JPH07242980A - Cemented carbide with high toughness - Google Patents

Cemented carbide with high toughness

Info

Publication number
JPH07242980A
JPH07242980A JP6103445A JP10344594A JPH07242980A JP H07242980 A JPH07242980 A JP H07242980A JP 6103445 A JP6103445 A JP 6103445A JP 10344594 A JP10344594 A JP 10344594A JP H07242980 A JPH07242980 A JP H07242980A
Authority
JP
Japan
Prior art keywords
cemented carbide
average particle
particle size
solid solution
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6103445A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueda
広志 植田
Shiro Okayama
史郎 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP6103445A priority Critical patent/JPH07242980A/en
Publication of JPH07242980A publication Critical patent/JPH07242980A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit coagulation and grain growth and to improve the toughness, heat resistance, and wear resistance of a cemented carbide by using, as solid solutions, a composite powder previously allowed to adhere to the surface of WC, in a cemented carbide. CONSTITUTION:In a cemented carbide in which a hard phase is composed of WC of >=0.5mum average grain size and one or >=2 solid solutions selected from the carbides, nitrides, and carbonitrides of the group IVa, Va, and IVa metal elements and having <=0.2mum average grain size and a binding phase is composed of iron group metal, a composite powder previously allowed to adhere to the surface WC is used as solid solutions. Further, most of them exist in the state adhering to the surface of WC. By this method, mutual coagulation of B type solid solution substances can be inhibited. The contacting part between WC and WC can be reduced, and the toughness, heat resistance, and wear resistance of the cemented carbide can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は切削加工、塑性加工、耐
摩耗部材などに用いられる高靱性超硬合金に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high toughness cemented carbide used for cutting, plastic working, wear resistant members and the like.

【0002】[0002]

【従来の技術】超硬は硬質相がWCと周期律表の4A、
5A、6A族の金属元素の炭化物、窒化物、炭窒化物か
ら選ばれた1種または2種以上の固溶体硬質物質、いわ
ゆるB1型固溶体からなる耐熱性を重視したP種超硬と
硬質相がWCのみからなる靱性を重視した、いわゆるK
種超硬の2種に分類される。B1型固溶体はWCに比べ
て耐熱性は優れるものの靱性は劣るために上記のように
大別されるといわれている。
2. Description of the Related Art Carbide has a hard phase of WC and 4A of the periodic table,
One or more solid solution hard substances selected from carbides, nitrides, and carbonitrides of 5A and 6A group metal elements, which are so-called B1 type solid solutions, are P type cemented carbides and hard phases that emphasize heat resistance. So-called K that emphasizes toughness consisting of WC only
It is classified into two kinds of seed carbide. It is said that B1 type solid solutions are roughly classified as described above because they have excellent heat resistance as compared with WC but have poor toughness.

