JP2022108807A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2022108807A
JP2022108807A JP2021003953A JP2021003953A JP2022108807A JP 2022108807 A JP2022108807 A JP 2022108807A JP 2021003953 A JP2021003953 A JP 2021003953A JP 2021003953 A JP2021003953 A JP 2021003953A JP 2022108807 A JP2022108807 A JP 2022108807A
Authority
JP
Japan
Prior art keywords
cemented carbide
based cemented
powder
tool
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021003953A
Other languages
Japanese (ja)
Inventor
誠 五十嵐
Makoto Igarashi
佳祐 河原
Keisuke Kawahara
龍 市川
Ryo Ichikawa
一樹 岡田
Kazuki Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021003953A priority Critical patent/JP2022108807A/en
Publication of JP2022108807A publication Critical patent/JP2022108807A/en
Pending legal-status Critical Current

Links

Abstract

To provide a WC-based carbide tool and a surface-coated WC-based carbide tool, which demonstrate excellent plastic deformation resistance in continuous cutting alloy steel or the like.SOLUTION: Provided is a WC-based cemented carbide cutting tool, having Co:6.0-14.0 mass%, Cr3C2:0.1-1.4 mass%, and the balance WC with inevitable impurities, or further, containing 4.0 mass% or less in total of one or more of TaC, NbC, TiC and ZrC. In the WC-based cemented carbide alloy cutting tool, in a grain size distribution of a binder phase on the cemented carbide alloy cross section, a cumulative 10% grain area A10 is 0.15 μm2 to 0.30 μm2, and a cumulative 90% grain area A90/A10 is 15.0 to 50.0, and further, in the WC-based cemented carbide alloy cutting tool, the average grain size of the WC is 0.2 μm to 4.0 μm, an existence ratio (a ratio of Σ2 corresponding grain boundaries) of Σ2 corresponding grain boundaries of WC in all WC/WC grain boundaries is 15% or more.SELECTED DRAWING: None

Description

本発明は、合金鋼等(鋼、ステンレス鋼、Ni基合金等)の連続切削加工(例えば、連続旋削加工等)において、すぐれた耐塑性変形性を発揮するWC基超硬合金製切削工具(「WC基超硬工具」ともいう)および表面被覆WC基超硬合金切削工具(「表面被覆WC基超硬工具」ともいう)に関する。 The present invention provides a WC-based cemented carbide cutting tool ( (also referred to as "WC-based cemented carbide tools") and surface-coated WC-based cemented carbide cutting tools (also referred to as "surface-coated WC-based cemented carbide tools").

WC基超硬合金は硬さが高く、また、靱性を備えることから、これを基体とするWC基超硬工具および表面被覆WC基超硬工具は、すぐれた耐摩耗性を発揮し、また、長期の使用にわたって長寿命を有する切削工具として知られている。
しかし、近年、被削材の種類、切削加工条件等に応じて、WC基超硬工具の切削性能、工具寿命をより一段と向上させるべく、各種の提案がなされている。
Since WC-based cemented carbide has high hardness and toughness, WC-based cemented carbide tools and surface-coated WC-based cemented carbide tools using this as a base exhibit excellent wear resistance. It is known as a cutting tool that has a long life over long-term use.
However, in recent years, various proposals have been made to further improve the cutting performance and tool life of WC-based cemented carbide tools according to the type of work material, cutting conditions, and the like.

例えば、特許文献1では、炭化タングステンを主成分とする硬質相と、鉄族元素(コバルトを含み、コバルトの含有量は超硬合金中において8質量%以上であることが好ましい)を主成分とする結合相とを備える超硬合金において、炭化タングステンの粒子数をA、他の炭化タングステン粒子との接触点の点数が1点以下の炭化タングステン粒子の粒子数をBとするとき、B/A≦0.05を満たすようにすることで、超硬合金の耐塑性変形性を向上させ、その結果として、炭素鋼、ステンレス鋼の湿式連続切削加工において、WC基超硬工具の長寿命化を図ることが提案されている。 For example, in Patent Document 1, a hard phase containing tungsten carbide as a main component and an iron group element (including cobalt, and the cobalt content is preferably 8% by mass or more in the cemented carbide) are used as main components. In a cemented carbide comprising a binder phase, where A is the number of tungsten carbide particles and B is the number of tungsten carbide particles having one or less contact points with other tungsten carbide particles, B / A By satisfying ≦0.05, the plastic deformation resistance of the cemented carbide is improved, and as a result, the life of the WC-based cemented carbide tool is extended in continuous wet cutting of carbon steel and stainless steel. It is proposed to

特許文献2では、Co量が10~13質量%、Co量に対するCr量の比が2~8%、TaCとNbCの少なくとも1種をTaCとNbCの総量が0.2~0.5質量%となる範囲で含有し、残部がWCから成り、硬さが88.6HRA~89.5HRAであるWC基超硬工具において、研磨面上の面積比におけるWC積算粒度80%径D80と積算粒度20%径D20の比D80/D20を2.0≦D80/D20≦4.0の範囲とし、また、D80を4.0~7.0μmの範囲とし、かつWC接着度cを0.36≦c≦0.43とすることにより、ステンレス鋼に代表される難削材の切削加工において、被削材の凝着を防止し耐欠損性を向上させることが提案されている。 In Patent Document 2, the Co amount is 10 to 13% by mass, the ratio of the Cr amount to the Co amount is 2 to 8%, and at least one of TaC and NbC is used, and the total amount of TaC and NbC is 0.2 to 0.5% by mass. In a WC-based cemented carbide tool having a hardness of 88.6 HRA to 89.5 HRA, the balance is made of WC, and the WC cumulative grain size in the area ratio on the polished surface is 80%. Diameter D80 and cumulative grain size 20 The ratio D80/D20 of the % diameter D20 is in the range of 2.0 ≤ D80/D20 ≤ 4.0, D80 is in the range of 4.0 to 7.0 μm, and the degree of WC adhesion c is 0.36 ≤ c It has been proposed that by setting the ratio to ≦0.43, adhesion of the work material can be prevented and chipping resistance can be improved in cutting difficult-to-cut materials such as stainless steel.

特許文献3では、WC基超硬工具において、WC基超硬合金の成分組成を、WC-x質量%Co-y質量%Cr-z質量%VCで表したとき、6≦x≦14、0.4≦y≦0.8、0≦z≦0.6、(y+z)≦0.1xを満足し、また、WC基超硬合金のWC接着度Cを、C=1-V α・exp(0.391・L)で表したとき、この式におけるWC基超硬合金の結合相体積率の値Vは0.11≦V≦0.25、また、(WC粒子の粒度分布の標準偏差)/(平均WC粒度)の値Lは0.3≦L≦0.7の範囲内であって、さらに、係数αが0.3≦α≦0.55の値を満足するWC接着度Cを有するWC基超硬合金とすることにより、Al合金、炭素鋼等の切削加工において、硬さと剛性を低下させることなく靱性を向上させ、耐欠損性を高めたWC基超硬工具が提案されている。 In Patent Document 3, in the WC-based cemented carbide tool, when the chemical composition of the WC-based cemented carbide is represented by WC-x mass % Co-y mass % Cr 3 C 2 -z mass % VC, 6 ≤ x ≤ 14, 0.4 ≤ y ≤ 0.8, 0 ≤ z ≤ 0.6, (y + z) ≤ 0.1x, and the WC adhesion C of the WC-based cemented carbide is C = 1-V When represented by b α exp (0.391 L), the value V b of the binder phase volume fraction of the WC-based cemented carbide in this formula is 0.11 ≤ V b ≤ 0.25, and (WC particles The value L of the particle size distribution (standard deviation of the particle size distribution)/(average WC particle size) is within the range of 0.3 ≤ L ≤ 0.7, and the coefficient α has a value of 0.3 ≤ α ≤ 0.55 By using a WC-based cemented carbide having a satisfactory WC-adhesion degree C, a WC-based cemented carbide with improved fracture resistance and improved toughness without lowering hardness and rigidity in cutting Al alloys, carbon steel, etc. Carbide tools have been proposed.

