JPH0723558B2 - Insoluble anode for high current density electroplating - Google Patents

Insoluble anode for high current density electroplating

Info

Publication number
JPH0723558B2
JPH0723558B2 JP7646687A JP7646687A JPH0723558B2 JP H0723558 B2 JPH0723558 B2 JP H0723558B2 JP 7646687 A JP7646687 A JP 7646687A JP 7646687 A JP7646687 A JP 7646687A JP H0723558 B2 JPH0723558 B2 JP H0723558B2
Authority
JP
Japan
Prior art keywords
insoluble anode
current density
anode
electroplating
high current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7646687A
Other languages
Japanese (ja)
Other versions
JPS63243300A (en
Inventor
忠男 藤永
肇 木村
宏之 篠原
哲也 小浜
宏景 松沢
輝久 敦賀
善胡 下杉
隆 折橋
Original Assignee
川崎製鉄株式会社
ヨシザワエルエー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社, ヨシザワエルエー株式会社 filed Critical 川崎製鉄株式会社
Priority to JP7646687A priority Critical patent/JPH0723558B2/en
Publication of JPS63243300A publication Critical patent/JPS63243300A/en
Publication of JPH0723558B2 publication Critical patent/JPH0723558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、電気めっき用不溶性陽極に関し、とくに硫
酸塩浴において優れた耐久性を有するPb−Ag−In−Sn四
元系不溶性陽極に関するものである。
Description: TECHNICAL FIELD The present invention relates to an insoluble anode for electroplating, and more particularly to a Pb-Ag-In-Sn quaternary insoluble anode having excellent durability in a sulfate bath. Is.

(従来の技術) 電気めっき技術は言うまでもなく耐食性の付与、その他
様々な目的のために工業界において重要かつ不可欠な技
術であり、鉄鋼材料ストリップや銅板等の被めっき材の
表面にZn,Sn,Ni,Cu,Feあるいはこれらの合金を電気めっ
きすることが広く行われている。なかでも鉄鋼材料の電
気めっきの普及は著しく自動車、家電製品、建材等の分
野で需要が増大している。
(Prior art) Needless to say, electroplating technology is an important and indispensable technology in the industrial field for imparting corrosion resistance and various other purposes, and Zn, Sn, Electroplating of Ni, Cu, Fe or their alloys is widely practiced. In particular, the spread of electroplating of steel materials is remarkable, and the demand is increasing in fields such as automobiles, home appliances, and building materials.

とりわけ自動車の車体等の防錆においては、耐食性向上
のために亜鉛付着量の多い厚めっきが要求され、高電流
密度による電気めっき操業が実施されつつある。
In particular, for rust prevention of automobile bodies and the like, thick plating with a large amount of zinc is required to improve corrosion resistance, and electroplating operations with high current density are being carried out.

従来このような電気めっきの陽極には、可溶性陽極が用
いられてきたが、高電流密度化に対応させるためや可溶
性陽極を用いることによるめっき液の管理、電極間距離
の調整などにおける問題を解消するため、あるいは消費
電力のコストアップ等により、可溶性陽極から不溶性陽
極への転換が指向されている。
Soluble anodes have been used as the anodes for such electroplating, but problems such as managing the plating solution and adjusting the distance between the electrodes by using soluble anodes have been solved. In order to do so, or due to an increase in the cost of power consumption and the like, the conversion from a soluble anode to an insoluble anode has been aimed at.

また、チタン製のドラムに陽極を一定の間隔に配設し、
陰極としてのドラムと陽極の間隙に硫酸銅液を循環さ
せ、該ドラムの周囲に銅箔を電着せしめる電解金属箔の
製造においても不溶性陽極が用いられ、しかも生産性を
高めるために従来より高い電流密度での操業が検討され
つつある。
In addition, the anode is arranged at regular intervals on the titanium drum,
An insoluble anode is also used in the production of electrolytic metal foil in which a copper sulfate solution is circulated in the gap between the drum as a cathode and the anode, and a copper foil is electrodeposited around the drum, and higher than before in order to improve productivity. Operation at current density is being considered.

このように不溶性陽極は電気めっきや銅箔製造等におい
て重要な地位を占めている。
Thus, the insoluble anode occupies an important position in electroplating, copper foil production and the like.