【0003】しかしながら超硬も他の工業材料と同様、
常により強靱のものが求められる。P種超硬については
言えばより靱性のある材種の要望が極めて強い。このた
め従来より種々の改良、検討がなされてきたが、まだま
だ不十分なのが実情である。超硬は一般にWC粉末や他
のB型固溶体を構成する硬質物質粉末及び鉄族金属を所
定の比に混合し、焼結することによって製造される。焼
結後のミクロ組織特に硬質物質の粒径と分散度は材料の
特性を左右するものであるが、このうち粒径はほぼ使用
した原料粉末の粒径に依存する。そこでWCに比べて靱
性の劣るB型固溶体構成原料はできるだけ微細なものを
使用して靱性の改善を図ってきたのが一般的である。し
かしながらその効果が不十分であった理由はB型固溶体
構成原料の分散が悪くて凝集してしまうこと、また焼結
過程で粒成長が起こり易く結果的に粗大なB型固溶体硬
質相となってしまう点にあることを発明者らは見出だし
た。他方K種超硬についてはより強靱なもの、より耐熱
性のあるもの、より耐摩耗性のあるものなど多様な要求
がある。しかしながらK種超硬は前述の如く基本的には
WCとCoの単純な複合材料であるためその性質を飛躍
的に向上させることは困難であった。
However, cemented carbide, like other industrial materials,
Stronger ones are always required. As for P-type cemented carbide, there is an extremely strong demand for grades with higher toughness. Therefore, various improvements and investigations have been made in the past, but the fact is that they are still insufficient. Cemented carbide is generally produced by mixing WC powder and other hard material powders forming a B-type solid solution and an iron group metal in a predetermined ratio and sintering. The microstructure after sintering, particularly the particle size and dispersity of the hard substance, influences the characteristics of the material, and of these, the particle size depends almost on the particle size of the raw material powder used. Therefore, it has been generally attempted to improve the toughness by using a B-type solid solution constituent raw material having inferior toughness as compared with WC, as fine as possible. However, the reason why the effect is insufficient is that the B-type solid solution constituent raw material is poorly dispersed and aggregates, and grain growth easily occurs in the sintering process, resulting in a coarse B-type solid solution hard phase. The inventors have found that there is a point at which it ends up. On the other hand, regarding K-type carbide, there are various requirements such as toughness, heat resistance, and wear resistance. However, since the K-type cemented carbide is basically a simple composite material of WC and Co as described above, it was difficult to dramatically improve its properties.

【0004】[0004]

【発明が解決しようとする課題】本発明は従来の技術で
は困難であったP種超硬の靱性の飛躍的向上、K種超硬
の特に耐熱性、耐摩耗性改良を新規な原料粉末を用いる
ことによって達成しようするものである。
DISCLOSURE OF THE INVENTION The present invention provides a new raw material powder for which the toughness of P-type cemented carbide, which has been difficult to achieve by the conventional techniques, is dramatically improved, and particularly the heat resistance and wear resistance of K-type cemented carbide are improved. It is something that is achieved by using it.

【0005】[0005]

【課題を解決するための手段】P種超硬の靱性を阻害し
ているのはB型固溶体硬質相の凝集と粒成長である。発
明者らは粗粒に微粒を固着させた新規な複合原料粉末を
用いることでこの凝集と粒成長を抑制することに成功し
た。具体的には粗粒のWCの表面に超微粒のB型固溶体
構成硬質物質を固着させた複合粉末あるいは逆にB型固
溶体構成硬質原料粉末の表面に超微粒のWCを固着させ
た複合粉末などを用いると凝集と粒成長が抑制されるの
である。前者ではWC表面への固着力が大きいためにB
型固溶体物質どうしの凝集が抑制され、後者ではWCと
鉄族金属との濡れ性が良いため凝集が抑制されるのであ
る。粗粒に超微粒を固着させた複合粉末は、例えば”化
学工学シンポジウムシリーズ VOL.25 NO.1
PAGE47−51 1993”にあるように超微粒
子を発生させるプラズマ炎の中に粗粒粉末を連続的に導
入することにより粗粒粉末の表面に超微粒子を固着させ
る乾式法や粉体と液体を同時に噴霧乾燥して粉体の表面
に超微粒子を固着させる湿式法により製造することがで
きる。
The toughness of P-type cemented carbide is hindered by the aggregation and grain growth of the B-type solid solution hard phase. The inventors have succeeded in suppressing this aggregation and grain growth by using a novel composite raw material powder in which fine grains are fixed to coarse grains. Specifically, composite powder in which ultrafine particles of B-type solid solution constituent hard substance are fixed to the surface of coarse particles of WC, or conversely, composite powder in which ultrafine particles of WC are fixed to the surface of B-type solid solution constituent hard raw material powder, etc. When is used, aggregation and grain growth are suppressed. In the former case, since the adhesion to the WC surface is large, B
Aggregation of the mold solid solution substances is suppressed, and in the latter case, aggregation is suppressed due to good wettability between WC and the iron group metal. The composite powder in which ultrafine particles are fixed to coarse particles is, for example, “Chemical Engineering Symposium Series VOL.25 NO.1”.
As described in PAGE 47-51 1993 ", a dry method in which coarse particles are adhered to the surface of coarse particles by continuously introducing coarse particles into a plasma flame that generates ultrafine particles, or a powder method and a liquid are simultaneously applied. It can be produced by a wet method of spray-drying and fixing ultrafine particles on the surface of the powder.

