JPH0212768A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0212768A
JPH0212768A JP63163461A JP16346188A JPH0212768A JP H0212768 A JPH0212768 A JP H0212768A JP 63163461 A JP63163461 A JP 63163461A JP 16346188 A JP16346188 A JP 16346188A JP H0212768 A JPH0212768 A JP H0212768A
Authority
JP
Japan
Prior art keywords
lithium
oxide
active material
positive electrode
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63163461A
Other languages
Japanese (ja)
Inventor
Kenichi Morigaki
健一 森垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63163461A priority Critical patent/JPH0212768A/en
Publication of JPH0212768A publication Critical patent/JPH0212768A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the energy density and obtain an excellent charge/ discharge cycle characteristic by using a vanadium composite oxide with which 5-10 mole% of an oxide of the group VIII of the periodic table is mixed as a positive electrode active material. CONSTITUTION:As a positive electrode active material, a composite oxide obtained by adding and mixing 5-10mum of an oxide of the group VIII of the periodic table, for example, any of iron sesquioxide, tricobalt tetraoxide, or nickel oxide, with vanadium pentaoxide followed by heat treatment is used. A negative electrode is lithium or lithium alloy, and an electrolyte is obtained by dissolving a lithium salt such as lithium perchlorate, arsenic lithium hexafluoride, lithium trifluoromethane sulfonate in an aprotic organic solvent such as ethylene carbonate, propylene carbonate, 1,2-dimethoxyethane, and 2-methyltetrahydrofuran. Hence, the crystal structure fracturing of vanadium pentaoxide resulting from the insertion or elimination of lithium ion into the vanadium pentaoxide crystal lattice in the charge/discharge cycle is relieved, and the charge/discharge cycle characteristic is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウムまたはリチウム合金を負極活物質とす
るリチウム二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a lithium secondary battery using lithium or a lithium alloy as a negative electrode active material.

従来の技術 非水電解液系二次電池の正極活物質としては、すでに種
々の硫化物、酸化物などが提案されている(たとえば、
J、 of Power 5ources、第9巻、3
07〜320頁(1983) )。また、電池特性の向
上のために五酸化バナジウムを正極活物質とすることは
、Electrochem、 Soc、 Meetin
g (Toronto、 May 11−16゜197
5 rI&127 )で提案されている。その後、二次
電池用正極活物質としても、種々の検討、提案がなされ
ており、たとえば、非晶質化(特開昭61−20066
7号公報)、複合酸化物(特開昭61−281462号
公報)、ナトリウムブロンズ(特開昭62−19585
4号公報)などがある。
Conventional technology Various sulfides, oxides, etc. have already been proposed as positive electrode active materials for non-aqueous electrolyte secondary batteries (for example,
J, of Power 5 sources, Volume 9, 3.
07-320 (1983)). Furthermore, the use of vanadium pentoxide as a positive electrode active material to improve battery characteristics has been proposed by Electrochem, Soc, and Meetin.
g (Toronto, May 11-16゜197
5rI&127). Since then, various studies and proposals have been made for positive electrode active materials for secondary batteries, including amorphousization (Japanese Patent Laid-Open No. 61-20066
7), composite oxide (Japanese Patent Application Laid-Open No. 61-281462), sodium bronze (Japanese Patent Application Laid-open No. 62-19585)
Publication No. 4).

発明が解決しようとする課題 上記従来の五酸化バナジウムを正極活物質として使用し
た二次電池においては、電池特性上必ずしも十分ではな
かった。特に、バナジウム系酸化物を正極活物質とした
電池においては、充放電サイクルの進行に伴なう反応の
非可逆化、すなわち容量の劣化が大きいという課題を有
していた。これは、充放電によるバナジウム酸化物の構
造破壊、あるいは電解液の酸化分解によるものとされて
いる。
Problems to be Solved by the Invention The conventional secondary batteries using vanadium pentoxide as a positive electrode active material have not always had sufficient battery characteristics. In particular, batteries using a vanadium-based oxide as a positive electrode active material have a problem in that the reaction becomes irreversible as the charge/discharge cycle progresses, that is, the capacity deteriorates significantly. This is thought to be due to structural destruction of vanadium oxide due to charging and discharging, or oxidative decomposition of the electrolyte.

本発明は上記従来の課題を解決するもので、サイクル特
性の優れた、小型軽量でエネルギー密度の大きなリチウ
ム二次電池を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and aims to provide a lithium secondary battery with excellent cycle characteristics, small size, light weight, and high energy density.

