JPH07222509A - Self-traveling working vehicle - Google Patents

Self-traveling working vehicle

Info

Publication number
JPH07222509A
JPH07222509A JP6016600A JP1660094A JPH07222509A JP H07222509 A JPH07222509 A JP H07222509A JP 6016600 A JP6016600 A JP 6016600A JP 1660094 A JP1660094 A JP 1660094A JP H07222509 A JPH07222509 A JP H07222509A
Authority
JP
Japan
Prior art keywords
work
vehicle
boundary
fluorescent paint
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6016600A
Other languages
Japanese (ja)
Inventor
Yoshihiro Takada
宜裕 高田
Takayuki Sogawa
能之 十川
Takeshi Torii
毅 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP6016600A priority Critical patent/JPH07222509A/en
Publication of JPH07222509A publication Critical patent/JPH07222509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To provide a self-traveling working vehicle enabling its sure profile travel along a boundary between a non-worked region and an already worked region even under a state that the luminous energy of a working region is a little. CONSTITUTION:A boundary part between aft already worked region and a non-worked region is imaged with a CCD camera with the travel of a self- traveling working vehicle, and a fluorescent coatingapplied belt (m) formed along a boundary L between the already-worked region and the non-worked region on the preceding travel of the vehicle on a working lane is detected on the imaged picture image. A line determined from the fluorescent coating- applied belt is compared with a preliminarily set target line to recognize the slippage of the vehicle body from the target position. The steering mechanism of the vehicle is controlled on the recognized data to perform the profile travel of the vehicle along the boundary L. A fluorescent coating is simultaneously coated with a fluorescent coating-applying device 10a or 10b on the working region along a boundary between an already worked region and a non-worked region for the next profile travel of the vehicle on the next working lane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業領域における未作
業地と既作業地との境界を検出し、検出された境界に沿
い自律走行して次の作業レ−ンの作業を行う自律走行作
業車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects the boundary between an unworked site and an already-worked site in a work area, and autonomously travels along the detected boundary to perform the next work lane. Regarding work vehicles.

【0002】[0002]

【従来の技術】従来、無人で自律走行する自律走行車に
対しては、自律走行のための自己位置検出として、電線
を地下に埋設し、この電線が発する磁界を磁気センサで
検出する技術が提案されているが(例えば、特開平1−
312610号公報)、ゴルフ場、河川敷堤防、公園等
の各種フィ−ルドで草刈、芝刈等の作業を無人で行う自
律走行作業車等のように、自律走行領域が広大な場合、
領域の全てに電線を埋設することは困難であり、設置費
用も大きなものとなる。
2. Description of the Related Art Conventionally, for an autonomous vehicle that is autonomously autonomously traveling, there is a technique in which an electric wire is buried underground and a magnetic sensor detects a magnetic field generated by the electric wire as self-position detection for autonomous traveling. Although proposed (for example, Japanese Patent Laid-Open No. 1-
No. 312610), a golf course, a river embankment, a field such as a park, etc., where an autonomous traveling area is large, such as an autonomous traveling vehicle that performs unmanned work such as mowing and lawn mowing.
It is difficult to embed the electric wire in the whole area, and the installation cost becomes large.

【0003】これに対処するため、作業領域において未
処理作業地としての未作業地と処理済み作業地としての
既作業地との境界部をモニタカメラ等の撮像手段により
撮像し、この撮像した画像から境界位置を検出し、この
境界に沿って自律走行し、次の作業レ−ンの作業を行う
自律走行作業車が開発されている。
In order to deal with this, a boundary portion between an unworked site as an unprocessed work site and an already worked site as a processed work site is imaged by an image pickup means such as a monitor camera, and the imaged image is taken. An autonomous traveling work vehicle has been developed which detects a boundary position from the vehicle and autonomously travels along the boundary to perform the work of the next work lane.

【0004】この境界検出については、特開昭61−1
39304号公報に、モニタカメラにより境界部を撮像
してこの撮像画像を平均明度差により2値化し、2値化
に当たって、微分値の正負の符号を検出し、車輌の進行
方向と照らし合わせて、作業済み/未作業・境界なの
か、或いは未作業/作業済み・境界なのかを識別し、現
在の作業行程で必要な境界のみを見い出し、この境界に
沿って自律走行する技術が開示されている。
Regarding this boundary detection, JP-A-61-1
In Japanese Patent No. 39304, a boundary portion is imaged by a monitor camera, the imaged image is binarized by an average lightness difference, binarization is performed, the positive and negative signs of a differential value are detected, and the sign is compared with a traveling direction of a vehicle. A technology for identifying whether a work / unworked / boundary or an unworked / worked / boundary is found, finding only a boundary required in the current work process, and autonomously traveling along the boundary is disclosed. .

