JPH0724220B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH0724220B2
JPH0724220B2 JP62054761A JP5476187A JPH0724220B2 JP H0724220 B2 JPH0724220 B2 JP H0724220B2 JP 62054761 A JP62054761 A JP 62054761A JP 5476187 A JP5476187 A JP 5476187A JP H0724220 B2 JPH0724220 B2 JP H0724220B2
Authority
JP
Japan
Prior art keywords
type
lithium
manganese dioxide
positive electrode
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62054761A
Other languages
Japanese (ja)
Other versions
JPS63221559A (en
Inventor
修弘 古川
俊彦 齋藤
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62054761A priority Critical patent/JPH0724220B2/en
Publication of JPS63221559A publication Critical patent/JPS63221559A/en
Publication of JPH0724220B2 publication Critical patent/JPH0724220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム又はリチウム合金を負極活物質とする
非水系二次電池に係り、特に正極の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material, and particularly to improvement of a positive electrode.

(ロ)従来の技術 この種二次電池の正極活物質としては三酸化モリブデ
ン、五酸化バナジウム、チタン或いはニオブの硫化物な
どが提案されているが、未だ実用化に至っていない。
(B) Conventional Technology Although molybdenum trioxide, vanadium pentoxide, titanium, and niobium sulfides have been proposed as positive electrode active materials for secondary batteries of this type, they have not yet been put to practical use.

一方、非水系一次電池の正極活物質としては二酸化マン
ガン、フッ化炭素が代表的のものとして知られており、
且これらは既に実用化されている。
On the other hand, manganese dioxide and fluorocarbon are known as typical positive electrode active materials for non-aqueous primary batteries.
Moreover, these have already been put to practical use.

ここで、特に二酸化マンガンは保存性に優れ、資源的に
豊富であり且安価であるという利点を有するものであ
る。
Here, manganese dioxide is particularly advantageous in that it has excellent storage stability, is abundant in resources, and is inexpensive.

そして非水系一次電池の正極活物質として用いる二酸化
マンガンの結晶構造としては、特公昭49−25571号公報
に開示されているように250〜350℃の温度で熱処理した
γ−β型或いは米国特許第4,133,856に開示されている
ように350〜430℃の温度が熱処理したβ型が知られてい
る。
And, as the crystal structure of manganese dioxide used as a positive electrode active material of a non-aqueous primary battery, γ-β type heat-treated at a temperature of 250 to 350 ° C. or U.S. Pat. As disclosed in 4,133,856, β-type that is heat-treated at a temperature of 350 to 430 ° C. is known.

上記した背景に鑑みて、非水系二次電池の正極活物質と
して二酸化マンガンを用いることが有益であると考えら
れるが、ここで二次電池特有の問題があることがわかっ
た。即ち、二酸化マンガンの結晶構造に関して、γ−β
型或いはβ型の二酸化マンガンは放電後の結晶構造の崩
れが大きく可逆性に難があることである。
In view of the above background, it is considered useful to use manganese dioxide as the positive electrode active material of the non-aqueous secondary battery, but it has been found here that there are problems peculiar to the secondary battery. That is, regarding the crystal structure of manganese dioxide, γ-β
Type or β-type manganese dioxide has a large collapse of the crystal structure after discharge and is difficult to be reversible.

これに対して、層状構造を持つδ型二酸化マンガンや、
γ−β型或いはβ型の二酸化マンガンよりも大きいチャ
ンネルが存在する構造を持つα型二酸化マンガンを用い
る事により可逆性の向上が得られると考えられる。
On the other hand, δ type manganese dioxide having a layered structure,
It is considered that reversibility can be improved by using α-type manganese dioxide having a structure in which channels larger than those of γ-β type or β type are present.