特許文献4では、WC基超硬工具において、WC-WC接着界面長さをL1とし、WC-Co接着界面長さをL2とした時、
R>(0.82-0.086×D)×(10/V)
の式を満足させることにより、Ni基耐熱合金の切削加工において、WC基超硬工具の耐熱塑性変形性と靱性を向上させることが提案されている。
なお、R=(L1)/((L1)+(L2))
D:WC面積平均粒径(μm)であって、0.6≦D≦1.7の範囲である。
ここで、前記Dは、WCの面積率が50%となるときのWCの粒径をいう。
V:結合相体積(vol%)であって、9≦V≦14の範囲である。
In Patent Document 4, in the WC-based cemented carbide tool, when the WC-WC bonding interface length is L1 and the WC-Co bonding interface length is L2,
R>(0.82−0.086×D)×(10/V)
It has been proposed to improve the thermal plastic deformation resistance and toughness of WC-based cemented carbide tools in cutting Ni-based heat-resistant alloys by satisfying the following formula.
Note that R=(L1)/((L1)+(L2))
D: WC area average particle diameter (μm), in the range of 0.6≦D≦1.7.
Here, D is the grain size of WC when the area ratio of WC is 50%.
V: Bound phase volume (vol%), in the range of 9≤V≤14.

特許文献5では、重量%で、Crまたは/およびCr化合物:0~4%(Cr換算で)、Vまたは/およびV化合物:0~4%(V換算で)、TaC:0~2%、TiC:0~2%、Nまたは/およびN化合物:0~1%(N換算で)、Co:0.1~10%、WCおよび不可避不純物:残からなる組成を有し、かつ、0.06~30ナノメータのCo平均厚み(CFP)を有し、焼結に際し、昇温途中900度C~1600度Cの温度範囲の一部または全範囲において、気体を圧力媒体として3気圧~200気圧の圧力を負荷して高密度化を図った切削加工工具用WC-Co系超硬部品が提案されており、このWC-Co系超硬部品、望ましくは、WCの平均粒径が1μm以下、CFPが0.06~30nmの範囲の超微粒低Co超硬合金部品の靱性を高めることができるとされている。
ただし、CFPは、Co平均厚み(nm)であって、
CFP=0.58*A/(100-A)*R
から算出した値であり、A:Co(重量%),2R:WC平均粒径(nm)である。
In Patent Document 5, in weight %, Cr or/and Cr compound: 0 to 4% (in terms of Cr), V or/and V compound: 0 to 4% (in terms of V), TaC: 0 to 2%, TiC: 0 to 2%, N or/and N compounds: 0 to 1% (in terms of N), Co: 0.1 to 10%, WC and unavoidable impurities: balance, and 0. It has a Co average thickness (CFP) of 06 to 30 nanometers, and during sintering, in a part or all of the temperature range of 900 ° C to 1600 ° C during heating, 3 atm to 200 atm using gas as a pressure medium. WC—Co based cemented carbide parts for cutting tools have been proposed, which are intended to be densified by applying a pressure of 1 μm or less. It is said that the toughness of ultrafine grained low Co cemented carbide parts with CFP in the range of 0.06 to 30 nm can be enhanced.
However, CFP is Co average thickness (nm),
CFP = 0.58*A/(100-A)*R
A: Co (% by weight), 2R: WC average particle diameter (nm).

特開2016-20541号公報JP 2016-20541 A 特開2017-88999号公報JP 2017-88999 A 特開2017-148895号公報JP 2017-148895 A 特開2017-179433号公報JP 2017-179433 A 特開平7-305136号公報JP-A-7-305136

前記特許文献1~5で提案されている従来のWC基超硬工具によれば、WC-WC粒子相互の接触点数、WCの粒度、WC接着度あるいは製造条件等をコントロールすることによって、WC基超硬工具の切削性能、工具特性の向上が図られている。
しかしながら、前記従来の工具では、鋼、合金鋼、ステンレス鋼等の連続切削加工、特に、連続旋削加工のような高負荷下での連続切削加工において用いた場合には、基体の耐塑性変形性が十分ではないため、工具変形等の発生を十分に抑制することができず、工具寿命に達してしまうという問題を有するものであった。
According to the conventional WC-based cemented carbide tools proposed in Patent Documents 1 to 5, by controlling the number of contact points between WC-WC particles, the grain size of WC, the degree of WC adhesion, manufacturing conditions, etc., WC-based The cutting performance and tool characteristics of cemented carbide tools have been improved.
However, when the conventional tools are used for continuous cutting of steel, alloy steel, stainless steel, etc., especially when used for continuous cutting under high load such as continuous turning, the plastic deformation resistance of the substrate is insufficient. is not sufficient, the occurrence of tool deformation and the like cannot be sufficiently suppressed, and the tool life is reached.

そこで、本発明者らは、鋼、合金鋼、ステンレス鋼等の連続旋削加工のような高負荷下での連続切削加工において、すぐれた耐塑性変形性を発揮するWC基超硬工具を開発すべく、WC基超硬合金の結合相の形態に着目し、鋭意研究を進めたところ、次のような知見を得た。 Therefore, the present inventors developed a WC-based cemented carbide tool that exhibits excellent plastic deformation resistance in continuous cutting under high load, such as continuous turning of steel, alloy steel, stainless steel, etc. For this purpose, attention was focused on the morphology of the binder phase of the WC-based cemented carbide, and as a result of intensive research, the following findings were obtained.

すなわち、前記特許文献1~4に示されるWC基超硬工具においては、主として、WC粒子に着目した改善がなされ、また、前記特許文献5に示されるWC基超硬工具においては、主として、CFPに着目した改善がなされていたが、本発明者らは、従来の技術とは視点を変えて、結合相の形態に着目して研究を重ねたところ、WC基超硬合金の結合相粒子(主体は、Co粒子である)について、焼結条件を調整することによって、適度な大きさの結合相粒子を所定数有する場合、すなわち、WC基超硬合金において、500倍の視野の走査型電子顕微鏡(SEM)観察を行い、得られた走査型電子顕微鏡(SEM)像を画像解析により算出される結合相の累積10%粒子面積のときの結合相粒子一つが占める面積をA10(μm)とし、また、累積90%粒子面積のときの結合相粒子一つが占める面積をA90(μm)とした際に、A10が0.15μm以上、0.30μm以下であり、かつ、A90/A10が15.0以上、50.0以下を満たす場合には、耐塑性変形性が向上するため、かかるWC基超硬合金基体を用いたWC基超硬工具を鋼、合金鋼、ステンレス鋼等の連続切削加工、特に、ステンレス鋼等の連続旋削加工に供した際には、工具の長寿命化が図られることを見出したものである。 That is, in the WC-based cemented carbide tools shown in Patent Documents 1 to 4, improvements were made mainly by focusing on WC particles, and in the WC-based cemented carbide tools shown in Patent Document 5, mainly CFP However, the present inventors have changed their viewpoint from the conventional technology and conducted repeated research focusing on the morphology of the binder phase, and found that the binder phase particles of WC-based cemented carbide ( When the sintering conditions are adjusted to have a predetermined number of moderately sized binder phase particles, i.e., in WC-based cemented carbide, scanning electron scanning with a field of view of 500 times Microscopic (SEM) observation is performed, and the area occupied by one binder phase particle when the cumulative particle area of the binder phase is 10% calculated by image analysis of the obtained scanning electron microscope (SEM) image is A10 (μm 2 ). and when the area occupied by one binder phase particle when the cumulative particle area is 90% is A90 (μm 2 ), A10 is 0.15 μm 2 or more and 0.30 μm 2 or less, and A90/ When A10 satisfies 15.0 or more and 50.0 or less, the resistance to plastic deformation is improved. The inventors have found that the life of the tool can be extended when it is used for continuous cutting, particularly continuous turning of stainless steel or the like.