従来不溶性陽極としては、鉛製のものが主として使用さ
れているが、その理由は、鉛はめっき液や箔製造用の電
解液に対して耐久性があり、かつ通電によって電極表面
に二酸化鉛(以下PbO2と記す)が不溶性陽極としての機
能を発揮するからである。しかしながら鉛電極面に形成
したPbO2は鉛基体に対する付着力が不充分なため、鉛表
面から剥離し易く、必ずしも満足する耐久性が得られて
いない。また肉盛再生に伴うメンテナンス費用も上昇す
る欠点が認識されるようになった。
Conventionally, lead-made ones have been mainly used as insoluble anodes because lead is durable against plating solutions and electrolytic solutions for foil production, and lead dioxide ( This is because PbO 2 ) will function as an insoluble anode. However, since PbO 2 formed on the lead electrode surface has insufficient adhesion to the lead substrate, it easily peels off from the lead surface, and satisfactory durability is not always obtained. In addition, it has been recognized that the maintenance cost for rebuilding the overlay is also high.

そこで近年ではTiやNbなどの耐食性の優れた基体の表面
にPbO2を被覆したPbO2被覆性陽極や、鉛基体に対するPb
O2の付着力を高める目的で種々の合金成分を含有させた
各種成分組成の鉛合金製不溶性陽極が提案されている。
ところで前者の不溶性陽極においては、主に内部歪に起
因してPbO2被覆層が剥離し易いという問題があり、また
後者の不溶性陽極においては、とくに硫酸系の電気めっ
き浴を使用した場合、必ずしもすぐれた耐久性が得られ
ないのが現状であった。とくに鉛系不溶性陽極では、電
解によってPbイオンがめっき液中に溶解する欠点があ
り、めっき液中のPbイオンを除去するために(1)、(2)式
で示すようにめっき液中に炭酸ストロンチウムを添加し
てPbイオンを吸着除去する方法が採られている。
Therefore, in recent years, a PbO 2 -covering anode in which PbO 2 is coated on the surface of a substrate with excellent corrosion resistance such as Ti or Nb, or Pb for a lead substrate is used.
Lead alloy insoluble anodes having various component compositions containing various alloy components have been proposed for the purpose of increasing the adhesive force of O 2 .
By the way, in the former insoluble anode, there is a problem that the PbO 2 coating layer is easily peeled off mainly due to internal strain, and in the latter insoluble anode, especially when using a sulfuric acid-based electroplating bath, The current situation is that excellent durability cannot be obtained. In particular, lead-based insoluble anodes have the drawback that Pb ions are dissolved in the plating solution by electrolysis, and in order to remove Pb ions in the plating solution, carbon dioxide must be added to the plating solution as shown in equations (1) and (2). A method of adding strontium to adsorb and remove Pb ions is adopted.

SrCO3+H2SO4→SrSO4+H2O+CO2↑…(1) SrSO4+Pb2+→SrSO4+Pb2+(吸着)…(2) しかし上記の方法では、 (イ)めっき液中のSrSO4がPbイオンと結合して不溶性
の反応生成物を形成し、その一部がめっき処理の進行に
伴い鋼板の表面に付着して製品の押込みきずが発生する
こと、 (ロ)高価なSrCO3を使用することから製造コストが高
くつくこと、等の問題があった。この点例えば特公昭60
−24197号公報には、鉛にInやAgの如き合金成分を含有
させて、鉛基体の表面に形成されるPbO2の剥離防止を図
った鉛合金製不溶性陽極が提案されている。
SrCO 3 + H 2 SO 4 → SrSO 4 + H 2 O + CO 2 ↑… (1) SrSO 4 + Pb 2+ → SrSO 4 + Pb 2+ (adsorption)… (2) However, in the above method, ) SrSO 4 in the plating solution combines with Pb ions to form an insoluble reaction product, part of which adheres to the surface of the steel sheet as the plating process progresses, resulting in indentation of the product, ( (B) Since expensive SrCO 3 is used, there are problems such as high manufacturing cost. In this respect, for example, Japanese Patent Publication Sho 60
Japanese Patent Laid-Open No. 24197 proposes a lead alloy insoluble anode in which lead is allowed to contain an alloy component such as In or Ag to prevent peeling of PbO 2 formed on the surface of a lead substrate.