然し乍らδ型或いはα型の二酸化マンガンは、その構造
中にカリウムイオンまたはアンモニウムイオンを有して
おり充放電中にこれらのイオンが電解液中に溶出するた
め充放電特性が著しく劣化する。
However, δ-type or α-type manganese dioxide has potassium ions or ammonium ions in its structure and these ions are eluted into the electrolytic solution during charging / discharging, so that the charging / discharging characteristics are significantly deteriorated.

(ハ)発明が解決しようとする問題点 本発明は、二酸化マンガンを正極活物質とする非水系二
次電池の充放電サイクル特性の改善を目的とする。
(C) Problems to be Solved by the Invention The present invention aims to improve the charge / discharge cycle characteristics of a non-aqueous secondary battery using manganese dioxide as a positive electrode active material.

(ニ)問題点を解決するための手段 本発明は含有リチウムを非水電解液中で電気化学的に脱
ドープしたスピネル型或いはスピネル型とλ型の中間的
な結晶構造を有する二酸化マンガンを活物質とする正極
を用いる事を特徴とする非水系二次電池にある。
(D) Means for Solving the Problems The present invention activates manganese dioxide having a spinel-type or a spinel-type and λ-type intermediate crystal structure in which lithium is electrochemically dedoped in a non-aqueous electrolyte. The non-aqueous secondary battery is characterized by using a positive electrode as a substance.

(ホ)作用 スピネル型二酸化マンガンはLiMn2O4の化学式で表わさ
れ、主な製法としては炭酸リチウムにMn2O3或いは任意
の二酸化マンガンをMn:Li=2:1のモル比で混合し800〜9
00℃で加熱することによって得られる。
(E) Action Spinel-type manganese dioxide is represented by the chemical formula of LiMn 2 O 4 , and the main production method is to mix lithium carbonate with Mn 2 O 3 or any manganese dioxide at a molar ratio of Mn: Li = 2: 1. 800 ~ 9
Obtained by heating at 00 ° C.

又、このスピネル型二酸化マンガンを酸処理して含有リ
チウムを一部脱ドープすることによりスピネル型とλ型
(スピネル型二酸化マンガンから含有リチウムを完全に
脱ドープしたもの)との中間的な結晶構造を有する二酸
化マンガンが得られることが知られている。
An intermediate crystal structure between spinel type and λ type (completely dedoped of spinel type manganese dioxide contained) by acid-treating this spinel type manganese dioxide and partially dedoping the contained lithium. It is known to obtain manganese dioxide having

ところで上記のスピネル型或いはスピネル型とλ型の中
間的な結晶構造を有する二酸化マンガンを非水系一次電
池に用いた場合には、従来のγ−β型二酸化マンガンに
比べて大巾な改良は見られない。逆に含有リチウム量が
増加するにつれて容量が減少しスピネル型二酸化マンガ
ン(LiMn2O4)では容量が1/2に減少する。
By the way, when manganese dioxide having the above-mentioned spinel type or spinel type and λ type intermediate crystal structure is used in a non-aqueous primary battery, a great improvement is seen as compared with the conventional γ-β type manganese dioxide. I can't. On the contrary, the capacity decreases as the content of lithium increases, and the capacity of spinel manganese dioxide (LiMn 2 O 4 ) decreases to 1/2.

然し乍ら非水系二次電池の正極活物質に用いた場合に
は、γ−β型或いはβ型二酸化マンガンにみられた充放
電サイクル進行に伴う結晶構造の崩壊が全く見られず、
充放電サイクル特性が大きく改良される。この原因につ
いてはγ−β型或いはβ型二酸化マンガンが一次元のチ
ャンネル構造を持つのに対し、スピネル型或いはスピネ
ル型とλ型の中間的な結晶構造を有する二酸化マンガン
は3次元のチャンネル構造を持つ事により充放電による
リチウムイオンのドープ、脱ドープがスムーズに行われ
る事が考えられる。
However, when used as a positive electrode active material of a non-aqueous secondary battery, no collapse of the crystal structure was observed in the γ-β type or β type manganese dioxide with the progress of charge / discharge cycles,
The charge / discharge cycle characteristics are greatly improved. Regarding this cause, γ-β type or β type manganese dioxide has a one-dimensional channel structure, whereas spinel type or manganese dioxide having an intermediate crystal structure of spinel type and λ type has a three-dimensional channel structure. It is considered that the holding of the lithium ion allows the lithium ions to be smoothly doped and dedoped by charging and discharging.