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の先行例
のような画像処理による倣い走行では、曇天、夕刻等、
作業地が光量の少ない状態下にあっては、未作業地と既
作業地との境界の明度差が少なく、この明度差に基づき
既作業地と未作業地との境界を検出すると誤検出を生
じ、既作業地と未作業地との境界に沿った倣い走行が困
難となる不都合がある。
However, in the copying traveling by the image processing as in the above-mentioned prior example, cloudy weather, evening, etc.
When the work site is in a low light condition, there is little difference in brightness at the boundary between the unworked site and the already worked site, and if the boundary between the already worked site and the unworked site is detected based on this brightness difference, false detection will occur. There is an inconvenience that it is difficult to follow along the boundary between the already-worked site and the unworked site.

【0006】本発明は上記事情に鑑み、作業地が光量の
少ない状態下にあっても確実に未作業地と既作業地との
境界に沿い自律走行することが可能な自律走行作業車を
提供することを目的とする。
In view of the above circumstances, the present invention provides an autonomous traveling work vehicle capable of reliably traveling autonomously along the boundary between an unworked site and an already-worked site even when the work site is in a state of low light intensity. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、作業領域における既作業地と未作業地との境
界部を撮像手段により撮像し、撮像した画像に基づき境
界位置に対する車体のずれを認識し、境界位置に対する
車体のずれに基づき操舵機構を制御して境界に沿った倣
い走行を行う自律走行作業車において、車輌の進行に伴
い、既作業地と未作業地との境界に沿い作業地に蛍光塗
料を塗布する蛍光塗料塗布手段と、倣い走行による作業
レ−ン走行時に、前記撮像手段により撮像した画像にお
いて前回の作業レ−ン走行時に上記蛍光塗料塗布手段に
より作業地に塗布された蛍光塗料帯を検出し、蛍光塗料
帯により得られる線と予め設定された目標線とを比較し
て目標位置に対する車体のずれを認識する画像処理手段
と、上記画像処理手段により得た境界認識デ−タに基づ
き操舵機構を制御する倣い走行制御手段とを備えること
を特徴とする。
In order to achieve the above object, the present invention is to image a boundary portion of a work area and an unworked area in a work area by an image pickup means, and based on the imaged image of a vehicle body with respect to the boundary position. In an autonomous work vehicle that recognizes the deviation and controls the steering mechanism based on the deviation of the vehicle body from the boundary position to follow the boundary along the boundary, as the vehicle progresses, Fluorescent paint applying means for applying fluorescent paint to the work site along the way, and the work image taken by the image pickup means at the time of running the work lane by copying running. Image processing means for detecting the applied fluorescent paint band and comparing a line obtained by the fluorescent paint band with a preset target line to recognize the displacement of the vehicle body with respect to the target position; Boundary recognition de were obtained by the step - characterized in that it comprises a scanning running control means for controlling the steering mechanism on the basis of the data.

【0008】[0008]