(発明が解決しようとする問題点) しかしながら上記の不溶性陽極は、高価な貴金属である
InやAgを比較的多量に使用するので製造コストの上昇を
招くこと、またAgは鉛に比較して融点が高いので均一鋳
込みする際の浴撹拌頻度が増大し、製造コストの上昇を
招くこと、さらに硫酸系電気めっき浴の濃度の変化や高
電流密度下における耐食性の向上効果は必ずしも充分と
は言えないなどの欠点を有していた。
(Problems to be Solved by the Invention) However, the above insoluble anode is an expensive precious metal.
Since a relatively large amount of In or Ag is used, it causes an increase in manufacturing cost.Since Ag has a higher melting point than lead, the frequency of stirring the bath during uniform casting increases, which causes an increase in manufacturing cost. Further, there are drawbacks such as a change in concentration of the sulfuric acid-based electroplating bath and an effect of improving corrosion resistance under high current density are not always sufficient.

上述したような従来の不溶性陽極のもつ欠点を極力解消
し、優れた耐久性を有し、しかも製造コストの安価な鉛
合金製不溶性陽極を提案することがこの発明の目的であ
る。
It is an object of the present invention to propose a lead alloy insoluble anode which has the above-mentioned drawbacks of the conventional insoluble anode as much as possible, has excellent durability, and is inexpensive to manufacture.

(問題点を解決するための手段) 発明者等は、鉛合金製不溶性陽極の高電流密度使用時に
おける耐久性の向上を図るべく鋭意研究実験の結果、I
n,Agおよび少量のSnを添加することが上記の目的を達成
する上に極めて有効であることの知見を得た。
(Means for Solving Problems) The inventors of the present invention have conducted extensive studies to improve the durability of lead alloy insoluble anodes at high current density use.
It was found that the addition of n, Ag and a small amount of Sn is extremely effective in achieving the above-mentioned object.

すなわち、この発明は、少なくとも放電部が、Ag:0.5〜
3.0wt%、In:0.5〜3.0wt%およびSn:0.1〜1.0wt%を含
有し残部がPbと不可避的不純物よりなる高電流密度電気
めっき用不溶性陽極である。
That is, the present invention, at least the discharge unit, Ag: 0.5 ~
An insoluble anode for high current density electroplating containing 3.0 wt%, In: 0.5 to 3.0 wt% and Sn: 0.1 to 1.0 wt% and the balance Pb and inevitable impurities.

ここでこの発明に適合するPb−Ag−In−Sn四元系不溶性
陽極の成分組成の限定理由は次の通りである。
Here, the reasons for limiting the component composition of the Pb-Ag-In-Sn quaternary insoluble anode compatible with the present invention are as follows.

AgおよびInはそれぞれ0.5wt%未満では陽極の耐久性が
著しく低下し、一方3.0wt%を超えて添加しても添加量
に見合う(コストアップ相当分)だけの耐久性向上が得
られない。AgおよびInの添加量がそれぞれ0.5〜3.0wt%
の範囲においてその添加量に比例して耐久性向上効果が
認められる。
If Ag and In are each less than 0.5 wt%, the durability of the anode is significantly reduced, while if added over 3.0 wt%, the durability cannot be improved by the amount added (corresponding to the cost increase). Addition amount of Ag and In is 0.5-3.0wt% respectively
In the range of 1, the effect of improving durability is recognized in proportion to the added amount.

Snはその含有量が0.1wt%未満および1.0wt%を超えて添
加しても陽極の耐久性の改善効果が見られず却って逆効
果となる。Snの含有量を0.1〜1.0wt%の範囲に調整する
ことでAgおよびInをそれぞれ3.0wt%を超えて添加する
より一層の耐久性向上効果があることが認められる。ま
たSnは上記の範囲において、鉛合金の中のAgおよびInの
拡散効果をもたらし鉛合金の製造の際における湯の撹拌
頻度の低減が可能でしかも合金成分の拡散による均質組
成の陽極を得るのに有利となる。
Even if the content of Sn is less than 0.1 wt% or more than 1.0 wt%, the effect of improving the durability of the anode is not seen and it is rather the opposite effect. It is recognized that by adjusting the Sn content within the range of 0.1 to 1.0 wt%, the effect of further improving the durability can be further enhanced by adding Ag and In in excess of 3.0 wt% each. In addition, Sn in the above range brings about the diffusion effect of Ag and In in the lead alloy, can reduce the stirring frequency of the hot water during the production of the lead alloy, and can obtain an anode of homogeneous composition by diffusion of the alloy components. Be advantageous to.