さらに、本発明者らは、前記WC基超硬合金基体を用いたWC基超硬工具について、さらなるすぐれた耐塑性変形性の維持、向上を図るために鋭意検討を重ねたところ、WC結晶粒同士の結晶粒界において格子位置を共有する粒界、すなわち、WCの対応粒界において、結晶配列の乱れが一般粒界(ランダム粒界)に比較して最も少なく、原子の結合が最も強固なΣ2対応粒界の、全WC/WC粒界長における比率(以下、「Σ2対応粒界比率」ともいう。)を高めることにより、前記鋼、合金鋼、ステンレス鋼等の連続旋削加工のような高負荷下での連続切削加工においても、よりすぐれた耐塑性変形性を発揮することができ、さらなる工具の長寿命化が達成されることを見出したものである。 Furthermore, the present inventors have made extensive studies to maintain and improve further excellent plastic deformation resistance of WC-based cemented carbide tools using the WC-based cemented carbide substrate, and found that WC crystal grains At the grain boundaries that share the lattice position among the grain boundaries, that is, at the corresponding grain boundaries of WC, the disturbance of the crystal arrangement is the least compared to the general grain boundaries (random grain boundaries), and the bonding of atoms is the strongest. By increasing the ratio of Σ2 corresponding grain boundaries in the total WC / WC grain boundary length (hereinafter also referred to as “Σ2 corresponding grain boundary ratio”), continuous turning such as steel, alloy steel, stainless steel, etc. It has been found that even in continuous cutting under a high load, it is possible to exhibit more excellent resistance to plastic deformation, thereby achieving a further extension of tool life.

本発明は、上記知見に基づいてなされたものであって、
「(1)WC基超硬合金を基体とするWC基超硬合金製切削工具において、
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6.0~14.0質量%とCrを0.1~1.4質量%含有し、残部はWC及び不可避不純物からなり、
前記WC基超硬合金基体の断面について結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10(μm)とし、また、累積90%粒子面積のときの結合相粒子一つが占める面積をA90(μm)としたとき、A10が0.15μm以上、0.30μm以下であり、かつ、A90/A10が15.0以上、50.0以下であることを特徴とするWC基超硬合金製切削工具。
(2)前記WC基超硬合金は、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4.0質量%以下にて、さらに含有することを特徴とする(1)に記載のWC基超硬合金製切削工具。
(3)前記WC基超硬合金におけるWCの平均粒径は、0.2μm以上、4.0μm以下であり、WCのΣ2対応粒界の、全WC/WC粒界に占める存在比率(Σ2対応粒界比率)が、15%以上であることを特徴とする(1)または(2)に記載されたWC基超硬合金製切削工具。
(4) (1)~(3)のいずれか一つに記載のWC基超硬合金製切削工具の少なくとも切れ刃には、硬質被覆層が形成されていることを特徴とする表面被覆WC基超硬合金製切削工具。」
を特徴とするものである。
なお、前記(1)~(4)におけるCr、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金の断面について測定したCr量、Ta量、Nb量、Ti量、Zr量を、いずれも炭化物換算した数値である。
また、本明細書中において、数値範囲を示す際に、「~」を用いる場合は、その数値の下限および上限を含むことを意味する。
The present invention has been made based on the above findings,
"(1) In a WC-based cemented carbide cutting tool based on a WC-based cemented carbide,
The chemical composition of the WC-based cemented carbide contains 6.0 to 14.0% by mass of Co and 0.1 to 1.4% by mass of Cr 3 C 2 as binder phase forming components, and the balance is WC and Consists of unavoidable impurities,
The grain size distribution of the binder phase is analyzed for the cross section of the WC-based cemented carbide substrate, and the area occupied by one binder phase grain at the cumulative 10% grain area is defined as A10 (μm 2 ), and the cumulative 90% grain area. A10 is 0.15 μm 2 or more and 0.30 μm 2 or less, and A90/A10 is 15.0 or more and 50.0 or less A WC-based cemented carbide cutting tool characterized by:
(2) The WC-based cemented carbide further contains at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4.0% by mass or less (1 ), the cutting tool made of WC-based cemented carbide.
(3) The average grain size of WC in the WC-based cemented carbide is 0.2 μm or more and 4.0 μm or less, and the abundance ratio of WC Σ2 corresponding grain boundaries to all WC/WC grain boundaries (Σ2 corresponding Grain boundary ratio) is 15% or more, the WC-based cemented carbide cutting tool described in (1) or (2).
(4) The WC-based cemented carbide cutting tool according to any one of (1) to (3), wherein a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide surface-coated WC-based cutting tool. Cemented carbide cutting tool. ”
It is characterized by
The contents of Cr 3 C 2 , TaC, NbC, TiC, and ZrC in (1) to (4) above are the amounts of Cr, Ta, Nb, Ti, and All values are values obtained by converting the amount of Zr into carbide.
In addition, in this specification, the use of "~" when indicating a numerical range means including the lower and upper limits of the numerical value.

本発明に係るWC基超硬工具および表面被覆WC基超硬合金製切削工具は、その基体を構成するWC基超硬合金の成分であるCo、Cr、あるいはさらに、TaC、NbC、TiC、ZrCが特定の組成範囲を有し、また、結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10(μm)とし、累積90%粒子面積のときの結合相粒子一つが占める面積をA90(μm)としたとき、A10が0.15μm以上、0.30μm以下であり、かつ、A90/A10が15.0以上、50.0以下を満たすことにより、耐塑性変形性が向上し、長期の切削寿命を有するという顕著な効果を奏するものである。
また、さらに、前記WC基超硬合金におけるWCの平均粒径を0.2μm以上、4.0μm以下とし、WCのΣ2対応粒界の、全WC/WC粒界に占める存在比率(Σ2対応粒界比率)を15%以上、さらには、25%以上に高めることにより、耐塑性変形性がさらに向上する。
したがって、本発明のWC基超硬工具および表面被覆WC基超硬工具は、鋼、合金鋼、ステンレス鋼等の連続切削加工、特に、連続旋削加工において、耐塑性変形性にすぐれ、また、加えて、Σ2対応粒界比率を高めた際には、チッピングの抑制効果も合わせ有するため、工具の長寿命化が図られる。
The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide cutting tool according to the present invention contain Co, Cr 3 C 2 , which are components of the WC-based cemented carbide constituting the substrate, or further TaC, NbC, TiC and ZrC have a specific composition range, and the particle size distribution of the binder phase is analyzed. When the area occupied by one binder phase particle is A90 (μm 2 ), A10 is 0.15 μm 2 or more and 0.30 μm 2 or less, and A90/A10 is 15.0 or more, 50.0 μm 2 or more. By satisfying 0 or less, a remarkable effect of improving plastic deformation resistance and having a long cutting life is exhibited.
Further, the average grain size of WC in the WC-based cemented carbide is set to 0.2 μm or more and 4.0 μm or less, and the existence ratio of Σ2 corresponding grain boundaries of WC to all WC / WC grain boundaries (Σ2 corresponding grains By increasing the field ratio) to 15% or more, further 25% or more, the plastic deformation resistance is further improved.
Therefore, the WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool of the present invention are excellent in plastic deformation resistance in continuous cutting of steel, alloy steel, stainless steel, etc., especially in continuous turning. In addition, when the Σ2 corresponding grain boundary ratio is increased, the effect of suppressing chipping is also obtained, so that the life of the tool can be extended.

以下、本発明について詳細に説明する。 The present invention will be described in detail below.

1.WC基超硬合金
Co:
Coは、WC基超硬合金の主たる結合相形成成分として含有させるが、Co含有量が6.0質量%未満では、鋼、合金鋼、ステンレス鋼等の高能率加工において、十分な靱性を保持することはできず、一方、Co含有量が14.0質量%を超えると急激に軟化し、切削工具として必要とされる所望の硬さが得られず、変形および摩耗進行が顕著となることから、WC基超硬合金中のCo含有量を6.0~14.0質量%と定めた。
結合相中には、硬質相の成分であるWやC、その他の不可避不純物が含まれてもよい。
また、結合相には、Cr、Ta、Nb、TiおよびZrの少なくとも一種を含んでいてもよいが、これらの元素は、結合相中に存在するときは、結合相中に固溶した状態であると推定される。
なお、Coの質量%は、超硬合金の任意の表面または断面を鏡面加工し、その加工面を蛍光X線回折測定することにより求めることができる。
1. WC-based cemented carbide Co:
Co is contained as a main binder phase-forming component of the WC-based cemented carbide, but if the Co content is less than 6.0% by mass, sufficient toughness is maintained in high-efficiency machining of steel, alloy steel, stainless steel, etc. On the other hand, when the Co content exceeds 14.0% by mass, the material softens rapidly, the desired hardness required for a cutting tool cannot be obtained, and deformation and wear progress remarkably. Therefore, the Co content in the WC-based cemented carbide was determined to be 6.0 to 14.0% by mass.
The binder phase may contain W and C, which are components of the hard phase, and other unavoidable impurities.
In addition, the binder phase may contain at least one of Cr, Ta, Nb, Ti and Zr. When these elements are present in the binder phase, they are dissolved in the binder phase. presumed to be.
The mass % of Co can be determined by mirror-finishing any surface or section of the cemented carbide and measuring the processed surface by X-ray fluorescence diffraction.