このようにスピネル型或いはスピネル型とλ型の中間的
な結晶構造を有する二酸化マンガンは特に非水系二次電
池の正極活物質として用いると有益であるが、予じめ含
有せしめたリチウムが通常の放電反応には関与し難くそ
の結果深度の充放電が困難となる。そこで含有リチウム
を除去することが考えられるが、従来では前述したよう
に酸処理によって脱ドープする方法を採っており、この
場合にはリチウムを除去しうるものの、酸性水溶液での
処理時にプロトンがイオン交換反応によって侵入し、こ
のプロトンの存在によって充電時にドープされるリチウ
ム量に制限を受け深度の充放電を阻害することになる。
As described above, manganese dioxide having a spinel type or a crystal structure intermediate between the spinel type and the λ type is particularly useful when used as a positive electrode active material of a non-aqueous secondary battery, but lithium that is contained in advance is usually used. It is difficult to participate in the discharge reaction, and as a result, it becomes difficult to charge and discharge deep. Therefore, it is conceivable to remove the contained lithium, but conventionally, the method of dedoping by acid treatment is adopted as described above.In this case, although lithium can be removed, the protons become ionic during treatment with an acidic aqueous solution. The invasion by the exchange reaction and the presence of the protons limit the amount of lithium that is doped during charging, and hinder the depth charge and discharge.

これに対して、本発明のように非水電解液中で電気化学
的に脱ドープ処理を施したものは、予じめ含有されてい
たリチウムを除去でき、且プロトンの侵入がないため充
電時のリチウムドープ量を増大させることができ深度の
充放電が可能となる。
On the other hand, as in the case of the present invention, which is electrochemically dedoped in a non-aqueous electrolytic solution, it is possible to remove the lithium contained in advance, and there is no penetration of protons, so during charging It is possible to increase the amount of lithium doped and to enable deep charge / discharge.

尚、スピネル型或いはスピネル型とλ型の中間的な結晶
構造を有する二酸化マンガン中に予じめ含有されている
リチウムを非水電解液中で電気化学的に脱ドープする方
法としては、電池組立後に充電方向に通電する方法又は
正極合剤の状態で非水電解液中において通電して脱ドー
プする方法等がある。
In addition, as a method of electrochemically doping lithium that is previously contained in manganese dioxide having a spinel type or manganese dioxide having an intermediate crystal structure of spinel type and λ type in a non-aqueous electrolyte, a battery assembly is used. After that, there is a method of energizing in the charging direction or a method of de-doping by energizing in a nonaqueous electrolytic solution in the state of the positive electrode mixture.

(ヘ)実施例 以下本発明の実施例につき詳述する。(F) Examples Examples of the present invention will be described in detail below.

実施例1 スピネル型二酸化マンガンはMn2O3100gとLi2CO323.4g
(Mn:Li=2:1のモル比)を混合し650℃で6時間、次い
で850℃で14時間空気中において熱処理して得た。
Example 1 Spinel-type manganese dioxide was Mn 2 O 3 100 g and Li 2 CO 3 23.4 g.
(Mn: Li = 2: 1 molar ratio) were mixed and heat-treated in the air at 650 ° C. for 6 hours and then at 850 ° C. for 14 hours in the air.