課題を解決するための手段 この課題を解決するために本発明のリチウム二次電池は
、正極活物質として、五酸化バナジウムに周期表第vn
+族の酸化物、たとえば三二酸化鉄(Fe20り、四三
酸化コバルト(C0304)、酸化−’−7ケル(Ni
o)のいずれかを5〜10モル%添加混合し、加熱処理
した複合酸化物を用いることを特徴とし、負極はリチウ
ムまたはリチウム合金であり、また電解液は炭酸エチレ
ン(EC)、炭酸プロピレン(pc)、1.2、ジメト
キシエタン(DME )、2メチルテトラヒドロフラン
(MeTHF)などの非プロトン性有機溶媒に、過塩素
酸リチウム(LiCtO,)、6フフ化砒酸リチウム(
Li As F6)、リチウムトリフルオロメタンスル
フォネイト(LiCF、5O3)などのリチウム塩を溶
解させたものである。
Means for Solving the Problem In order to solve this problem, the lithium secondary battery of the present invention uses vanadium pentoxide as a positive electrode active material,
+ group oxides, such as iron sesquioxide (Fe20), tricobalt tetroxide (C0304), -'-7 Kel oxide (Ni
It is characterized by using a composite oxide which is mixed with 5 to 10 mol% of any of o) and heat-treated, the negative electrode is lithium or a lithium alloy, and the electrolyte is ethylene carbonate (EC), propylene carbonate ( pc), 1.2, lithium perchlorate (LiCtO,), lithium hexafluoride arsenate (
Lithium salts such as LiAs F6) and lithium trifluoromethanesulfonate (LiCF, 5O3) are dissolved therein.

作用 上記構成によると、正極活物質を、五酸化バナジウムに
少量の第vm族酸化物、たとえば三二酸化鉄(Fe2O
3)、四三酸化コバルト(Co、U4)、酸化ニッケル
(NiO)のいずれかを添加した複合酸化物とすること
により、充放電サイクル時の五酸化バナジウム結晶格子
内へのリチウムイオン(Li◆)の挿入、脱離に起因す
る五酸化バナジウムの結晶構造破壊が緩和され、充放電
サイクル特性が改善される。
Function According to the above configuration, the positive electrode active material is formed by adding a small amount of Vm group oxide to vanadium pentoxide, such as iron sesquioxide (Fe2O
3) By making a composite oxide containing either tricobalt tetroxide (Co, U4) or nickel oxide (NiO), lithium ions (Li◆ ) destruction of the crystal structure of vanadium pentoxide due to insertion and desorption is alleviated, and charge/discharge cycle characteristics are improved.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明に係るリチウム二次電池、特にその正極
活物質を評価するために用いた直径20w1、総高1.
6no+の電池の半断面図である。1はリチウム負極、
2はステンレス製負極集電体、3はステンレス製封口板
、4はポリプロピレン製ガスケット、5は微細孔をもつ
ポリプロピレン製セパレータ、6は正極活物質70重量
%、カーボンブラック25重量%、フッ素樹脂系結着剤
5重量%から成る正極合剤、7はチタン製正極集電体、
8はステンレス製ケースである。電解液は炭酸プロピレ
ン(PC)と1.2、ジメトキシエタン(L)ME )
の体積比1:1の混合溶媒に67フ化砒酸リチウム(L
iAsFa)をxmol/lf8解させたものを使用し
ている。
FIG. 1 shows a lithium secondary battery according to the present invention, with a diameter of 20 w1 and a total height of 1.
FIG. 6 is a half cross-sectional view of a 6no+ battery. 1 is a lithium negative electrode,
2 is a stainless steel negative electrode current collector, 3 is a stainless steel sealing plate, 4 is a polypropylene gasket, 5 is a polypropylene separator with micropores, 6 is a positive electrode active material 70% by weight, carbon black 25% by weight, fluororesin system Positive electrode mixture consisting of 5% by weight of binder, 7 is a titanium positive electrode current collector,
8 is a stainless steel case. The electrolyte is propylene carbonate (PC) and 1.2, dimethoxyethane (L) ME)
67 Lithium arsenate fluoride (L
The xmol/lf8 solution of iAsFa) is used.