Cr
Crは、主たる結合相を形成するCo中にCrとして固溶し、硬質相を形成するWC相の成長を抑制して、WC相の粒径を微細化させ、WC基超硬合金を微粒・均粒組織とし、靱性を高める効果を有する。しかし、この作用は、Cr含有量が、0.1質量%未満では不充分であり、一方、その含有量がCoの含有量に対し10%を超えると、CrとWの複合炭化物を析出し、靱性が低下し、また、欠損発生の起点となる。
本発明においてはCo含有量上限が14.0質量%であるため、Crの上限は
Co含有量上限の10%である1.4質量%とした。
したがって、WC基超硬合金中のCr含有量は、0.1~1.4質量%と定めた。
Cr3C2 :
Cr 3 C 2 dissolves as Cr in Co, which forms the main binder phase, suppresses the growth of the WC phase, which forms the hard phase, and refines the grain size of the WC phase, thereby forming a WC-based cemented carbide. has the effect of increasing the toughness by making fine grains and uniform grains. However, this effect is insufficient when the Cr 3 C 2 content is less than 0.1% by mass. is precipitated, the toughness is lowered, and it becomes the starting point of chipping.
In the present invention, the upper limit of the Co content is 14.0% by mass, so the upper limit of Cr 3 C 2 is 1.4% by mass, which is 10% of the upper limit of the Co content.
Therefore, the Cr 3 C 2 content in the WC-based cemented carbide is set at 0.1 to 1.4% by mass.

TaC、NbC、TiC、ZrC:
本発明のWC基超硬合金は、その成分として、さらに、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4.0質量%以下にて含有することができる。
Ta、Nb、Ti、Zrはいずれも、主たる結合相を形成するCo中に固溶して硬さを高める効果を有するが、それらを炭化物換算した合計含有量が4.0質量%を超えると、炭化物析出により靱性を低下させ、欠損発生の起点となる。
したがって、WC基超硬合金中の成分としてTaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を含有させる場合には、その合計含有量は、4.0質量%以下とすることが望ましい。
なお、前記したCr、TaC、NbC、TiC、ZrCの含有量は、WC基超硬合金についてEPMAによって測定したCr量、Ta量、Nb量、Ti量、Zr量をいずれも炭化物換算した数値である。
TaC, NbC, TiC, ZrC:
The WC-based cemented carbide of the present invention can further contain at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4.0% by mass or less.
All of Ta, Nb, Ti, and Zr have the effect of increasing hardness by forming a solid solution in Co that forms the main binder phase, but if the total content of these in terms of carbide exceeds 4.0% by mass, , decrease the toughness due to carbide precipitation, and become the starting point of chipping.
Therefore, when at least one selected from TaC, NbC, TiC, and ZrC is included as a component in the WC-based cemented carbide, the total content should be 4.0% by mass or less. desirable.
In addition, the content of Cr 3 C 2 , TaC, NbC, TiC, and ZrC described above is the amount of Cr, the amount of Ta, the amount of Nb, the amount of Ti, and the amount of Zr measured by EPMA for the WC-based cemented carbide, all of which are converted to carbides. It is a numerical value.

WC:
WCは、WC基超硬合金の主たる硬質相形成成分として含有される。硬質相には、製造過程で不可避的に混入する不可避不純物が含まれていてもよい。
WC:
WC is contained as a main hard phase-forming component in WC-based cemented carbide. The hard phase may contain unavoidable impurities that are inevitably mixed in during the manufacturing process.

(1)平均粒径:
WCの平均粒径は、0.2μm未満では、切削加工中に硬質相同士の滑りが生じやすく、耐塑性変形性や耐欠損性が十分ではなくなり、一方、平均粒径が4.0μmを超えると、十分な耐摩耗性が得られなくなるため、0.2μm以上、4.0μm以下の範囲より選択するのが好ましい。
WCの平均粒径は、超硬合金の任意の表面または断面を鏡面加工し、その加工面を後方散乱電子回折(EBSD)で観察し、画像解析によって、少なくとも300個の各硬質相の面積を求め、その面積に等しい円の直径を算出して平均したものである。
なお、鏡面加工には、例えば、集束イオンビーム装置(FIB装置)、クロスセクションポリッシャー装置(CP装置)等を用いる。
(1) Average particle size:
If the average grain size of WC is less than 0.2 μm, sliding between hard phases tends to occur during cutting, and the plastic deformation resistance and fracture resistance are not sufficient. If this is the case, sufficient abrasion resistance cannot be obtained.
The average grain size of WC is obtained by mirror-finishing any surface or cross section of the cemented carbide, observing the processed surface with backscattered electron diffraction (EBSD), and analyzing the image to determine the area of each of at least 300 hard phases. It is obtained by calculating and averaging the diameter of a circle equal to the area.
Note that, for example, a focused ion beam device (FIB device), a cross section polisher device (CP device), or the like is used for the mirror finishing.

(2)Σ2対応粒界比率:
本発明者らは、超硬合金にすぐれた耐塑性変形性を付与するために鋭意検討を重ねたところ、WC結晶粒同士の結晶粒界において格子位置を共有する粒界、すなわち、WCの対応粒界において、結晶配列の乱れが一般粒界(ランダム粒界)に比較して最も少なく、原子の結合が最も強固なΣ2対応粒界長の、全WC/WC粒界長における比率、すなわち、Σ2対応粒界比率を高めることにより、用途に応じすぐれた耐摩耗性、耐塑性変形性を有することを知見した。
Σ2対応粒界比率は、15%未満では、粒界強度の高いWC/WC粒界の割合が不十分となり、耐欠損性を満足しないため、15%以上と規定した。さらには、25%以上であることが好ましい。
Σ2対応粒界比率の測定は、例えば、SEM-EBSD法を用いて測定することができる。すなわち、SEMにて、1視野24μm×72μmの視野にてピクセルサイズを0.1μm×0.1μmとし、かつWC数が1000個以上となるように複数視野観察し、EBSDにて解析される、隣り合うWCの(0001)面が[0001]方向、または、[1-210]方向を軸として90°回転した方位関係を持つ粒界をΣ2対応粒界と定義し、全WC/WC粒界長に占めるΣ2対応粒界長の比率を算出することにより求めることができる。
ただし、Brandonの条件式より、Σ2対応粒界は、前記90°の方位関係から両方向に10.6°以内の角度の範囲を含むものと定義されるので、隣り合うWCの(0001)面が[0001]方向、または、[1-210]方向を軸にして79.4°以上、100.6°以下の方位関係をもつものをΣ2対応粒界と定義した。
(2) Grain boundary ratio corresponding to Σ2:
The inventors of the present invention have made intensive studies in order to impart excellent plastic deformation resistance to cemented carbide. In the grain boundary, the ratio of the Σ2 corresponding grain boundary length, which has the least disorder of crystal arrangement compared to the general grain boundary (random grain boundary) and the strongest atomic bond, to the total WC/WC grain boundary length, that is, It has been found that by increasing the Σ2 corresponding grain boundary ratio, excellent wear resistance and plastic deformation resistance can be obtained depending on the application.
If the Σ2-corresponding grain boundary ratio is less than 15%, the ratio of WC/WC grain boundaries with high grain boundary strength becomes insufficient, and the chipping resistance is not satisfied. Furthermore, it is preferably 25% or more.
The Σ2 corresponding grain boundary ratio can be measured using, for example, the SEM-EBSD method. That is, with SEM, multiple fields of view are observed so that the pixel size is 0.1 µm × 0.1 µm in a field of view of 24 µm × 72 µm per field of view, and the number of WCs is 1000 or more, and analyzed by EBSD. A grain boundary having an orientation relationship in which the (0001) planes of adjacent WCs are rotated 90° around the [0001] direction or the [1-210] direction is defined as a Σ2 corresponding grain boundary, and all WC/WC grain boundaries It can be obtained by calculating the ratio of the Σ2 corresponding grain boundary length to the length.
However, according to Brandon's conditional expression, the Σ2 corresponding grain boundary is defined as including a range of angles within 10.6° in both directions from the 90° orientation relationship. A Σ2-corresponding grain boundary is defined as one having an orientation relationship of 79.4° or more and 100.6° or less with respect to the [0001] direction or the [1-210] direction.