そしてこのスピネル型二酸化マンガン90重量%に、導電
剤としてのアセチレンブラック6重量%及びフッ素樹脂
粉末4重量%を混合して正極合剤とし、この合剤を成型
圧5トン/cm2で直径20.0mmに加圧成型した後、更に200
〜300℃の温度で真空熱処理して正極とする。
Then, 90% by weight of this spinel-type manganese dioxide was mixed with 6% by weight of acetylene black as a conductive agent and 4% by weight of fluororesin powder to obtain a positive electrode mixture, and this mixture was formed at a molding pressure of 5 ton / cm 2 and a diameter of 20.0. After pressure molding to mm, 200 more
Vacuum heat treatment is performed at a temperature of ~ 300 ° C to obtain a positive electrode.

負極は所定の厚みのリチウム板を直径20.0mmに打ち抜い
たものであり、セパレータはポリプロピレン製微孔性薄
膜を用い、電解液にはプロピレンカーボネートとジメト
キシエタンとの等体積混合溶媒に過塩素酸リチウムを1M
溶解したものを用いて直径24.0mm、高さ3.0mmの電池を
作成した。その後、この電池を50μAの電流値で充電終
止電圧4.0Vまで充電し、正極活物質中に予じめ含有され
ていたリチウムを脱ドープして完成電池とした。この本
発明電池を(A1)とする。
The negative electrode is a lithium plate having a predetermined thickness punched out to a diameter of 20.0 mm, the separator uses a polypropylene microporous thin film, and the electrolyte solution is an equal volume mixture solvent of propylene carbonate and dimethoxyethane lithium perchlorate. 1M
A battery having a diameter of 24.0 mm and a height of 3.0 mm was prepared using the melted material. Then, this battery was charged to a charge end voltage of 4.0 V at a current value of 50 μA, and lithium that was previously contained in the positive electrode active material was dedoped to obtain a completed battery. This battery of the present invention is referred to as (A 1 ).

第1図は本発明電池の半断面図を示し、正極(1)は正
極集電体(2)を介して正極缶(3)に電気接続され、
又負極(4)は負極集電体(5)を介して負極缶(6)
に電気接続されている。そして正負極(1)(4)はセ
パレータ(7)により隔離され、又正負極缶(3)
(6)は絶縁パッキング(8)により電気的接触が阻止
されている。
FIG. 1 shows a half sectional view of a battery of the present invention, in which a positive electrode (1) is electrically connected to a positive electrode can (3) through a positive electrode current collector (2),
The negative electrode (4) is connected to the negative electrode current collector (5) and the negative electrode can (6).
Electrically connected to. The positive and negative electrodes (1) and (4) are separated by the separator (7), and the positive and negative electrode cans (3).
The electrical contact of (6) is blocked by the insulating packing (8).

実施例2 実施例1における正極合剤をステンレス製ネットにシー
ト状に圧着したものを、プロピレンカーボネートとジメ
トキシエタンとの等体積混合溶媒に過塩素酸リチウムを
1M溶解した溶液中において、リチウム板を対極として50
μAの電流値で充電終止電圧4.0Vまで充電した。次いで
この合剤をジメトキシエタンで洗浄後、60℃で20時間以
上乾燥処理した。その後この合剤を実施例1の如く加圧
成型、熱処理して正極とし、この正極を用いて実施例1
と同様に組立てた。この本発明電池を(A2)とする。
Example 2 The positive electrode mixture obtained in Example 1 was pressure-bonded to a stainless steel net in a sheet shape, and lithium perchlorate was added to a mixed solvent of equal volume of propylene carbonate and dimethoxyethane.
In a 1M dissolved solution, a lithium plate is used as a counter electrode.
It was charged up to a charge end voltage of 4.0 V with a current value of μA. Next, this mixture was washed with dimethoxyethane and then dried at 60 ° C. for 20 hours or more. Thereafter, this mixture was pressure-molded and heat-treated as in Example 1 to obtain a positive electrode, and this positive electrode was used in Example 1.
It was assembled in the same manner as. This battery of the present invention is referred to as (A 2 ).