(作 用) この発明の従うPb−Ag−In−Sn四元系不溶性陽極が高電
流密度の操業に対応できかつ硫酸系めっき液に対して優
れた耐久性を示す理由は以下に示す通りである。
(Operation) The reason why the Pb-Ag-In-Sn quaternary insoluble anode according to the present invention can withstand high current density operation and exhibits excellent durability against a sulfuric acid plating solution is as follows. is there.

(1) 結晶粒が小さく、歪が分散されているため、PbO2
等の皮膜の付着力が増大する。
(1) Since the crystal grains are small and the strain is dispersed, PbO 2
The adhesion of the film such as is increased.

(2) 電気伝導率が上昇し、熱発生が少ないためPbO2
どの皮膜剥離に与える因子が小さくなる。
(2) The electric conductivity increases, and the heat generation is small, so that the factors that cause the peeling of the film such as PbO 2 are small.

(3) 電解液の濃度依存性が少くなり、濃度変化に対し
て広く対応が出来る。
(3) The concentration dependence of the electrolyte is reduced, and it is possible to widely deal with changes in concentration.

(4) 硬度が低いため圧延や機械加工時にクラックの発
生がない。融点が低いため、溶融肉盛りにおいて流動性
が良くなり、収縮率が小さいためクラックやピンホール
の発生がない。
(4) Cracks do not occur during rolling or machining due to its low hardness. Since the melting point is low, the fluidity in the molten overlay is improved, and the shrinkage is small, so that cracks and pinholes do not occur.

ここでこの発明のおいて高電流密度とは、100A/dm2
上、通常は160A/dm2以上、最適には200A/dm2のオーダー
の電流密度を、また箔製造の場合には、50A/dm2以上の
電流密度と定義する。
Here, in the present invention, high current density means 100 A / dm 2 or more, usually 160 A / dm 2 or more, optimally a current density of the order of 200 A / dm 2 , and 50 A in the case of foil production. It is defined as a current density of / dm 2 or more.

次に、この発明に従う不溶性陽極の製造要領としては具
体的に、高融点のAg(融点961℃)を0.5〜3.0wt%の範
囲で添加した溶融鉛中に、Sn(融点231℃)を0.1〜1.0w
t%の範囲で添加し、さらに湯の温度を見極めながら、
低融点のIn(融点156℃)を0.5〜3.0wt%の範囲で順次
添加溶解したのち、この溶湯を鋳造しその後圧延等によ
り電極に仕上げる。
Next, as a manufacturing procedure of the insoluble anode according to the present invention, specifically, high melting point Ag (melting point 961 ° C.) in molten lead added in the range of 0.5 to 3.0 wt%, Sn (melting point 231 ° C.) is 0.1 ~ 1.0w
Add it in the range of t%, and while checking the temperature of the hot water,
Low melting point In (melting point 156 ° C.) is sequentially added and melted in the range of 0.5 to 3.0 wt%, and this molten metal is cast and then rolled to finish the electrode.

なおこの発明の不溶性陽極は、陽極全体がPb−Ag−In−
Sn四元系鉛合金より成るもの、表面がTi,Nb,Ta等の高耐
食性の金属になるクラッド材(芯材は鉄や銅等で良い)
又は耐食性材料単体からなる母材の片面あるいは両面に
この発明に従う鉛合金を被覆したものを含み、その被覆
要領は、TIG方式などで直接母材に溶着するか、または
母材表面にはんだ付け、あるいは電気めっき等の表面処
理を施した母材表面に鉛溶着肉盛およびPb−Ag−In−Sn
四元系合金を溶着肉盛する等その他を包括する。要は電
極の少なくとも放電部がこの発明に伴う合金で作製され
ていればよい。
Incidentally, the insoluble anode of the present invention, the entire anode is Pb-Ag-In-
Made of Sn quaternary lead alloy, clad material whose surface is a metal with high corrosion resistance such as Ti, Nb, Ta (core material may be iron or copper)
Alternatively, it includes one or both sides of a base material consisting of a single corrosion-resistant material coated with a lead alloy according to the present invention, the coating procedure of which is directly welding to the base material by a TIG method or the like, or soldering to the base material surface, Alternatively, Pb-Ag-In-Sn and Pb-Ag-In-Sn on the surface of the base metal that has been subjected to surface treatment such as electroplating
Includes other things such as welding up quaternary alloys. In short, at least the discharge part of the electrode may be made of the alloy according to the present invention.