正極活物質は、メタバナジン酸アンモニウム(NH4V
O3)の熱分解により得られた五酸化バナジウム(V!
0、)に、所定量の三二酸化鉄(Fe2O2)を添加混
合し、ボールミルなどで充分に混合した後、700°C
で8〜24時間焼成を行なった。この複合酸化物の粉末
X線回折の結果からFeVO4s Feo、or Vl
、11304などの回折ピークは認められなかった。な
お、三二酸化鉄の代わりに四三酸化コバルト(Co、(
J4)、酸化ニッケル(Ni□)を添加した場合にも同
様の結果であった。
The positive electrode active material is ammonium metavanadate (NH4V
Vanadium pentoxide (V!) obtained by thermal decomposition of O3)
Add and mix a predetermined amount of iron sesquioxide (Fe2O2) to 0, ), mix thoroughly with a ball mill, etc., and heat to 700°C.
Firing was performed for 8 to 24 hours. From the powder X-ray diffraction results of this composite oxide, FeVO4s Feo, or Vl
, 11304, and other diffraction peaks were not observed. Note that tricobalt tetroxide (Co, (
J4), similar results were obtained when nickel oxide (Ni□) was added.

第2図に、この電池を、1mA定亀流でzoV〜3.8
Vの電圧範囲の充放電サイクルを行なった際の、充放電
サイクルによる放電容量の変動を示している。AとBは
本発明の一実施例である■20.とFe。
Figure 2 shows this battery at 1 mA constant current of zoV ~ 3.8.
It shows the variation in discharge capacity due to charge/discharge cycles when charge/discharge cycles are performed in the voltage range of V. A and B are examples of the present invention.■20. and Fe.

Osの複合酸化物を正極活物質とした電池の特性である
。AはFe3O.5モル%、BはFe3O3を10モル
%混合したものである。Cは比較例のFe、O,を15
モル%混合したものであり、Dは従来例の五酸化バナジ
ウム(Vt Os )である。
These are the characteristics of a battery using a composite oxide of Os as a positive electrode active material. A is Fe3O. 5 mol%, and B is a mixture of 10 mol% Fe3O3. C is Fe, O, of the comparative example 15
D is a conventional example of vanadium pentoxide (VtOs).

Aの5モル%Fe2O,を混合した場合には、放電特性
は従来例りのv20.とほぼ同一であるが、80ザイク
ル後の放電容量は初期容量の約86%と低減比率が小さ
くなる。Bの10モル%Fe!O,を混合した場合も、
放電容量はやや小さくなるが、同様の挙動を示し、80
サイクル後の放電容量は初期の80%以上得られる。一
方、Dの従来例の場合逍は、放電初期容量は大きいが、
サイクル劣化が大きいため、80サイクル後の放電容量
は初期の約55%に低下している。また、Cの比較例の
15モル%Fe2O。
When 5 mol% Fe2O of A was mixed, the discharge characteristics were the same as conventional v20. However, the discharge capacity after 80 cycles is about 86% of the initial capacity, which is a small reduction ratio. 10 mol% Fe of B! Even when O, is mixed,
Although the discharge capacity is slightly smaller, it shows the same behavior and is 80
The discharge capacity after cycling is 80% or more of the initial capacity. On the other hand, in the case of conventional example D, although the initial discharge capacity is large,
Due to the large cycle deterioration, the discharge capacity after 80 cycles was reduced to about 55% of the initial value. In addition, 15 mol% Fe2O of comparative example C.

を混合した場合には、初期放電容量が小さくなり、サイ
クル特性の改善も見られず、80サイクル後の容量は初
期の約55%となっている。
When these were mixed, the initial discharge capacity was small and no improvement in cycle characteristics was observed, with the capacity after 80 cycles being approximately 55% of the initial capacity.

また、四三酸化コバルト(Co304) 、酸化ニッケ
ル(NiO)を添加した場合も、図示していないが、ほ
ぼ同様の結果が得られた。
Although not shown, almost similar results were obtained when tricobalt tetroxide (Co304) and nickel oxide (NiO) were added.

以上の結果より、五酸化バナジウム(V6O13)に周
期表第Vl族の酸化物(Fe、 0. 、 Co30.
 、 NiOなど)を少f、[5〜10モル%)添加し
た複合酸化物を正極活物質とすることにより、放電容量
が大きく、充放電サイクル特性を著しく改良することが
分った。
From the above results, vanadium pentoxide (V6O13) is combined with oxides of group Vl of the periodic table (Fe, 0., Co30.
It has been found that by using a composite oxide to which a small amount (5 to 10 mol %) of NiO, NiO, etc. is added as the positive electrode active material, the discharge capacity is large and the charge/discharge cycle characteristics are significantly improved.