【0006】[0006]

【作用】特にプラズマを用いてWCの超微粒子を発生さ
せるとプラズマの超高温活性化状態からの超急冷効果に
より全く新規な物質が合成されることが知られている。
すなわち通常のhcp構造ではなくfcc構造のWCが
合成される。このfcc−WCはC/W原子数比が0.
6〜0.8の時に合成されるもので、硬さがhcp−W
Cよりも高く焼結時の粒成長も少ない良好な性質を有す
る。このため粗粒のWCの表面にこのfcc−WCを固
着させた新規原料粉末を用いると特異な効果を発揮す
る。
In particular, it is known that when WC ultrafine particles are generated by using plasma, a completely new substance is synthesized by the superquenching effect from the ultrahigh temperature activated state of plasma.
That is, the WC having the fcc structure is synthesized instead of the normal hcp structure. This fcc-WC has a C / W atomic number ratio of 0.
It is synthesized when it is 6 to 0.8, and its hardness is hcp-W.
It has better properties than C and less grain growth during sintering. Therefore, a unique effect is exhibited by using the new raw material powder in which the fcc-WC is adhered to the surface of the coarse WC.

【0007】すなわち従来のK種超硬においてもミクロ
組織を詳細に観察するとかなりの部分でWCとWCが接
触していることがわかる。このWCとWCの接触の多少
がK種超硬の靱性と耐熱性を左右するのである。過大の
外力が超硬に加わるとマイクロクラックはまずWCとW
Cの接触部に発生するため、接触部が多いほど靱性が低
下する。また外熱と外力が付加されると熱クラックが発
生するが、このクラックはWCとWCの接触部及びCo
/WC界面でまずは発生する。Co/WC界面は両者が
入り組んでいるほど熱クラックの発生が抑制されること
を発明者らは見出だしている。粗粒/微粒複合粉末を使
用するとWC/WC接触部が減少するとともにWC/C
o界面がいり込むことになる。またfcc−WCの硬さ
が著しく高いため合金自体の硬度が向上する。以上の結
果超硬の靱性、耐熱性、耐摩耗性をともに向上させるこ
とができる。なおB型固溶体構成超微粒子の非金属/金
属原子数比も0.6〜0.8とすると硬度が上昇し耐摩
耗性が向上する効果がある。硬度が上昇する理由は格子
欠陥が増加し転位の移動が困難になったためと推測され
る。以下 実施例でその効果を説明する。
In other words, even in the conventional K-type cemented carbide, observing the microstructure in detail, it can be seen that WC and WC are in contact with each other in a considerable part. The degree of contact between the WC and the WC determines the toughness and heat resistance of the K-type carbide. When an excessive external force is applied to the carbide, the microcracks will be WC and W
Since it occurs at the contact portion of C, the more the contact portion, the lower the toughness. Also, when external heat and external force are applied, thermal cracks occur, but these cracks are caused by the contact portion between WC and WC and Co.
First occurs at the / WC interface. The inventors have found that the more complicated the Co / WC interface is, the more the generation of thermal cracks is suppressed. Use of coarse / fine composite powder reduces WC / WC contact area and increases WC / C
o The interface will be rubbed in. Further, since the hardness of fcc-WC is extremely high, the hardness of the alloy itself is improved. As a result, it is possible to improve the toughness, heat resistance, and wear resistance of cemented carbide. When the non-metal / metal atom number ratio of the B-type solid solution constituent ultrafine particles is set to 0.6 to 0.8, the hardness is increased and the abrasion resistance is improved. It is presumed that the hardness is increased because the number of lattice defects increases and it becomes difficult for dislocations to move. The effect will be described below in Examples.