かくして得られた不溶性陽極は、その機能面において、 (1) 高電流密度による電気めっき等に対応し得るので
めっきや箔製造ライン速度の上昇(製造ラインの短
縮)、めっき膜および箔形成のスピードアップを図るこ
とが可能で厚めっきや電解箔製造に極めて有利に適応す
ること、 (2) 合金めっきの同時析出に適すること、 すなわち、異種金属の析出電位の差を相殺できる高電流
密度下での電気めっきでは、異種金属イオンの同時析出
による合金めっきが可能となる(放電析出速度の上昇に
よる)。
In terms of its functional aspects, the insoluble anode thus obtained can be used for (1) electroplating at high current densities, thus increasing the speed of plating and foil production lines (shortening the production line), the speed of plating film and foil formation. It is possible to improve the thickness of the plating and it is extremely advantageous for thick plating and electrolytic foil production. (2) Suitable for simultaneous deposition of alloy plating, that is, at high current density that can offset the difference in deposition potential of dissimilar metals. In the electroplating, alloy plating can be performed by simultaneous deposition of different kinds of metal ions (due to increase in discharge deposition rate).

(3) めっき膜や箔の均質、均一化をなし得ること、 (4) 浴中へのPbの溶出速度、量を減少し得ること、 また操業面においては、 (1) 極間距離がほとんど変わらないので保守が容易で
あること、 (2) 浴組成管理が簡易化できること、 (3) スラッジ沈降剤等の添加量を減少し得ること等の
利点があり、電気めっき用あるいは箔製造用等の電解操
業用の不溶性陽極として極めて優れたものであり、めっ
き製品品質の改善と、コストダウンの実現を併せて図り
得る。
(3) Homogeneous and uniform plating film or foil can be achieved, (4) Elution rate and amount of Pb in the bath can be reduced, and in terms of operation (1) Since there is no change, there are advantages such as easy maintenance, (2) simplification of bath composition management, (3) reduction of the amount of sludge settling agent, etc. for electroplating or foil production. It is an extremely excellent insoluble anode for electrolysis operation, and can improve the quality of plated products and reduce costs.

(実施例) 通常の溶解法にて表−1に示す成分組成になる鉛合金湯
を調製し、この合金湯を鋳造後圧延して厚さ3〜5mmの
板材を製造した。そしてこの板材より厚さ3mm×幅10mm
×長さ150mmの試験材(A材)、と厚さ5mm×幅50mm×長
さ100mmの試験材(B材)を切り出しこれを陽極とし
た。この陽極の電解面積はA材で0.15dm2、B材で0.1dm
2である。
(Example) A lead alloy hot water having a composition shown in Table 1 was prepared by a usual melting method, and the hot melt was cast and then rolled to produce a plate material having a thickness of 3 to 5 mm. And from this plate material thickness 3 mm × width 10 mm
A test material having a length of 150 mm (material A) and a test material having a thickness of 5 mm, a width of 50 mm and a length of 100 mm (material B) were cut out and used as anodes. The electrolytic area of this anode is 0.15dm 2 for material A and 0.1dm for material B.
Is 2 .

次にA材には該A材を両側に挟んで純鉛製の陰極(厚さ
5mm×幅60mm×長さ150mm)を20〜30mmの間隙をもたせて
配設し、B材には該B材の裏面及び表面(0.1dm2の電解
面積を除く)をシールテープで被覆した上でジルコニウ
ム製の陰極(厚さ3mm×幅15mm×長さ120mm)をB材の表
面から20〜30mm離して配設して、それぞれ耐久試験を行
い陽極の単位電気量当りの溶解速度(mg/A/hr)を求め
た。その結果を表−1に併せて示す。
Next, for the A material, the cathode made of pure lead (thickness with the A material sandwiched on both sides
5 mm x width 60 mm x length 150 mm) is arranged with a gap of 20 to 30 mm, and on the B material, the back surface and the front surface (excluding the electrolytic area of 0.1 dm 2 ) of the B material are covered with seal tape. A zirconium cathode (thickness 3 mm x width 15 mm x length 120 mm) is placed 20 to 30 mm away from the surface of the material B, and each endurance test is performed to dissolve the anode per unit amount of electricity (mg / mg / A / hr) was calculated. The results are also shown in Table 1.