また、X線回折の結果から、これらの複合酸化物は明確
な結晶構造となっていないものと考えられる。充放電サ
イクル特性の改善は、第■族の酸化物が五酸化バナジウ
ム(■z Os )の結晶格子内に不規則に挿入される
ことにより、■3O.結晶格子の歪みなどが発生し、充
電時のリチウムイオン(Liつの結晶格子内への挿入お
よび脱離がより容易に起り得るようになったためと考え
られる。
Moreover, from the results of X-ray diffraction, it is considered that these composite oxides do not have a clear crystal structure. The improvement in the charge/discharge cycle characteristics is due to the irregular insertion of group Ⅰ oxides into the crystal lattice of vanadium pentoxide (■zOs). This is thought to be because distortion of the crystal lattice occurs, and lithium ions (Li) can more easily be inserted into and removed from the crystal lattice during charging.

発明の効果 以上のように本発明の構成によれば、1招活物質として
周期表第■族の酸化物を5〜10モル%混合したバナジ
ウム複合酸化物を用いることにより、エネルギー密度が
大きくかつ充放電サイクル特性に優れたリチウム二次電
池を提供することができる。
Effects of the Invention As described above, according to the structure of the present invention, by using a vanadium composite oxide mixed with 5 to 10 mol% of an oxide of Group I of the periodic table as the first active material, energy density is large and A lithium secondary battery with excellent charge/discharge cycle characteristics can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるリチウム二次電池の
半断面図、第2図は各リチウム二次電池の放電容量と充
放電サイクルとの関係を示すグラフ図である。 1・・・リチウム負極、5・・・セパレータ、6・・・
正極合剤。
FIG. 1 is a half-sectional view of a lithium secondary battery according to an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between discharge capacity and charge/discharge cycle of each lithium secondary battery. 1... Lithium negative electrode, 5... Separator, 6...
Positive electrode mixture.

Claims (1)

【特許請求の範囲】 1、リチウムまたはリチウム合金を活物質とする負極と
、非水電解液とを備え、五酸化バナジウムに周期表第V
III族の酸化物を5〜10mol%添加した複合酸化物
を正極活物質としたリチウム二次電池。 2、第VIII族酸化物が、三二酸化鉄(Fe_2O_3)
、四三酸化コバルト(Co_3O_4)、酸化ニッケル
(NiO)、のうちから選ばれたものである請求項1に
記載のリチウム二次電池。
[Claims] 1. Comprising a negative electrode using lithium or a lithium alloy as an active material and a non-aqueous electrolyte, vanadium pentoxide is
A lithium secondary battery using a composite oxide containing 5 to 10 mol% of a group III oxide as a positive electrode active material. 2. Group VIII oxide is iron sesquioxide (Fe_2O_3)
2. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is selected from the group consisting of tricobalt tetroxide (Co_3O_4), and nickel oxide (NiO).
JP63163461A 1988-06-29 1988-06-29 Lithium secondary battery Pending JPH0212768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63163461A JPH0212768A (en) 1988-06-29 1988-06-29 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63163461A JPH0212768A (en) 1988-06-29 1988-06-29 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0212768A true JPH0212768A (en) 1990-01-17

Family

ID=15774319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63163461A Pending JPH0212768A (en) 1988-06-29 1988-06-29 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0212768A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196278A (en) * 1991-03-07 1993-03-23 Fuji Photo Film Co., Ltd. Lithium secondary battery with a cathode comprising lithium, cobalt and vanadium
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196278A (en) * 1991-03-07 1993-03-23 Fuji Photo Film Co., Ltd. Lithium secondary battery with a cathode comprising lithium, cobalt and vanadium
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery

Similar Documents

Publication Publication Date Title
EP0870339B1 (en) Electrode material for electrochemical lithium intercalation
JP3244314B2 (en) Non-aqueous battery
JP3045998B2 (en) Interlayer compound and method for producing the same
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH07320784A (en) Nonaqeous electrolytic lithium secondary battery
CA2210489A1 (en) Delithiated cobalt oxide and nickel oxide phases and method of preparing same
JP3426869B2 (en) Non-aqueous electrolyte secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2002270181A (en) Non-aqueous electrolyte battery
JPH0212768A (en) Lithium secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3229531B2 (en) Non-aqueous electrolyte secondary battery
JPH0821431B2 (en) Organic electrolyte secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JPH07296850A (en) Nonaqueous electrolyte lithium secondary battery
KR100346546B1 (en) A positive electrode plate for a lithium secondary battery
JP2000277113A (en) Lithium secondary battery
JP3021478B2 (en) Non-aqueous secondary battery
JPH10116616A (en) Lithium secondary battery with nonaqueous electrolyte
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3428348B2 (en) Organic electrolyte lithium secondary battery