比較例 実施例1の方法で作成したスピネル型二酸化マンガンを
4Nの硫酸中に170時間浸漬した後、2lの純水で洗浄した
ものを正極活物質とし、それ以降は充電処理を施さない
ことを除いて他は実施例1と同様の方法で比較電池
(B1)を作成した。
Comparative Example Spinel-type manganese dioxide prepared by the method of Example 1 was used.
After being immersed in 4N sulfuric acid for 170 hours, washed with 2 liters of pure water was used as a positive electrode active material, and the same procedure as in Example 1 was repeated except that charging treatment was not performed thereafter. B 1 ) was created.

第2図はこれらの電池を電流3.0mAで8時間放電し、電
流3.0mAで充電するという条件での充放電サイクル特性
図を示す。尚、充電終止電圧は4.0Vとした。又、この時
の充電深度は約25%に相当する。
FIG. 2 shows a charge / discharge cycle characteristic diagram under the condition that these batteries were discharged at a current of 3.0 mA for 8 hours and charged at a current of 3.0 mA. The end-of-charge voltage was 4.0V. The charging depth at this time is equivalent to about 25%.

第2図から明白なるように、本発明電池(A1)(A2)は
比較電池(B1)に比してサイクル特性が改善されている
のがわかる。
As is apparent from FIG. 2, it is understood that the batteries (A 1 ) and (A 2 ) of the present invention have improved cycle characteristics as compared with the comparative battery (B 1 ).

この理由は含有リチウムを脱ドープしたスピネル型或い
はスピネル型とλ型の中間的な結晶構造を有する二酸化
マンガンにおいて、比較電池では含有リチウムの脱ドー
プを酸性水溶液中で行っているため、リチウムは除去で
きるもののプロトンが侵入し容量の増加が計れず深度の
充放電が不可能であるのに対し、本発明電池では含有リ
チウムの脱ドープを非水電解液中に行っているため、リ
チウムの除去の際にプロトンの侵入が生じることなく容
量の増加が計れ深度の充放電が可能となることに起因す
ると考えられる。
The reason for this is that in the case of manganese dioxide having a spinel type obtained by dedoping the contained lithium or having an intermediate crystal structure between the spinel type and the λ type, since lithium in the comparative battery is dedoped in an acidic aqueous solution, lithium is removed. Although it is possible to inject protons and the capacity cannot be increased and depth charge / discharge is impossible, on the other hand, in the battery of the present invention, since lithium is dedoped in the non-aqueous electrolyte, it is possible to remove lithium. At this time, it is considered that the capacity can be increased without the invasion of protons and the depth of charge and discharge becomes possible.

(ト)発明の効果 上述した如く、非水系二次電池の正極活物質として、含
有リチウムを非水電解液中で電気化学的に脱ドープした
スピネル型或いはスピネル型とλ型の中間的な結晶構造
を有する二酸化マンガンを用いることにより、容量の増
加が計れ深度の充放電サイクル特性に優れた非水系二次
電池を得ることができるものであり、その工業的価値は
極めて大である。
(G) Effects of the Invention As described above, as a positive electrode active material of a non-aqueous secondary battery, a spinel type or an intermediate crystal of spinel type and λ type in which lithium is electrochemically dedoped in a non-aqueous electrolyte. By using manganese dioxide having a structure, it is possible to obtain a non-aqueous secondary battery having an increased capacity and excellent charge / discharge cycle characteristics at a depth, and its industrial value is extremely large.