不可避不純物:
前記のように、硬質相、結合相には製造過程で不可避的に混入する不純物を含んでいてもよく、その量は超硬合金全体に対して0.3質量%以下が好ましい。
Inevitable impurities:
As described above, the hard phase and binder phase may contain impurities that are unavoidably mixed in during the manufacturing process, and the amount thereof is preferably 0.3% by mass or less relative to the entire cemented carbide.

結合相の粒度分布:
本発明は、WC基超硬合金において、結合相粒子が粗細混粒状に分布していることにより、粗大結合相以外の領域においては、WC/WCの接着度が大いに高まるため、耐塑性変形性に優れた組織を得るものである。
具体的には、WC基超硬合金における結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90とした際、A10が0.15μm以上、0.30μm以下であり、かつ、A90/A10が15.0以上、50.0以下を満たすことにより、WCのスケルトン構造が強固に構築され、耐塑性変形性が向上するという効果を得た。
これに対し、A10が0.15μm未満では、微細な結合相が多量に存在し、粗粒の結合相が不足するため、耐塑性変形性が十分ではなく、他方、A10が0.30μmを超えるとWCの凝集構造が十分ではないため、耐塑性変形性が悪化する。
また、A90/A10が15.0未満では、粗大なCo粒が足りず結合相の粒度分布が狭く、均質な組織となるため耐欠損性は向上するものの、WCのスケルトン構造が分断され、十分な耐塑性変形性を発揮することが難しく、また、A90/A10が50.0を超える場合は、巣が生じやすくなるため、耐塑性変形性が悪化する。
SEM像からの結合相の抽出は、例えば、画像解析ソフトImageJを用いることができ、抽出した結合相各粒子の面積を、面積の小さい粒子から累積していき、累積10%粒子面積のときの結合相粒子一つが占める面積をA10、累積90%粒子面積のときの結合相粒子一つが占める面積をA90として求めることができる。
なお、本発明ではWC基超硬合金の断面画像においてWCにより分断された各結合相領域を結合相粒子と称する。
Particle size distribution of bonded phase:
In the WC-based cemented carbide of the present invention, since the binder phase grains are distributed in a coarse and fine mixed grain form, the WC/WC adhesion is greatly increased in the regions other than the coarse binder phase, so that the plastic deformation resistance is improved. This is what gives us an excellent organization.
Specifically, the particle size distribution of the binder phase in the WC-based cemented carbide was analyzed, and the area occupied by one binder phase particle when the cumulative particle area was 10% was A10, and the area occupied by one binder phase particle when the cumulative particle area was 90%. When A90 is the area occupied by the An effect was obtained that the structure was firmly constructed and the resistance to plastic deformation was improved.
On the other hand, when A10 is less than 0.15 μm 2 , there is a large amount of fine binder phase and the coarse binder phase is insufficient, so the plastic deformation resistance is not sufficient. If it exceeds , the aggregate structure of WC is not sufficient, resulting in poor plastic deformation resistance.
Further, when A90/A10 is less than 15.0, coarse Co grains are insufficient and the grain size distribution of the binder phase is narrow, resulting in a homogeneous structure and improved chipping resistance. If A90/A10 exceeds 50.0, cavities are likely to occur, resulting in poor plastic deformation resistance.
Extraction of the bonding phase from the SEM image can be performed, for example, using image analysis software ImageJ, and accumulating the area of each extracted bonding phase particle from a particle with a small area, and when the cumulative particle area is 10% The area occupied by one binder phase grain can be determined as A10, and the area occupied by one binder phase grain when the cumulative grain area is 90% can be determined as A90.
In the present invention, each binder phase region divided by WC in a cross-sectional image of a WC-based cemented carbide is referred to as a binder phase particle.

2.切削工具
本発明に係るWC基超硬工具および表面被覆WC基超硬工具は、例えば、以下の工程によって作製することができる。
まず、所定の平均粒径の粗粒WC粉末、微粒WC粉末、粗粒Co粉末、微粒Co粉末、および、Cr粉末からなる原料粉末、さらに、必要に応じて、TaC粉末、NbC粉末、TiC粉末、ZrC粉末のうちの1種以上の粉末を含有する原料粉末を、本発明の超硬合金にて規定する組成となるように配合・混合した混合粉末を作製する。
特に、WC粉末は、他の原料粉末との混合前にプレス成形-熱処理-解砕処理を複数回実施し、WC粉末におけるΣ2対応粒界比率を高めた上で、他の原料粉末と混合することができるため、耐塑性変形性にすぐれた切削工具を得ることができる。
前処理されたWC粉末と、他の原料粉末との前記混合には、例えば、超音波ホモジナイザー、サイクロンミキサーなどのメディアレス混合を用いることにより、大きな破砕力を加えることなく配合・混合することができるため、炭化時および前処理時に形成されたWCのΣ2対応粒界の消失を回避することができる。
次いで、前記混合粉末を成形して圧粉成形体を作製し、前記圧粉成形体の焼結工程においては、固相焼結が進むとその後の液相焼結時にΣ2対応粒界が形成されにくくなるため、固相焼結が進む温度領域(1000℃~1350℃)では、昇温速度を40℃/分以上に早め、固相焼結を抑制した上で、1350℃~1450℃にて、真空雰囲気下、10~80分の時間にて本焼結を行うことにより、微粒WCに形成されるΣ2対応粒界が溶解・再析出により焼失することを回避し、Σ2対応粒界比率が15%以上、さらには、25%以上に維持されたWC焼結体を得ることができる。
2. Cutting Tool The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool according to the present invention can be produced, for example, by the following steps.
First, a raw material powder consisting of coarse-grained WC powder, fine-grained WC powder, coarse-grained Co powder, fine-grained Co powder, and Cr 3 C 2 powder having a predetermined average particle size, and further TaC powder and NbC powder as necessary. , TiC powder, and ZrC powder are compounded and mixed so as to have a composition specified for the cemented carbide of the present invention to prepare a mixed powder.
In particular, the WC powder is subjected to press molding, heat treatment, and crushing treatment multiple times before mixing with other raw material powders to increase the Σ2 corresponding grain boundary ratio in the WC powder, and then mixed with other raw material powders. Therefore, a cutting tool having excellent resistance to plastic deformation can be obtained.
For the mixing of the pretreated WC powder and other raw material powders, for example, by using medialess mixing such as an ultrasonic homogenizer or a cyclone mixer, blending and mixing can be performed without applying a large crushing force. Therefore, it is possible to avoid the disappearance of the .SIGMA.2 grain boundaries of WC formed during carbonization and pretreatment.
Next, the mixed powder is compacted to produce a green compact, and in the sintering step of the green compact, as solid phase sintering progresses, grain boundaries corresponding to Σ2 are formed during subsequent liquid phase sintering. Therefore, in the temperature range (1000°C to 1350°C) where solid phase sintering progresses, the heating rate is increased to 40°C/min or more to suppress solid phase sintering, and then at 1350°C to 1450°C. , By performing the main sintering in a vacuum atmosphere for a time of 10 to 80 minutes, the Σ2 corresponding grain boundaries formed in the fine grain WC are prevented from burning out due to dissolution and reprecipitation, and the Σ2 corresponding grain boundary ratio is A WC sintered body maintained at 15% or more, further 25% or more can be obtained.

本発明のWC基超硬工具および表面被覆WC基超硬工具について、実施例により具体的に説明する。 The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool of the present invention will be specifically described with reference to examples.