【0008】[0008]

【実施例】プラズマを用いた乾式法(1)、サスペンシ
ョンを用いた湿式法(2)で各種粗粒に各種超微粒を固
着させた複合粉末を作製した。表1にその仕様を示す。
[Examples] Composite powders were prepared by adhering various ultrafine particles to various coarse particles by a dry method (1) using plasma and a wet method (2) using a suspension. Table 1 shows the specifications.

【0009】[0009]

【表1】 [Table 1]

【0010】次に表1の複合粉末を適宜使用して配合量
を調整し、アトライター混合、スプレイドライ後、焼結
をおこなった。組成は、 62%WC-10%TIC-10%TaC-5%NbC-8%Co .................. .(A) 67%WC-8%TiC-2%TiN-8%TaC-5%NbC-10%Co................(B) 62%WC-10%TiC-9.0%TaC-0.5%ZrC-0.5%VC-5%NbC-8%Co.....(C) 62%WC-10%TiC-9.5%TaC-0.5%Cr3C2-5%NbC-8%Co..........(D) 93%WC-7%Co.........................................(E) とした。同時に複合粉末を使用しない従来の方法でも試
料を作製し、比較した。表2に配合仕様及び材料特性を
示した。
Next, the compounding powders in Table 1 were appropriately used to adjust the blending amount, and the mixture was mixed with an attritor, spray-dried, and then sintered. The composition is 62% WC-10% TIC-10% TaC-5% NbC-8% Co .................. (A) 67% WC-8% TiC-2% TiN-8% TaC-5% NbC-10% Co ................ (B) 62% WC-10% TiC-9.0% TaC-0.5% ZrC-0.5% VC-5% NbC-8% Co ..... (C) 62% WC-10% TiC-9.5% TaC-0.5% Cr3C2-5% NbC-8% Co ...... .... (D) 93% WC-7% Co .................................. ..... (E) At the same time, samples were prepared and compared by the conventional method that does not use the composite powder. Table 2 shows the compounding specifications and material characteristics.

【0011】[0011]

【表2】 [Table 2]

【0012】次に切削チップ(SNGN432)を作製
し下に示す条件で切削テストを行ない、切り刃に発生し
た熱クラックの本数を調査して耐熱性を比較した。 切削条件 フライス加工 被削材 SCM440 被削材形状 幅100mm 長さ400mm 切削速度 100m/min 送り 0.2mm/rev 切り込み 2mm 切削時間 80min
Next, a cutting tip (SNGN432) was produced and a cutting test was conducted under the conditions shown below to examine the number of thermal cracks generated in the cutting edge and compare the heat resistance. Cutting conditions Milling Work material SCM440 Work material shape Width 100mm Length 400mm Cutting speed 100m / min Feed 0.2mm / rev Depth of cut 2mm Cutting time 80min