試験条件は以下の通りである。The test conditions are as follows.

(1)電解液 :0.5molNazSO4,PH=1±0.1 :浴温50〜60℃ :2.0molNazSO4,PH=1±0.1 :浴温50〜60℃ (2)電流密度:200A/dm2 (3)通電時間:A材100時間 :B材20時間 なおA材の溶解速度は試験後のA材の重量減を計測して
この値に基づいて算出したものであり、またB材の溶解
速度は、試験後電解液中において、B材の酸化被膜を除
去したのち、この電解液を充分撹拌し厚子吸光光度法に
より陽極成分(Pb,Ag,InおよびSn)を定量し、これに基
づいて算出した。
(1) Electrolyte: 0.5molNa z SO 4 ,, PH = 1 ± 0.1: Bath temperature 50-60 ℃: 2.0molNa z SO 4 , PH = 1 ± 0.1: Bath temperature 50-60 ℃ (2) Current density: 200A / dm 2 (3) Energization time: A material 100 hours: B material 20 hours The dissolution rate of the material A was calculated based on this value by measuring the weight loss of the material A after the test, and the dissolution rate of the material B was the oxide film of the material B in the electrolyte after the test. After removing the electrolyte, the electrolytic solution was sufficiently stirred, and the anode components (Pb, Ag, In and Sn) were quantified by the thick spectrophotometric method, and calculation was performed based on this.

表−1より明らかなようにこの発明による不溶性陽極
は、硫酸系の電解液において極めて良好な耐久性を示す
ことが確かめられた。第1図は表−1で示した不溶性陽
極の代表例について、電解液濃度と溶解速度(mg/A・h
r)との関係を示すグラフである。
As is clear from Table 1, it was confirmed that the insoluble anode according to the present invention exhibits extremely good durability in a sulfuric acid-based electrolytic solution. Figure 1 shows the electrolyte concentration and dissolution rate (mg / A · h) for the typical insoluble anodes shown in Table-1.
It is a graph which shows the relationship with r).

(発明の効果) この発明によれば、耐久性に優れた不溶性陽極を得るこ
とができるので、腐食量の減少による電極寿命の延長、
電極間距離の調整等に要する日数の減少、めっき浴の組
成管理の簡易化、スラッジ沈降剤の添加量の削減、補修
肉盛などの再生回数の低減、陽極の薄肉軽量化等が可能
であること、また高電流密度の操業にも対応し得るので
厚めっきや箔製造ライン速度の上昇(製造ラインの短
縮)を実現した高い生産性の下で品質の良好な製品を製
造することが可能でその効果は極めて大きい。
(Effects of the Invention) According to the present invention, since an insoluble anode having excellent durability can be obtained, the life of the electrode can be extended by reducing the amount of corrosion.
It is possible to reduce the number of days required for adjusting the distance between electrodes, simplify the composition control of the plating bath, reduce the amount of sludge settling agent added, reduce the number of regenerations such as repair overlay, and reduce the thickness and weight of the anode. In addition, since it is possible to handle high current density operations, it is possible to manufacture high-quality products with high productivity by realizing thick plating and increasing the foil production line speed (shortening the production line). The effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は硫酸系電解液の濃度と溶解速度(mg/A・hr)の
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the concentration of sulfuric acid electrolyte and the dissolution rate (mg / A · hr).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠原 宏之 岡山県倉敷市川崎通1丁目(番地なし) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小浜 哲也 岡山県倉敷市川崎通1丁目(番地なし) 川崎製鉄株式会社水島製鉄所内 (72)発明者 松沢 宏景 千葉県柏市新十余二17番地1 芳沢機工東 部株式会社内 (72)発明者 敦賀 輝久 千葉県柏市新十余二17番地1 芳沢機工東 部株式会社内 (72)発明者 下杉 善胡 千葉県柏市新十余二17番地1 芳沢機工東 部株式会社内 (72)発明者 折橋 隆 千葉県柏市新十余二17番地1 芳沢機工東 部株式会社内 (56)参考文献 特開 昭59−28599(JP,A) 特開 昭59−28598(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Shinohara, 1-chome, Kawasaki-dori, Kurashiki-shi, Okayama (no address) Inside Mizushima Steel Works, Kawasaki Steel (72) Inventor, Tetsuya Obama, 1-chome, Kawasaki-dori, Kurashiki-shi, Okayama None) Inside Kawashima Steel Co., Ltd. Mizushima Steel Works (72) Inventor Hirokage Matsuzawa 17-17 Shinjuyoji, Kashiwa-shi, Chiba Prefecture 1 In Yoshizawa Kiko Eastern Co., Ltd. (72) Teruhisa Tsuruga 17-2 Shinjuyo, Kashiwa-shi, Chiba Prefecture 1 Yoshizawa Kiko Higashi Co., Ltd. (72) Inventor Zengo Shimosugi 1-17, Shinjuji, Kashiwa-shi, Chiba Prefecture 1 Yoshizawa Kiko Higashi Co., Ltd. (72) Takashi Orihashi 17-17, Shinjuyo, Kashiwa-shi, Chiba 1 Yoshizawa Kikohigashi Department Co., Ltd. (56) Reference JP-A-59-28599 (JP, A) JP-A-59-28598 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも放電部が、Ag:0.5〜3.0wt%、I
n:0.5〜3.0wt%およびSn:0.1〜1.0wt%を含有し残部がP
bと不可避的不純物よりなる高電流密度電気めっき用不
溶性陽極。
1. At least the discharge part has Ag: 0.5 to 3.0 wt%, I
n: 0.5-3.0 wt% and Sn: 0.1-1.0 wt%, balance P
Insoluble anode for high current density electroplating consisting of b and inevitable impurities.
JP7646687A 1987-03-31 1987-03-31 Insoluble anode for high current density electroplating Expired - Lifetime JPH0723558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7646687A JPH0723558B2 (en) 1987-03-31 1987-03-31 Insoluble anode for high current density electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7646687A JPH0723558B2 (en) 1987-03-31 1987-03-31 Insoluble anode for high current density electroplating