≪本発明WC基超硬工具≫
(a)原料粉末
まず、焼結用の粉末として、体積基準にて平均粒径(d50)10.0~15.0μmの粗粒WC粉末、平均粒径(d50)0.5~1.0μmの微粒WC粉末、平均粒径(d50)3.0~4.0μmの粗粒Co粉末、平均粒径(d50)0.5~1.5μmの微粒Co粉末、平均粒径(d50)1.0~3.0μmのCr粉末、および、必要に応じ、それぞれ、平均粒径(d50)1.0~3.0μmである、TaC粉末、NbC粉末、TiC粉末、および、ZrC粉末を用意した。(表2を参照。)
特に、本発明工具基体製造用の粗粒WC粉末、および、微粒WC粉末については、表1のWC原料粉末種別のA~Dを用い、他の炭化物粉末との混合前の事前の準備工程として、下記手順により、前記粗粒WC粉末および微粒WC粉末のそれぞれについて、プレス成形-熱処理-解砕処理を複数回実施することにより、結晶性に優れ、Σ2対応粒界比率を高めた粗粒WC原料粉末および微粒WC原料粉末を得て、これらを組み合わせ、原料として用いた。
1)前記素原料WC粉末を粒径1mm以上、3mm以下の球状にプレス成形し、1300℃以上、1400℃以下、アルゴン雰囲気10Pa以上、100Pa以下にて30分間以上、90分間以内の熱処理を施す。
2)前記熱処理により得られた粉末を乳鉢にて3分以上、10分以下の解砕処理を施す。
3)1)と2)の工程を2回以上、10回以下にて繰り返すことにより、Σ2対応粒界比率を高めたWC粉末を得た。
すなわち、まず、1)工程では、別々の個体であった粗粒WC粒子同士および微粒WC粒子同士のそれぞれについて、プレス成形により接触させた状態にて熱処理を行うことにより、粗粒WC粒子同士および微粒WC粒子同士を接合させ、その界面に対応粒界およびランダム粒界を形成させる。次いで、2)工程では、解砕処理により、粒界強度の低いランダム粒界やΣ値の高い粒界が優先して破壊され、粒界強度の高いΣ2対応粒界が残存する。そして、3)工程として、1)工程と2)工程とを複数回、繰り返すことにより、Σ2対応粒界比率の高い粗粒WC粉末および微粒WC粉末を作製することができる。
<<WC-based cemented carbide tool of the present invention>>
(a) Raw material powder First, as a powder for sintering, coarse-grained WC powder with an average particle size (d50) of 10.0 to 15.0 μm and an average particle size (d50) of 0.5 to 1.0 μm on a volume basis. fine WC powder, coarse Co powder with an average particle size (d50) of 3.0 to 4.0 μm, fine Co powder with an average particle size (d50) of 0.5 to 1.5 μm, average particle size (d50) of 1. Cr 3 C 2 powder of 0-3.0 μm and optionally TaC powder, NbC powder, TiC powder and ZrC powder, respectively, with an average particle size (d50) of 1.0-3.0 μm. prepared. (See Table 2.)
In particular, for the coarse-grained WC powder and fine-grained WC powder for manufacturing the tool substrate of the present invention, WC raw material powder types A to D in Table 1 are used as a preparatory step before mixing with other carbide powders. According to the following procedure, each of the coarse-grained WC powder and the fine-grained WC powder is subjected to press molding, heat treatment, and crushing treatment multiple times to obtain coarse-grained WC having excellent crystallinity and an increased ratio of grain boundaries corresponding to Σ2. A raw material powder and a fine WC raw material powder were obtained, combined, and used as a raw material.
1) The raw material WC powder is pressed into a spherical shape having a particle size of 1 mm or more and 3 mm or less, and heat-treated at 1300° C. or more and 1400° C. or less in an argon atmosphere of 10 Pa or more and 100 Pa or less for 30 minutes or more and 90 minutes or less. .
2) The powder obtained by the heat treatment is crushed in a mortar for 3 minutes or more and 10 minutes or less.
3) By repeating steps 1) and 2) two or more times and no more than 10 times, a WC powder with an increased Σ2 corresponding grain boundary ratio was obtained.
That is, first, in the step 1), the coarse WC particles and the fine WC particles, which were separate solids, were heat-treated while being in contact with each other by press molding, whereby the coarse WC particles and the fine WC particles were heat-treated. The fine WC grains are joined together to form corresponding grain boundaries and random grain boundaries at their interfaces. Next, in step 2), random grain boundaries with low grain boundary strength and grain boundaries with a high Σ value are preferentially destroyed by crushing treatment, and Σ2 corresponding grain boundaries with high grain boundary strength remain. Then, as the 3) process, by repeating the 1) process and the 2) process a plurality of times, coarse-grained WC powder and fine-grained WC powder having a high Σ2 corresponding grain boundary ratio can be produced.

(b)混合工程(メディアレス混合工程)
次に、(a)にて、Σ2対応粒界比率を高めた平均粒径(d50)10.0~15.0μmの粗粒WC粉末および平均粒径(d50)0.5~1.0μmの微粒WC粉末と、事前に準備した、平均粒径(d50)3.0~4.0μmの粗粒Co粉末および平均粒径(d50)0.5~1.5μmの微粒Co粉末、平均粒径(d50)1.0~3.0μmのCr粉末とを所定の配合組成となるように混合し、または、必要に応じ、さらに、それぞれ、平均粒径(d50)1.0~3.0μmの範囲にある、TaC粉末、NbC粉末、TiC粉末、および、ZrC粉末とを所定の配合組成となるように混合し焼結用粉末とし、特に、WC粉末について前処理により形成されたΣ2対応粒界が破壊されるのを防ぐために、メディアレスのアトライター混合により、回転数50rpm、8時間湿式混合し、乾燥後、100MPaの圧力でプレス成形し、圧粉成形体を作製した。(表2参照)
(b) Mixing step (medialess mixing step)
Next, in (a), coarse-grained WC powder with an average grain size (d50) of 10.0 to 15.0 μm and an average grain size (d50) of 0.5 to 1.0 μm with an increased Σ2 corresponding grain boundary ratio Fine-grained WC powder, coarse-grained Co powder having an average particle size (d50) of 3.0 to 4.0 μm and fine-grained Co powder having an average particle size (d50) of 0.5 to 1.5 μm, which were prepared in advance, (d50) Cr 3 C 2 powder of 1.0 to 3.0 μm is mixed so as to have a predetermined composition, or if necessary, each has an average particle size (d50) of 1.0 to 3 TaC powder, NbC powder, TiC powder, and ZrC powder in the range of .0 μm are mixed so as to have a predetermined composition to form a powder for sintering. In order to prevent the corresponding grain boundaries from being destroyed, the mixture was wet-mixed for 8 hours at a rotation speed of 50 rpm using a medialess attritor, dried, and then press-molded at a pressure of 100 MPa to prepare a powder compact. (See Table 2)

(c)焼結工程
1)昇温工程;(表4「本発明工程」を参照)
次いで、固相焼結となる1000℃から焼結温度である1350℃までの昇温工程においては、昇温速度を40℃/分以上に早めることにより、固相焼結を抑制した。
すなわち、液相温度領域における昇温後の液相焼結時には、また、新たなΣ2対応粒界が形成されるものの、液相が出現する前の温度域においては、WC同士が固相拡散により結合しネッキングが強固に形成されると本来液相焼結時に形成されるΣ2対応粒界が減少してしまうことから、固相拡散が進む1000℃~1350℃の温度域において、昇温速度を速めたものである。
2)焼結工程;(表4「本発明工程」を参照)
次いで、焼結工程では、1350℃以上への昇温後、1350℃~1450℃にて、10~80分、真空0.1Pa以下とすることにより、粗粒WCおよび微粒WCに形成されるΣ2対応粒界の溶解、再析出による消失を防ぎ、WC基超硬合金焼結体を得た。
(c) sintering step 1) temperature rising step; (see Table 4 “Process of the present invention”)
Next, in the heating process from 1000° C. to 1350° C., which is the sintering temperature, which is the solid phase sintering, the heating rate was increased to 40° C./min or more to suppress the solid phase sintering.
That is, during liquid phase sintering after the temperature rise in the liquidus temperature region, new grain boundaries corresponding to Σ2 are formed, but in the temperature region before the appearance of the liquid phase, the WCs are separated by solid phase diffusion. If the necking is firmly formed by bonding, the grain boundaries corresponding to Σ2 that are originally formed during liquid phase sintering will decrease. It has been accelerated.
2) sintering process; (see Table 4 "Process of the Invention")
Next, in the sintering step, after the temperature is raised to 1350° C. or higher, Σ2 is formed into coarse-grained WC and fine-grained WC by heating at 1350° C. to 1450° C. for 10 to 80 minutes in a vacuum of 0.1 Pa or less. A WC-based cemented carbide sintered body was obtained by preventing corresponding grain boundaries from dissolving and disappearing due to reprecipitation.

