JPS6396297A - Insoluble anode made of lead alloy - Google Patents

Insoluble anode made of lead alloy

Info

Publication number
JPS6396297A
JPS6396297A JP61241417A JP24141786A JPS6396297A JP S6396297 A JPS6396297 A JP S6396297A JP 61241417 A JP61241417 A JP 61241417A JP 24141786 A JP24141786 A JP 24141786A JP S6396297 A JPS6396297 A JP S6396297A
Authority
JP
Japan
Prior art keywords
insoluble anode
lead alloy
alloy
coated
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61241417A
Other languages
Japanese (ja)
Inventor
Hirokage Matsuzawa
松沢 宏景
Ikuo Suzuki
郁夫 鈴木
Teruhisa Tsuruga
敦賀 輝久
Takashi Orihashi
折橋 隆
Katsushi Imanishi
今西 克司
Tadashi Takemura
正 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIZAWA KIKO TOUBU KK
Original Assignee
YOSHIZAWA KIKO TOUBU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIZAWA KIKO TOUBU KK filed Critical YOSHIZAWA KIKO TOUBU KK
Priority to JP61241417A priority Critical patent/JPS6396297A/en
Publication of JPS6396297A publication Critical patent/JPS6396297A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To develop the title insoluble electrode having excellent durability even when used at high current density, by using a Pb-Tl-Sn alloy having a specified composition as the insoluble anode to be used in a sulfuric acid electrolyte. CONSTITUTION:The rolled material of a Pb-Tl-Sn alloy contg. <=6-12wt% Tl, <=0.01-10wt% Sn, and the balance Pb, a clad material with the metals such as Fe and Cu as the core and coated with Ti, Nb, and Ta having excellent corrosion resistance, or a material obtained by coating the surface of a base material consisting of a single corrosion-resistant metallic material with the Pb-Tl-Sn alloy are used as the insoluble anode to be used in the sulfuric acid plating soln. and electrolyte in the electroplating of Zn, etc., or the production of electrolytic copper foil. An insoluble anode having excellent durability even when used at the high current density of 100-200A/dm<2> in electroplating and at >=50A/dm<2> in the production of copper foil is obtained.

Description

【発明の詳細な説明】 不溶性陽極は、 (イ)機能面から見ると1 t 高電流密度に対応しうるので、メッキや箔製造ライ
ン速度の上昇(製造ラインの短縮)及びメッキ膜及び箔
形成のスピードアップを図ることが出来、厚メッキや電
解鋼箔製造にきわめて適応性を示すこと。
[Detailed Description of the Invention] Insoluble anodes are: (a) From a functional standpoint, they can handle a high current density of 1 t, which increases the speed of plating and foil production lines (shortens the production line) and facilitates the formation of plating films and foils. It is possible to speed up the process, and is highly adaptable to thick plating and electrolytic steel foil production.

2、 合金メッキの同時析出に適すること、エ メッキ
膜及び箔の均質、均一化を為しりること、 4、 浴中への溶出速度量を減少しうること(ロ) 操
業面から見ると、 (1)極間ピッチがほとんど変らないので保守が容易で
あること、 (2)浴組成管理が簡易化するとと (3)  スラッジ沈降剤等の添加量を減少しうろこと の点で電気メッキ用或いは箔製造用等の冗解操業用@極
として優れたものであ夛、これによシメッキ製品品質の
向上とコストダウンが可能となる。
2. Suitable for simultaneous deposition of alloy plating, achieving homogeneity and uniformity of the plated film and foil; 4. Capable of reducing the rate of elution into the bath (b) From an operational perspective, (1) It is easy to maintain because the pitch between the electrodes hardly changes, (2) It simplifies bath composition management, and (3) It is suitable for electroplating because it reduces the amount of additives such as sludge settling agents. Alternatively, it is excellent as an electrode for redundant operations such as foil manufacturing, thereby making it possible to improve the quality of plated products and reduce costs.

不溶性陽極の耐食性が増大する程こりしたメリットは増
々増大する。
As the corrosion resistance of the insoluble anode increases, the advantages of stiffness increase more and more.

本発明に従えば、pbにTJが6 wloを越え12V
C10まで、好ましくは7〜10 w10添加される。
According to the invention, TJ exceeds 6 wlo and 12V on pb.
Up to C10, preferably 7 to 10 w10 is added.