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【発明の効果】このように複合粉末を使用して作製した
材料は靱性、硬さ、耐熱性を共に向上させることが出来
る。複合粉末を用いた材料はミクロ組織を観察すると、
粗粒の周辺に微粒が囲むように存在しており、これが粗
粒どうしの接触を減少させている。また硬質相/金属界
面は凹凸が多い。これが合金の特性を向上させた原因で
ある。
As described above, the material produced by using the composite powder can have improved toughness, hardness and heat resistance. When observing the microstructure of the material using the composite powder,
Fine particles are present around the coarse particles so as to surround them, and this reduces the contact between the coarse particles. Further, the hard phase / metal interface has many irregularities. This is the reason why the properties of the alloy are improved.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 硬質相の平均粒径が0.5μm以上のW
Cと平均粒径0.2μm以下の周期律表の4A、5A、
6A族の金属元素の炭化物、窒化物、炭窒化物から選ば
れた1種または2種以上の固溶体で構成され、結合相が
周期律表の鉄族金属よりなる超硬合金であって、該固溶
体は予めWCの表面に固着させた複合粉末を使用し、か
つその大部分がWCの表面に付着して存在することを特
徴とする高靱性超硬。
1. A W having an average grain size of the hard phase of 0.5 μm or more.
C and 4A and 5A of the periodic table with an average particle size of 0.2 μm or less,
A cemented carbide that is composed of one or more solid solutions selected from carbides, nitrides, and carbonitrides of 6A group metal elements and has a binder phase made of an iron group metal of the periodic table, A high toughness cemented carbide is characterized in that the solid solution uses a composite powder which is fixed to the surface of the WC in advance, and most of it is present by adhering to the surface of the WC.
【請求項2】 硬質相が平均粒径が0.2μm以下のW
Cと平均粒径0.5μm以上の周期律表の4A、5A、
6A族の金属元素の炭化物、窒化物、炭窒化物から選ば
れた1種または2種以上の固溶体硬質物質で構成され、
結合相が周期律表の鉄族金属よりなる超硬合金であっ
て、WCは予め固溶体硬質物質の表面に固着させた複合
粉末を使用し、かつその大部分が該固溶体物質の表面に
付着して存在することを特徴とする高靱性超硬。
2. The hard phase is W having an average particle size of 0.2 μm or less.
C and 4A, 5A of the periodic table with an average particle size of 0.5 μm or more,
Composed of one or more solid solution hard substances selected from carbides, nitrides and carbonitrides of 6A group metal elements,
The binder phase is a cemented carbide composed of an iron group metal of the periodic table, WC uses a composite powder that is fixed in advance to the surface of a solid solution hard substance, and most of it adheres to the surface of the solid solution substance. High toughness carbide that is present as
【請求項3】 硬質相が平均粒径が0.2μm以下のf
cc構造のWCと平均粒径0.5μm以上のhcp構造
のWCで構成され、結合相が周期律表の鉄族金属よりな
る超硬合金であって、fcc構造のWCは予めhcp構
造のWC表面に固着させた複合粉末を使用した結果、そ
の大部分がhcp構造のWCの表面に付着して存在する
ことを特徴とする高靱性超硬。
3. The hard phase having an average particle size of 0.2 μm or less f
WC structure and WC with hcp structure having an average particle size of 0.5 μm or more, the binder phase is a cemented carbide composed of an iron group metal of the periodic table, and the WC of the fcc structure is the WC of the hcp structure in advance. High toughness cemented carbide characterized by the fact that the majority of the composite powder adhered to the surface of the WC having the hcp structure is present as a result of using the composite powder fixed to the surface.
【請求項4】 硬質相が平均粒径が0.2μm以下のf
cc構造のWCと平均粒径0.5μm以上のhcp構造
のWCと周期律表の4A、5A、6A族の金属元素の炭
化物、窒化物、炭窒化物から選ばれた1種または2種以
上の固溶体硬質物質で構成され、結合相が周期律表の鉄
族金属よりなる超硬合金であって、fcc構造のWCは
予めhcp構造のWC表面に固着させた複合粉末を使用
した結果、その大部分がhcp構造のWCの表面に付着
して存在することを特徴とする高靱性超硬。
4. The hard phase has an average particle size of 0.2 μm or less f
WC of cc structure and WC of hcp structure having an average particle size of 0.5 μm or more and one or more selected from carbides, nitrides and carbonitrides of metal elements of Groups 4A, 5A and 6A of the periodic table. Which is a cemented carbide composed of an iron group metal of the Periodic Table, the WC of the fcc structure is a composite powder fixed in advance on the WC surface of the hcp structure, High toughness cemented carbide characterized in that most of it is present on the surface of WC with hcp structure.
【請求項5】 硬質相が平均粒径が0.2μm以下のW
Cと平均粒径0.5μm以上の周期律表の4A、5A、
6A族の金属元素の炭化物、窒化物、炭窒化物から選ば
れた1種または2種以上の固溶体硬質物質および平均粒
径が0.5μm以上のWCで構成され、結合相が周期律
表の鉄族金属よりなる超硬合金であって、平均粒径が
0.2μm以下のWCは予め固溶体硬質物質の表面に固
着させた複合粉末を使用した結果、その大部分が該固溶
体物質の表面に付着して存在することを特徴とする高靱
性超硬。
5. The W having a hard phase having an average particle size of 0.2 μm or less.
C and 4A, 5A of the periodic table with an average particle size of 0.5 μm or more,
It is composed of one or more solid solution hard substances selected from carbides, nitrides, and carbonitrides of 6A group metal elements and WC having an average particle size of 0.5 μm or more, and a binder phase of the periodic table. A cemented carbide made of an iron group metal, WC having an average particle diameter of 0.2 μm or less is used as a result of using a composite powder which is fixed to the surface of a solid solution hard material in advance, and most of the WC is deposited on the surface of the solid solution material. High-toughness cemented carbide characterized by being adhered and present.
【請求項6】 請求項2〜5に記載の高靱性超硬おい
て、平均粒径が0.2μm以下のWCを構成する炭素の
原子数がタングステン原子数の80〜60%であること
を特徴とする高靱性超硬。
6. The high toughness cemented carbide according to claim 2, wherein the number of carbon atoms constituting the WC having an average grain size of 0.2 μm or less is 80 to 60% of the number of tungsten atoms. Characteristic high toughness carbide.
【請求項7】 請求項2〜5に記載の高靱性超硬おい
て、固溶体硬質物質を構成する非金属元素の原子数が金
属元素原子数の80〜60%であることを特徴とする高
靱性超硬。
7. The high toughness cemented carbide according to any one of claims 2 to 5, wherein the number of atoms of the non-metal element constituting the solid solution hard material is 80 to 60% of the number of metal element atoms. Tough cemented carbide.
JP6103445A 1994-02-28 1994-02-28 Cemented carbide with high toughness Pending JPH07242980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6103445A JPH07242980A (en) 1994-02-28 1994-02-28 Cemented carbide with high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6103445A JPH07242980A (en) 1994-02-28 1994-02-28 Cemented carbide with high toughness