尚、本発明は実施例で示した非水電解液を用いた二次電
池に限定されず、例えば実施例2に示す如く含有リチウ
ムを脱ドープした後の正極合剤を用い、固体電解質と組
合せた非水系二次電池にも適用しうることは明白であ
る。
The present invention is not limited to the secondary battery using the non-aqueous electrolytic solution shown in the examples, and for example, as shown in Example 2, the positive electrode mixture after dedoping the contained lithium is used and combined with the solid electrolyte. It is obvious that it can also be applied to non-aqueous secondary batteries.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明電池の半断面図、第2図は電池の充放電
サイクル特性図を夫々示す。 (1)……正極、(3)……正極缶、(4)……負極、
(6)……負極缶、(7)……セパレータ、(8)……
絶縁パッキング、(A1)(A2)……本発明電池、(B1
……比較電池。
FIG. 1 is a half sectional view of the battery of the present invention, and FIG. 2 is a charge / discharge cycle characteristic diagram of the battery. (1) …… positive electrode, (3) …… positive electrode can, (4) …… negative electrode,
(6) …… Negative electrode can, (7) …… Separator, (8) ……
Insulating packing, (A 1 ) (A 2 ) …… battery of the present invention, (B 1 )
…… Comparison battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム又はリチウム合金を活物質とする
負極と、含有リチウムを非水電解液中で電気化学的に脱
ドープしたスピネル型或いはスピネル型とλ型の中間的
な結晶構造を有する二酸化マンガンを活物質とする正極
とを備えた非水系二次電池。
1. A negative electrode using lithium or a lithium alloy as an active material, and dioxide having a spinel type or a spinel type and λ type intermediate crystal structure in which lithium is electrochemically dedoped in a non-aqueous electrolyte. A non-aqueous secondary battery comprising a positive electrode using manganese as an active material.
JP62054761A 1987-03-10 1987-03-10 Non-aqueous secondary battery Expired - Lifetime JPH0724220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054761A JPH0724220B2 (en) 1987-03-10 1987-03-10 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054761A JPH0724220B2 (en) 1987-03-10 1987-03-10 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63221559A JPS63221559A (en) 1988-09-14
JPH0724220B2 true JPH0724220B2 (en) 1995-03-15

Family

ID=12979750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054761A Expired - Lifetime JPH0724220B2 (en) 1987-03-10 1987-03-10 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0724220B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611265B2 (en) * 1987-10-17 1997-05-21 ソニー株式会社 Non-aqueous electrolyte secondary battery
FR2644295A1 (en) * 1989-03-09 1990-09-14 Accumulateurs Fixes RECHARGEABLE ELECTROCHEMICAL GENERATOR WITH LITHIUM ANODE
DE4025208A1 (en) * 1990-08-09 1992-02-13 Varta Batterie ELECTROCHEMICAL SECONDARY ELEMENT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220362A (en) * 1982-06-02 1983-12-21 インプリコ・ベー・ベー Electrochemical battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220362A (en) * 1982-06-02 1983-12-21 インプリコ・ベー・ベー Electrochemical battery
US4507371A (en) * 1982-06-02 1985-03-26 South African Inventions Development Corporation Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure

Also Published As

Publication number Publication date
JPS63221559A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
JPH0746607B2 (en) Non-aqueous secondary battery
JP2578646B2 (en) Non-aqueous secondary battery
JPH0746608B2 (en) Non-aqueous secondary battery
JPH07107851B2 (en) Non-aqueous secondary battery
JPH0724220B2 (en) Non-aqueous secondary battery
JP2627314B2 (en) Non-aqueous secondary battery and method for producing its positive electrode active material
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH0679485B2 (en) Non-aqueous secondary battery
JPS6151387B2 (en)
JP3025695B2 (en) Non-aqueous secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP2815862B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP3443257B2 (en) Solid electrolyte battery
JPH07114125B2 (en) Non-aqueous secondary battery
JP3348175B2 (en) Organic electrolyte secondary battery
JP2703278B2 (en) Non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPH11329424A (en) Nonaqueous secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JP2627318B2 (en) Non-aqueous secondary battery
JPH0462764A (en) Nonaqueous electrolyte cell
JPH0748377B2 (en) Non-aqueous secondary battery
JPH0212768A (en) Lithium secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term