高電流密度化では、後に実施例に示すように、T7含有
ffiが5%を越えると耐食性は急激に向上し、12%
まで良好な耐食性を示す。12%を越えると耐食性は急
激に悪化する。そとで上限を12%と定めた。他方、下
限については、5%を越えると耐食性は良好となるが、
もう少し高目の方が安定性を有し、鉛の溶出量も減少す
るので、本発明においては6%金越えるものとして下限
を設定した。
When increasing the current density, as shown in the examples later, when T7 content ffi exceeds 5%, the corrosion resistance improves rapidly, and the corrosion resistance increases by 12%.
Shows good corrosion resistance up to When it exceeds 12%, corrosion resistance deteriorates rapidly. The upper limit was set at 12%. On the other hand, as for the lower limit, if it exceeds 5%, the corrosion resistance will be good;
A slightly higher grade has more stability and reduces the amount of lead eluted, so in the present invention, the lower limit was set as exceeding 6% gold.

本発明は更に、pb−α5〜12vV6Tノーα01〜
10W1013n合金製の不溶性陽極をも提供する。こ
れは、Pb−Tj−Ag  Kの合金において高価なA
g  の代シに安価でしかも融点の低いSn  が一層
効果的であることによる。これによ、T5、T7及びs
nというPbよシ低融点の金属のみの添加によシ優れた
耐食性が得られる。低融点材から成る不溶性陽極は、合
金の製造を容易ならしめ、母材被N型陽極の場合母材へ
の溶接、肉盛シ等による母材の変形を防止し、回収後の
再溶解における酸化損失を減少し、圧延等の加工を容易
とする等の点で非常に大きなメリットを与える。
The present invention further provides pb-α5~12vV6T no α01~
An insoluble anode made of 10W1013n alloy is also provided. This is because expensive A is used in the Pb-Tj-Ag K alloy.
This is because Sn, which is cheaper and has a lower melting point, is more effective in place of g. With this, T5, T7 and s
Excellent corrosion resistance can be obtained by adding only a metal having a lower melting point than Pb. An insoluble anode made of a low melting point material facilitates the manufacture of alloys, prevents deformation of the base material due to welding to the base metal, overlaying, etc. in the case of N-type anodes that are attached to the base metal, and prevents deformation of the base metal during remelting after recovery. It offers great advantages in terms of reducing oxidation loss and facilitating processing such as rolling.

TIとSnとは相互的に耐食性に影響を与え、T105
%未満の場合及び12%を越える場合には8n量をいか
に調整しても良好な耐食性は得られない。
TI and Sn mutually influence corrosion resistance, and T105
% or more than 12%, good corrosion resistance cannot be obtained no matter how the amount of 8n is adjusted.

TJα5〜12%の範囲においてSn f l O1〜
10%の範囲で選択することによT2、Pb−T7合金
よシも優れた耐食性が得られる。好ましい範囲は、Pb
−5〜10w10 Tj−(L2〜10%Sn である
Sn fl O1~ in the range of TJα5~12%
By selecting it within the range of 10%, excellent corrosion resistance can be obtained for T2 and Pb-T7 alloys as well. The preferred range is Pb
-5~10w10Tj-(L2~10%Sn).

本発明陽極は、所定の成分の鉛合金を溶解し、それを鋳
造・圧延等によシミ極に仕上げた陽極全体が当該鉛合金
から成るもの、表面をチタン、ニオブ、タンタル等の高
耐食性を持つ金属を被覆したクラツド材(芯材は鉄、銅
等で良い)又は耐食性材料単体から成る母材の片面或い
は両面に当該鉛合金を被覆したもの等を含み、被覆する
方法についてはTIG方式等で直接母材に溶着するか、
母材表面にハンダ付け、電気メツキ等表面処理をした後
鉛を溶着肉盛シするその他を包括する。
The anode of the present invention is made by melting a lead alloy with predetermined components and finishing it into a smeared electrode by casting, rolling, etc. The entire anode is made of the lead alloy, and the surface is coated with highly corrosion-resistant material such as titanium, niobium, tantalum, etc. The lead alloy may be coated on one or both sides of a base material made of a single corrosion-resistant material, or a clad material coated with metal (the core material may be iron, copper, etc.), and the coating method may be the TIG method, etc. Weld directly to the base material with
It includes other processes in which lead is welded and overlaid after surface treatment such as soldering and electroplating on the surface of the base material.