Publications (1)

Publication Number Publication Date
JPH07242980A true JPH07242980A (en) 1995-09-19

Family

ID=14354235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6103445A Pending JPH07242980A (en) 1994-02-28 1994-02-28 Cemented carbide with high toughness

Country Status (1)

Country Link
JP (1) JPH07242980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916743A1 (en) * 1997-10-14 1999-05-19 Sandvik Aktiebolag Method of making metal composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916743A1 (en) * 1997-10-14 1999-05-19 Sandvik Aktiebolag Method of making metal composite materials

Similar Documents

Publication Publication Date Title
JP2895107B2 (en) Sintered hard metal composite and method for producing the same
JP6703757B2 (en) Cermet and cutting tool
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
WO1998027241A1 (en) Cemented carbide, process for the production thereof, and cemented carbide tools
JPH0711051B2 (en) Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy
US11680022B2 (en) Composite sintered material
CN112055757B (en) Composite sintered body
JPH07242980A (en) Cemented carbide with high toughness
JP3612966B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP2006111947A (en) Ultra-fine particle of cermet
JP3950229B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP5008789B2 (en) Super hard sintered body
JP2004292865A (en) Hard metal superior in fracture resistance and manufacturing method therefor
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPH10168537A (en) Coated cermet for cutting tool
JPH05339659A (en) Production of sintered hard alloy having sheet-like tungsten carbide and coated sintered hard alloy
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
JPH09174306A (en) Cermet for cutting tool
JP2022108807A (en) Cutting tool
JPS6039137A (en) Manufacture of tungsten carbide-base sintered hard alloy
JPH0680180B2 (en) Cemented carbide and its manufacturing method
JP2023134938A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP4172752B2 (en) TiCN-based cermet and method for producing the same
JPS61124548A (en) Ultrafine particle sintered hard alloy
JPH06335808A (en) Tungsten carbide base super hard alloy and cutting tool