次に、WC基超硬合金焼結体を機械加工、研削加工し、CNMG432MMの形状に整え、表5に示す超硬合金基体1~10(以下、本発明工具基体1~10という)を作製した。 Next, the WC-based cemented carbide sintered body is machined and ground, and arranged into the shape of CNMG432MM to produce cemented carbide substrates 1 to 10 shown in Table 5 (hereinafter referred to as tool substrates 1 to 10 of the present invention). did.

≪比較例WC基超硬工具≫
比較のために、比較例の超硬合金基体1~8(以下、比較例工具基体1~8という)を作製した。
まず、原料粉末としては、前記した表1のWC原料粉末種別のA~Dを用いる他、E~Hに示されるWC原料粉末種別の原料粉末を用いた。
その製造工程は、まず、表3に示す配合割合にて、平均粒径(d50)10.0~18.0μmの粗粒WC粉末または平均粒径(d50)0.5~1.5μmの微粒WC粉末と、平均粒径(d50)3.0~4.0μmの粗粒Co粉末または平均粒径(d50)0.5~1.5μmの微粒Co粉末と、平均粒径(d50)1.0~3.0μmのCr粉末とを所定の配合組成となるように混合し、または、必要に応じ、さらに、それぞれ、平均粒径(d50)1.0~3.0μmの範囲である、TaC粉末、NbC粉末、TiC粉末、および、ZrC粉末からなる一種以上を所定の配合組成となるように混合し、焼結用粉末とし、メディアレスのアトライター混合により、回転数50rpm、8時間湿式混合し、乾燥後、100MPaの圧力にてプレス成形し、圧粉成形体を作製した。
次いで、本発明工具基体1~10の製造条件を外れた、表4に示す比較工程1’~8’の固相焼結条件、および、液相焼結条件にて、焼結工程を行い、WC基超硬合金焼結体を得た後、前記WC基超硬合金焼結体を機械加工、研削加工し、CNMG432MMの形状に整えることにより、表6に示す比較例工具基体1~8として作製した。
<<Comparative example WC-based cemented carbide tool>>
For comparison, cemented carbide substrates 1 to 8 of comparative examples (hereinafter referred to as comparative tool substrates 1 to 8) were produced.
First, as raw material powders, in addition to the WC raw material powder types A to D in Table 1, raw material powders of the WC raw material powder types shown in E to H were used.
In the manufacturing process, first, coarse grain WC powder with an average particle size (d50) of 10.0 to 18.0 μm or fine grains with an average particle size (d50) of 0.5 to 1.5 μm at the blending ratio shown in Table 3 WC powder, coarse-grained Co powder with an average particle size (d50) of 3.0 to 4.0 μm or fine-grained Co powder with an average particle size (d50) of 0.5 to 1.5 μm, and an average particle size (d50) of 1. Cr 3 C 2 powder of 0 to 3.0 μm is mixed so as to have a predetermined composition, or if necessary, the average particle size (d50) is in the range of 1.0 to 3.0 μm. One or more of TaC powder, NbC powder, TiC powder, and ZrC powder are mixed so as to have a predetermined composition, and sintered powder is obtained. The mixture was wet-mixed for 1 hour, dried, and then press-molded at a pressure of 100 MPa to prepare a green compact.
Next, the sintering step is performed under the solid phase sintering conditions and liquid phase sintering conditions of Comparative Steps 1′ to 8′ shown in Table 4, which are different from the manufacturing conditions for the tool substrates 1 to 10 of the present invention, After obtaining the WC-based cemented carbide sintered body, the WC-based cemented carbide sintered body was machined, ground, and trimmed into the shape of CNMG432MM, as comparative example tool substrates 1 to 8 shown in Table 6. made.

本発明工具基体1~10および比較例工具基体1~8の超硬合金の断面について、電子マイクロアナライザ(EPMA)により、その成分であるCr、Ti、Ta、Nb、Zrの各元素につき、その含有量を10点測定し、その平均値を各成分の含有量とした。
なお、ここで、Cr、Ti、Ta、Nb、Zrの各元素はそれぞれ炭化物に換算して含有量を算出した。表5、表6に、それぞれの平均含有量を示す。
Regarding the cross sections of the cemented carbides of the tool substrates 1 to 10 of the present invention and the comparative example tool substrates 1 to 8, each element of Cr, Ti, Ta, Nb, and Zr, which is the component, was analyzed by an electronic microanalyzer (EPMA). The content was measured at 10 points, and the average value was taken as the content of each component.
Here, the contents of Cr, Ti, Ta, Nb, and Zr were calculated by converting them into carbides. Tables 5 and 6 show the respective average contents.

つぎに、本発明工具1~10及び比較例工具1~8のWC基超硬合金の断面について、走査型電子顕微鏡(SEM)を用いて、倍率200~500倍でWC基超硬合金の断面を観察して、画像サイズ120×96mm、pixel数1280×1024pixelでSEM像を取得し、これを画像解析ソフトImageJにて画像処理し、一つの観察視野内の個々の結合相の面積を測定し、結合相各粒子の面積を、面積の小さい粒子から累積していき、累積面積が結合相全面積の10%を超えたところでの結合相粒子一つが占める面積をA10、累積面積が結合相全面積の90%を超えたところでの結合相粒子一つが占める面積をA90として求める。
つぎに、得られたA90をA10で除することにより、A90/A10を得る。
なお、結合相の個数は、WC粒子により分断された個々の結合相を各々一つの結合相として計測する。
また、十分な数の結合相を画像内に含めるため、倍率200~500倍での観察を行い、画像処理後に計測される結合相の個数が5000~15000個の範囲に入るように観察倍率を選定した。
Next, the cross sections of the WC-based cemented carbides of the present invention tools 1 to 10 and the comparative example tools 1 to 8 were examined using a scanning electron microscope (SEM) at a magnification of 200 to 500 times. Observing, an SEM image was obtained with an image size of 120 × 96 mm and a pixel number of 1280 × 1024 pixels, which was image-processed with image analysis software ImageJ, and the area of each bonding phase within one observation field was measured. , the area of each binder phase particle is accumulated from the particle with the smallest area, and the area occupied by one binder phase particle when the cumulative area exceeds 10% of the total area of the binder phase is A10, and the cumulative area is the total area of the binder phase. The area occupied by one binder phase grain above 90% of the area is determined as A90.
Next, A90/A10 is obtained by dividing the obtained A90 by A10.
In addition, the number of bonded phases is measured as each of the individual bonded phases separated by the WC particles is counted as one bonded phase.
Also, in order to include a sufficient number of bonded phases in the image, observe at a magnification of 200 to 500 times, and increase the observation magnification so that the number of bonded phases measured after image processing falls within the range of 5000 to 15000. selected.

Figure 2022108807000001
Figure 2022108807000001

Figure 2022108807000002
Figure 2022108807000002

Figure 2022108807000003
Figure 2022108807000003

Figure 2022108807000004
Figure 2022108807000004

Figure 2022108807000005
Figure 2022108807000005

Figure 2022108807000006
Figure 2022108807000006

上記本発明工具1~10、比較例工具1~8について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の湿式連続旋削加工試験を行った。
被削材:JIS・SUS304(HB170)の丸棒、
切削速度:120m/min、
切り込み:1.8mm、
送り:0.6mm/rev、
切削時間:5分、
湿式水溶性切削油使用。
上記湿式連続切削加工試験後の、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。なお、切れ刃の逃げ面塑性変形量は、工具の主切れ刃側逃げ面について、切れ刃から十分離れた位置で主切れ刃側逃げ面とすくい面が交差する稜線上に線分を引き、同線分を切れ刃部方向に延伸し、延伸した線分と切れ刃部稜線間の距離(延伸した線分の垂直方向)が最も離れている部分を測定し、切れ刃の逃げ面塑性変形量とした。また、逃げ面塑性変形量が0.04mm以上であった時、損耗状態を刃先変形とした。
表7に、この試験結果を示す。
The tools 1 to 10 of the present invention and the comparative tools 1 to 8 were subjected to the following continuous wet turning test while being screwed to the tip of the tool steel cutting tool with a fixing jig.
Work material: JIS/SUS304 (HB170) round bar,
Cutting speed: 120m/min,
Notch: 1.8mm,
Feed: 0.6mm/rev,
Cutting time: 5 minutes,
Uses wet water-soluble cutting oil.
After the wet continuous cutting test, the amount of flank plastic deformation of the cutting edge was measured, and the state of wear of the cutting edge was observed. The amount of flank plastic deformation of the cutting edge is calculated by drawing a line segment on the ridge line where the flank on the main cutting edge side of the tool and the rake face intersect at a position sufficiently distant from the cutting edge. Extend the same line segment in the cutting edge direction, measure the part where the distance between the extended line segment and the cutting edge ridge (perpendicular direction of the extended line) is the farthest, and measure the flank plastic deformation of the cutting edge. Quantity. Also, when the amount of flank plastic deformation was 0.04 mm or more, the state of wear was defined as cutting edge deformation.
Table 7 shows the results of this test.