要は電極の放電部が本発明合金で作製されれば良いO 通常の溶解法にて表1に示される成分組成を有する鉛合
金溶湯を調製し、鋳造後圧延にて厚さ3簡の板材とした
。この板材から厚さ31811 X巾10鵡×長さ15
01IIllIO寸法を持つ試験材を切出し、これを陽
極とした。電解面積はtsiである。一方、陰極として
は純鉛展の厚さ51w×巾60簡×長さ150鴎の板を
使用し、陰極2枚を陽極を挾すより対峙させた。
In short, it is only necessary that the discharge part of the electrode be made of the alloy of the present invention.A molten lead alloy having the composition shown in Table 1 is prepared by a normal melting method, and after casting and rolling, a plate of 3 strips in thickness is prepared. And so. From this board, thickness 31811 x width 10 x length 15
A test material having dimensions of 01IIllIO was cut out and used as an anode. The electrolytic area is tsi. On the other hand, as the cathode, a plate made of pure lead with a thickness of 51w x width of 60cm x length of 150mm was used, and the two cathodes were placed facing each other rather than sandwiching the anode.

耐食性試験は次のようにして行った:陽極及び陰極を、
NazSO4t 71JF/ノの割合で溶解し更に硫9
(1+j)を加えることによシ調製した硫醗削性芒硝溶
液(声−11)中に浸漬し、浴温−40〜60℃、印加
電流−3A、電流密度200A/dm2、通電時間=1
00時間の条件下で電解試験を行った。試験後陽極を乾
燥炉に入れて乾燥し、試験片の重量減を計測した。計測
した試験片の重量減から単位電位量当シの重量減金算出
した。結果を表1に併せて示す。第1図はそのグラフ表
示である0表  1 成分組成(w’r%)  重量減 試験ム TI          pb   (〜/人・Hr)
1   −   −    残    IIL52  
α5   −    JF    9.73     
 1     −      #      15.6
4      3     −      JF   
    6.Q5      5     −    
  z       4,06      6    
 −      t      r:L567    
  7     −     1      (L60
8      8      −       #  
     (LaO29−!     α90 11     11     −      #   
    t912     12      −   
    #        2.3実施例2及び比較例
(Pb−Tj−Sn系)表2に示すような様々の組成の
Pb−Tノーan  合金を実施例1と同様にして電解
試験し、重量減を調べた。結果を表2及び第2図に示す
The corrosion resistance test was carried out as follows: the anode and cathode were
Dissolve NazSO4t at a rate of 71JF/no and further add sulfur 9
Immerse it in a sulfur-cutting Glauber's salt solution (Voice-11) prepared by adding (1+j), bath temperature -40 to 60°C, applied current -3A, current density 200A/dm2, current application time = 1
An electrolytic test was conducted under conditions of 00 hours. After the test, the anode was placed in a drying oven and dried, and the weight loss of the test piece was measured. The weight loss per unit electric potential was calculated from the measured weight loss of the test piece. The results are also shown in Table 1. Figure 1 is a graphical representation of this.
1 - - Remaining IIL52
α5-JF 9.73
1 - #15.6
4 3-JF
6. Q5 5 -
z 4,06 6
-tr:L567
7-1 (L60
8 8 - #
(LaO29-! α90 11 11 - #
t912 12 -
#2.3 Example 2 and Comparative Example (Pb-Tj-Sn system) Pb-T alloys with various compositions as shown in Table 2 were electrolytically tested in the same manner as in Example 1, and weight loss was investigated. Ta. The results are shown in Table 2 and Figure 2.