Publications (2)

Publication Number Publication Date
JPS63243300A JPS63243300A (en) 1988-10-11
JPH0723558B2 true JPH0723558B2 (en) 1995-03-15

Family

ID=13605940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7646687A Expired - Lifetime JPH0723558B2 (en) 1987-03-31 1987-03-31 Insoluble anode for high current density electroplating

Country Status (1)

Country Link
JP (1) JPH0723558B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611609B (en) * 2015-02-13 2016-08-24 昆明理工恒达科技股份有限公司 A kind of non-ferrous metal electrodeposition preparation method of the low polynary anode material of argentalium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666547B2 (en) 2002-10-08 2017-05-30 Honeywell International Inc. Method of refining solder materials

Also Published As

Publication number Publication date
JPS63243300A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
JPH0723558B2 (en) Insoluble anode for high current density electroplating
EP0335989B1 (en) Insoluble anode made of lead alloy
JP2529557B2 (en) Lead alloy insoluble anode
JPH07331483A (en) Production of electrogalvanized steel sheet
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
JPH01177399A (en) Pb-base insoluble anode for electroplating
JP2718310B2 (en) Laminated plating Al plate and method for producing the same
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPS6028918B2 (en) Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet
JP2639950B2 (en) Insoluble anode material
JP2706597B2 (en) Laminated plated aluminum plate with excellent spot weldability
JP3334579B2 (en) Method for producing galvanized steel sheet with excellent appearance
KR920002998B1 (en) Insoluble anode of a lead-alloy
JP2726144B2 (en) Manufacturing method of high corrosion resistance Pb-Sn alloy plated Cr-containing steel sheet with excellent coverage and adhesion
JPS6026635A (en) Pb alloy for electrode for electroplating
JP3817945B2 (en) Electrogalvanized steel sheet and manufacturing method thereof
JP3319461B2 (en) Electrogalvanized steel sheet having excellent appearance and method for producing the same
JPS6239239B2 (en)
JP2002194567A (en) Electrogalvanized sheet steel
JPH116095A (en) Manufacture of galvanized steel sheet excellent in surface appearance
JPH0995795A (en) Zinc-nickel alloy electroplated steel sheet excellent in plating adhesion and chemical convertibility
JPS6045719B2 (en) Pb alloy insoluble anode for electroplating
JPS6396297A (en) Insoluble anode made of lead alloy
JPH05279891A (en) Method for electrogalvanizing aluminum strip and device therefor
JPS6358235B2 (en)