5168138A 1993-07-07 1993-07-07 Catalyst particle and use thereof Pending JPH0724328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5168138A JPH0724328A (en) 1993-07-07 1993-07-07 Catalyst particle and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5168138A JPH0724328A (en) 1993-07-07 1993-07-07 Catalyst particle and use thereof

Publications (1)

Publication Number Publication Date
JPH0724328A true JPH0724328A (en) 1995-01-27

Family

ID=15862546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5168138A Pending JPH0724328A (en) 1993-07-07 1993-07-07 Catalyst particle and use thereof

Country Status (1)

Country Link
JP (1) JPH0724328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309477A (en) * 1997-05-05 1998-11-24 Akzo Nobel Nv Manufacture of catalyst
JP2005013983A (en) * 2003-06-24 2005-01-20 Rohm & Haas Electronic Materials Llc Catalyst composition and deposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309477A (en) * 1997-05-05 1998-11-24 Akzo Nobel Nv Manufacture of catalyst
JP2005013983A (en) * 2003-06-24 2005-01-20 Rohm & Haas Electronic Materials Llc Catalyst composition and deposition method

Similar Documents

Publication Publication Date Title
Bronstein et al. Structure and properties of bimetallic colloids formed in polystyrene-block-poly-4-vinylpyridine micelles: catalytic behavior in selective hydrogenation of dehydrolinalool
Espinal et al. Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2
US5132099A (en) Method for producing hydrogen peroxide
EP0091165A1 (en) A silver catalyst and a method for the preparation thereof
CN109482177B (en) Preparation method of nano noble metal catalyst
US20160160376A1 (en) Method and Electrochemical Cell for Synthesis of Electrocatalysts by Growing Metal Monolayers, or Bilayers and Treatment of Metal, Carbon, Oxide and Core-Shell Nanoparticles
WO2005053840A1 (en) Metal oxynitride electrode catalyst
CN101405101A (en) Preparing nanosize platinum-titanium alloys
US3532556A (en) Process for forming platinum coated electrode
US4578112A (en) Catalytic reaction process
JPH10506575A (en) Improved uniformly plated microsphere catalyst
JPH0724328A (en) Catalyst particle and use thereof
US4409129A (en) Method of manufacturing catalyst
JP3255764B2 (en) Metal-coated particles and method for producing the same
Kaczmarek et al. Reactions of hydroxyl (HO•) and hydroperoxyl (HO) radicals generated chemically and photochemically with poly (ethylene oxide)
CN114789065B (en) Production process of vinylene carbonate and catalyst for production
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism
JPH0710355B2 (en) Catalyst manufacturing method
CN109675625A (en) A kind of catalytic hydrogenation Pd/AC-P catalyst and its preparation method and application for being catalyzed halogenated aryl hydrocarbon object
Ranjit et al. Photocatalytic reduction of dinitrogen to ammonia
CN1386580A (en) Process for preparing carried silver catalyst by chemical plating
Xiaonan et al. Solvent free continuous hydrogenation of chloronitrobenzene over Pt/amide group grafted AC catalysts
EP0033589A1 (en) Method of preparing a catalyst for synthesizing unsaturated esters
JP2004510577A (en) Self-cleaning catalytically active surface for microfabrication
KR830001886B1 (en) Contact reaction method