表  2 表  2 (続き) 発明の効果 高電流密度対応の高耐食性・低融点合金製不溶性陽極の
提供によシ、高い生産性の下でしかも浴の保守管理を容
易にして高品質のメッキ及び箔製品の製造を可能ならし
める。これらは次のようにまとめることが出来る: t 腐食量の減少による電極痔命の延長(コストダウン
) λ 腐食量の減少による極間調整日数の減少五    
 r    浴組成管理の簡易化4、 スラッジ沈降剤
等の添加量の減少(コストダウン) 5、製品品質の向上 & 合金製造の容易化・コストダウン Z 母材への溶接・肉盛シに際しての母材の変形防止 & 回収再溶解において酸化による損失減、少9 圧延
、押出、切断、溶接等の加工の容易化ICL  腐食量
の減少による薄肉軽量化の実現とれらメリットの下で、
均質な厚メッキや箔製造が可能となる。
Table 2 Table 2 (Continued) Effects of the invention By providing an insoluble anode made of a highly corrosion-resistant and low-melting point alloy that can handle high current densities, it is possible to achieve high quality plating and plating with high productivity and easy bath maintenance management. Making it possible to manufacture foil products. These can be summarized as follows: t Extension of electrode life (cost reduction) due to reduction in corrosion amount λ Reduction in electrode spacing adjustment days due to reduction in corrosion amount
r Simplification of bath composition management 4. Reduction in the amount of sludge settling agents added (cost reduction) 5. Improvement of product quality & easier alloy manufacturing/cost reduction Z. Preventing material deformation & reducing losses due to oxidation during recovery and remelting 9. Easier processing such as rolling, extrusion, cutting, welding, etc. ICL Realization of thinner and lighter walls due to less corrosion.With these advantages,
It becomes possible to manufacture uniformly thick plating and foil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPb −T7合金製不溶性陽極について重ff
i減(1!9/人・Hr)とTノ含有ff1(重ffi
%)との関係を示すグラフであシ、そして第2図はPb
−T7−Sn合金製不溶性陽極について規程かのT!含
量について重量減とSn含有fIk(重量イ)の関係上
水すグ:77である。 手続補正書 昭和62年6月1日 特許庁長官 黒 1)明 雄 殿 事件の表示 昭和61年 特願第241417  号発
明の名称 鉛合金製不溶性陽極 補正をする者 事件との関係          特許出願人名 称 
芳沢機工東部株式会社
Figure 1 shows heavy ff for an insoluble anode made of Pb-T7 alloy.
i reduction (1!9/person/Hr) and T-containing ff1 (heavy ffi
%), and Figure 2 is a graph showing the relationship between Pb
-T7-Regulations regarding insoluble anodes made of Sn alloys! Regarding the content, the relationship between weight loss and Sn content fIk (weight I) is 77. Procedural amendment June 1, 1988 Commissioner of the Japan Patent Office Black 1) Indication of the case of Yu Akira 1988 Japanese Patent Application No. 241417 Title of the invention Relationship to the case of person who corrects lead alloy insoluble anode Patent applicant name Title
Yoshizawa Kiko Tobu Co., Ltd.

Claims (1)

【特許請求の範囲】 1)重量%で表わして、タリウムを6%を越え且つ12
%まで含有し、残部が鉛と不可避的不純物から成る鉛合
金を放電部とする高電流密度用不溶性陽極。 2)陽極全体が前記鉛合金から成る特許請求の範囲第1
項記載の不溶性陽極。 3)表面を耐食性材料で被覆したクラッド材を母材とし
、その少くとも片面に前記鉛合金を被覆した特許請求の
範囲第1項記載の不溶性陽極。 4)耐食性材料製母材の少くとも片面に前記鉛合金を被
覆した特許請求の範囲第1項記載の不溶性陽極。 5)重量算で表わして、タリウムを0.5〜12%そし
て錫を0.01〜10%含有し、残部が鉛と不可避的不
純物から成る鉛合金を放電部とする高電流密度用不溶性
陽極。 6)陽極全体が前記鉛合金から成る特許請求の範囲第5
項記載の不溶性陽極。 7)表面を耐食性材料で被覆したクラッド材を母材とし
、その少くとも片面に前記鉛合金を被覆した特許請求の
範囲第5項記載の不溶性陽極。 8)耐食性材料製母材の少くとも片面に前記鉛合金を被
覆した特許請求の範囲第5項記載の不溶性陽極。
[Scope of Claims] 1) More than 6% thallium and 12% by weight
An insoluble anode for high current densities whose discharge part is a lead alloy containing up to 50% lead and the remainder consisting of lead and unavoidable impurities. 2) Claim 1 in which the entire anode is made of the lead alloy.
Insoluble anode as described in section. 3) The insoluble anode according to claim 1, wherein the base material is a clad material whose surface is coated with a corrosion-resistant material, and at least one side of the clad material is coated with the lead alloy. 4) The insoluble anode according to claim 1, wherein at least one side of a base material made of a corrosion-resistant material is coated with the lead alloy. 5) An insoluble anode for high current density whose discharge part is a lead alloy containing 0.5 to 12% thallium and 0.01 to 10% tin, the balance being lead and unavoidable impurities, expressed by weight. . 6) Claim 5 in which the entire anode is made of the lead alloy.
Insoluble anode as described in section. 7) The insoluble anode according to claim 5, wherein the base material is a clad material whose surface is coated with a corrosion-resistant material, and at least one side of the clad material is coated with the lead alloy. 8) The insoluble anode according to claim 5, wherein at least one side of a base material made of a corrosion-resistant material is coated with the lead alloy.
JP61241417A 1986-10-13 1986-10-13 Insoluble anode made of lead alloy Pending JPS6396297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61241417A JPS6396297A (en) 1986-10-13 1986-10-13 Insoluble anode made of lead alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61241417A JPS6396297A (en) 1986-10-13 1986-10-13 Insoluble anode made of lead alloy