Figure 2022108807000007
Figure 2022108807000007

また、前記本発明工具1~4、比較例工具1~4の切刃表面に、表8に示す平均層厚の硬質被覆層をPVD法あるいはCVD法で被覆形成し、本発明表面被覆WC基超硬合金製切削工具(以下、「本発明被覆工具」という)1~4、比較例表面被覆WC基超硬合金製切削工具(以下、「比較例被覆工具」という)1~4を作製した。
上記の各被覆工具について、以下に示す、湿式連続切削加工試験を実施し、切れ刃の逃げ面塑性変形量を測定するとともに、切れ刃の損耗状態を観察した。
切削条件:
被削材:JIS・SUS304(HB170)の丸棒、
切削速度:180m/min、
切り込み:2.1mm、
送り:0.5mm/rev、
切削時間:4分、
湿式水溶性切削油使用。
表9に切削試験の結果を示す。
Further, a hard coating layer having an average layer thickness shown in Table 8 was formed by PVD or CVD on the cutting edge surfaces of the present invention tools 1 to 4 and comparative example tools 1 to 4, and the surface coated WC base of the present invention was formed. Cemented carbide cutting tools (hereinafter referred to as "coated tools of the present invention") 1 to 4 and comparative surface-coated WC-based cemented carbide cutting tools (hereinafter referred to as "comparative coated tools") 1 to 4 were produced. .
For each of the coated tools described above, the following wet continuous cutting test was performed to measure the amount of flank plastic deformation of the cutting edge and to observe the state of wear of the cutting edge.
Cutting conditions:
Work material: JIS/SUS304 (HB170) round bar,
Cutting speed: 180m/min,
Notch: 2.1 mm,
Feed: 0.5mm/rev,
Cutting time: 4 minutes,
Uses wet water-soluble cutting oil.
Table 9 shows the results of the cutting test.

Figure 2022108807000008
Figure 2022108807000008

Figure 2022108807000009
Figure 2022108807000009

表7及び表9に示される試験結果によれば、本発明工具および本発明被覆工具は、欠損を発生することなく、すぐれた耐塑性変形性を発揮するのに対して、比較例工具および比較例被覆工具は、欠損の発生もしくは塑性変形により工具寿命が短命であることがわかる。 According to the test results shown in Tables 7 and 9, the tool of the present invention and the coated tool of the present invention exhibit excellent plastic deformation resistance without causing chipping, while the comparative example tool and the comparative tool It can be seen that coated tools have a short tool life due to chipping or plastic deformation.

以上のとおり、本発明工具および本発明被覆工具は、合金鋼やステンレス鋼等の連続旋削加工等の負荷の高い連続切削加工において、長期の使用に亘ってすぐれた効果を発揮するものであり、工具の長寿命化に大いに貢献するものである。
As described above, the tool of the present invention and the coated tool of the present invention exhibit excellent effects over long-term use in continuous cutting with high loads such as continuous turning of alloy steel, stainless steel, etc. This greatly contributes to prolonging tool life.

Claims (4)

WC基超硬合金を基体とするWC基超硬合金製切削工具において、
前記WC基超硬合金の成分組成は、結合相形成成分としてのCoを6.0~14.0質量%とCrを0.1~1.4質量%含有し、残部はWC及び不可避不純物からなり、
前記WC基超硬合金基体の断面について結合相の粒度分布を解析し、累積10%粒子面積のときの結合相粒子一つが占める面積をA10(μm)とし、また、累積90%粒子面積のときの結合相粒子一つが占める面積をA90(μm)としたとき、A10が0.15μm以上、0.30μm以下であり、かつ、A90/A10が15.0以上、50.0以下であることを特徴とするWC基超硬合金製切削工具。
In a WC-based cemented carbide cutting tool based on a WC-based cemented carbide,
The chemical composition of the WC-based cemented carbide contains 6.0 to 14.0% by mass of Co and 0.1 to 1.4% by mass of Cr 3 C 2 as binder phase forming components, and the balance is WC and Consists of unavoidable impurities,
The grain size distribution of the binder phase is analyzed for the cross section of the WC-based cemented carbide substrate, and the area occupied by one binder phase grain at the cumulative 10% grain area is defined as A10 (μm 2 ), and the cumulative 90% grain area. A10 is 0.15 μm 2 or more and 0.30 μm 2 or less, and A90/A10 is 15.0 or more and 50.0 or less A WC-based cemented carbide cutting tool characterized by:
前記WC基超硬合金は、TaC、NbC、TiC及びZrCのうちから選ばれる少なくとも1種以上を合計量で4.0質量%以下にて、さらに含有することを特徴とする請求項1に記載のWC基超硬合金製切削工具。 2. The WC-based cemented carbide according to claim 1, further comprising at least one selected from TaC, NbC, TiC and ZrC in a total amount of 4.0% by mass or less. WC-based cemented carbide cutting tool. 前記WC基超硬合金におけるWCの平均粒径は、0.2μm以上、4.0μm以下であり、WCのΣ2対応粒界の、全WC/WC粒界に占める存在比率(Σ2対応粒界比率)が、15%以上であることを特徴とする請求項1または請求項2に記載されたWC基超硬合金製切削工具。 The average grain size of WC in the WC-based cemented carbide is 0.2 μm or more and 4.0 μm or less. ) is 15% or more, the WC-based cemented carbide cutting tool according to claim 1 or 2. 請求項1~請求項3のいずれか一項に記載のWC基超硬合金製切削工具の少なくとも切れ刃には、硬質被覆層が形成されていることを特徴とする表面被覆WC基超硬合金製切削工具。
A surface-coated WC-based cemented carbide, wherein a hard coating layer is formed on at least the cutting edge of the WC-based cemented carbide cutting tool according to any one of claims 1 to 3. Made cutting tools.
JP2021003953A 2021-01-14 2021-01-14 Cutting tool Pending JP2022108807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003953A JP2022108807A (en) 2021-01-14 2021-01-14 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003953A JP2022108807A (en) 2021-01-14 2021-01-14 Cutting tool

Publications (1)

Publication Number Publication Date
JP2022108807A true JP2022108807A (en) 2022-07-27

Family

ID=82556902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003953A Pending JP2022108807A (en) 2021-01-14 2021-01-14 Cutting tool

Country Status (1)

Country Link
JP (1) JP2022108807A (en)

Similar Documents

Publication Publication Date Title
JP6953674B2 (en) Cemented Carbide and Cutting Tools
EP3130685B1 (en) Cermet, method for producing cermet, and cutting tool
EP3130686B1 (en) Cermet and cutting tool
TW201122117A (en) Super hard alloy and cutting tool using same
US10987739B2 (en) Cemented carbide and cutting tool
WO2019116614A1 (en) Cemented carbide and cutting tool
JP2004076049A (en) Hard metal of ultra-fine particles
JP7384844B2 (en) Cemented carbide with alternative binders
JP7013948B2 (en) Base material and cutting tools
WO2020196590A1 (en) Wc-based cemented carbide cutting tool having excellent defect resistance and chipping resistance, and surface-coated wc-based cemented carbide cutting tool
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP7432109B2 (en) Cemented carbide and cutting tools
JP2009056561A (en) Surface-coated cutting tool
JP6775694B2 (en) Composite sintered body
JP2022108807A (en) Cutting tool
JP2021139022A (en) Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP7035820B2 (en) Base material and cutting tools
JP2021139021A (en) Wc-based super-hard alloy and wc-based super-hard alloy cutting tool
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2020132971A (en) Cemented carbide and cutting tool
JP2016030846A (en) Cemented carbide and cutting tool
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231220