Publications (1)

Publication Number Publication Date
JPS6396297A true JPS6396297A (en) 1988-04-27

Family

ID=17073982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61241417A Pending JPS6396297A (en) 1986-10-13 1986-10-13 Insoluble anode made of lead alloy

Country Status (1)

Country Link
JP (1) JPS6396297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145994A1 (en) * 2008-03-31 2009-12-03 Michael Steven Georgia Polymeric, non-corrosive cathodic protection anode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537375A (en) * 1976-07-09 1978-01-23 Toshiba Corp Digital signal conversion circuit
JPS58199900A (en) * 1982-05-14 1983-11-21 Sumitomo Metal Ind Ltd Electrode for plating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537375A (en) * 1976-07-09 1978-01-23 Toshiba Corp Digital signal conversion circuit
JPS58199900A (en) * 1982-05-14 1983-11-21 Sumitomo Metal Ind Ltd Electrode for plating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145994A1 (en) * 2008-03-31 2009-12-03 Michael Steven Georgia Polymeric, non-corrosive cathodic protection anode
US8329004B2 (en) 2008-03-31 2012-12-11 Aep & T, Llc Polymeric, non-corrosive cathodic protection anode
AU2009251723B2 (en) * 2008-03-31 2013-04-18 Aep & T, Inc. Polymeric, non-corrosive cathodic protection anode

Similar Documents

Publication Publication Date Title
JPS6396299A (en) Insoluble anode made of lead alloy
JPS6396297A (en) Insoluble anode made of lead alloy
DE10257737B3 (en) Electrolytic magnesium deposition on a substrate made from sheet metal with a zinc (alloy) coating, used in the automobile industry, using a solvent for the deposition and heat treating the coated substrate
JP2529557B2 (en) Lead alloy insoluble anode
DE10029837B4 (en) Process for the production of unilaterally platinated plates and expanded metal gratings of refractory metals
JP3131003B2 (en) Hot-dip galvanizing method for high strength steel sheet
JP2577965B2 (en) Insoluble anode material
JPS6144158B2 (en)
JP2639950B2 (en) Insoluble anode material
KR920002998B1 (en) Insoluble anode of a lead-alloy
US3947344A (en) Inert anode
JPS63243300A (en) Insoluble anode for electroplating
JPH01119651A (en) Plated steel sheet excellent in spot weldability
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
JP2706597B2 (en) Laminated plated aluminum plate with excellent spot weldability
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPH01177399A (en) Pb-base insoluble anode for electroplating
JPS63293200A (en) Electroplating method
DE2223372C3 (en) Process for the electrolytic deposition of aluminum alloys on metallic workpieces
JPH01152294A (en) Production of material for insoluble anode
JPH05202488A (en) Aluminum alloy laminated plated steel and its manufacture
JPS6379994A (en) Production of steel sheet for welded can
JPS6318673B2 (en)
JPH0247292A (en) Zinc plated steel sheet having superior spot weldability and production thereof
JPH0525000B2 (en)