【作用】上記自律走行作業車においては、車輌走行に伴
い、撮像手段により既作業地と未作業地との境界部を撮
像し、撮像された画像から、前回の作業レ−ン走行時に
既作業地と未作業地との境界に沿い作業地に塗布された
蛍光塗料帯を検出し、この蛍光塗料帯により得られる線
と予め設定された目標線とを比較して目標位置に対する
車体のずれを認識し、この認識デ−タに基づき操舵機構
が制御されて境界に沿った自律走行が行われる。またこ
のとき、次の作業レ−ン走行に備え蛍光塗料塗布手段に
よって既作業地と未作業地との境界に沿い作業地に蛍光
塗料が塗布される。
In the above-mentioned autonomous traveling work vehicle, as the vehicle travels, the image of the boundary between the existing work site and the unworked site is imaged by the image pickup means, and from the imaged image, the existing work is carried out during the previous work lane travel. The fluorescent paint band applied to the work site along the boundary between the ground and the unworked site is detected, and the line obtained by this fluorescent paint band is compared with the preset target line to determine the deviation of the vehicle body from the target position. Upon recognition, the steering mechanism is controlled based on this recognition data, and autonomous traveling is performed along the boundary. At this time, the fluorescent paint is applied to the work site along the boundary between the already-worked site and the unworked site by the fluorescent paint application means in preparation for the next running of the work lane.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図面は本発明の一実施例を示し、図1はD−GP
S用移動局を備えた芝刈作業車の側面図とD−GPS用
固定局を示す説明図、図2は芝刈作業車における各機
構、装置の取付け位置関係を示す平面図、図3は蛍光塗
料塗布装置の構成を示す説明図、図4は蛍光塗料塗布装
置による作業地への塗布状態を示す説明図、図5は制御
装置のブロック図、図6は操舵系の構成を示す説明図、
図7は撮像制御部の回路構成図、図8は走行経路及び作
業領域を示す説明図、図9乃至図11は主制御ル−チン
のフロ−チャ−ト、図12及び図13は自律走行制御ル
−チンのフロ−チャ−ト、図14はD−GPS無線通信
ル−チンのフロ−チャ−ト、図15はCCDカメラによ
り撮像された画像において作業地に塗布された蛍光塗料
帯、蛍光塗料帯から求めた直線近似式と目標直線との関
係を示す説明図、図16はCCDカメラの取付状態、撮
像画像、及び直線近似の関係を示す説明図、図17は草
・芝刈作業による1行程の作業レ−ン終了時の車輌シフ
ト状態を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings. The drawing shows an embodiment of the present invention, and FIG. 1 shows a D-GP.
FIG. 3 is a side view of a lawnmower equipped with a mobile station for S and an explanatory view showing a fixed station for D-GPS, FIG. 2 is a plan view showing a mounting position relationship of each mechanism and device in the lawnmower, and FIG. 3 is a fluorescent paint. FIG. 4 is an explanatory diagram showing the configuration of the coating device, FIG. 4 is an explanatory diagram showing the state of application to the work site by the fluorescent paint coating device, FIG. 5 is a block diagram of the control device, FIG. 6 is an explanatory diagram showing the configuration of the steering system,
FIG. 7 is a circuit configuration diagram of the imaging control unit, FIG. 8 is an explanatory diagram showing a traveling route and a work area, FIGS. 9 to 11 are flowcharts of the main control routine, and FIGS. 12 and 13 are autonomous traveling. Flow chart of control routine, FIG. 14 is a flow chart of D-GPS wireless communication routine, and FIG. 15 is a fluorescent paint strip applied to the work site in the image taken by the CCD camera. FIG. 16 is an explanatory view showing the relationship between the straight line approximation formula obtained from the fluorescent paint band and the target straight line, FIG. 16 is an explanatory view showing the mounting state of the CCD camera, the captured image, and the relationship of the straight line approximation, and FIG. It is explanatory drawing which shows the vehicle shift state at the time of completion | finish of the work lane of 1 process.

【0010】図1(a)において、符号1は無人で自走
可能な自律走行作業車を示し、本実施例においては、ゴ
ルフ場等の草・芝刈作業を行う芝刈作業車であり、草・
芝刈作業領域において既刈地(既作業地)と未刈地(未
作業地)との刈跡境界に沿って倣い走行し草・芝刈を行
う。この芝刈作業車1は、エンジン駆動で走行し、前後
輪の操舵角を独立して制御することができるようになっ
ており、衛星からの電波を受信して自己位置を測定する
ための衛星電波受信機、走行履歴に基づいて現在位置を
測定するための推測航法用センサ、走行障害物を検出す
るためのセンサが搭載されると共に、草・芝刈作業領域
において刈跡境界に沿い作業地に蛍光塗料を塗布するた
めの蛍光塗料塗布手段、既刈地と未刈地との境界部を撮
像し、この撮像画像から上記蛍光塗料塗布手段によって
塗布された蛍光塗料帯を認識して刈跡境界に沿った倣い
走行を行う為の撮像手段等が搭載され、高精度な自律走
行を行うことができる。
In FIG. 1 (a), reference numeral 1 denotes an autonomous traveling work vehicle which is self-propelled and is unmanned. In this embodiment, it is a lawn mowing work vehicle for performing grass / lawn mowing work on a golf course or the like.
In the lawn mowing work area, grass and lawn mowing is performed along the cut boundary between the already-cut land (worked land) and the uncut land (unworked land). This lawnmower vehicle 1 is driven by an engine and can control the steering angles of the front and rear wheels independently, and is a satellite radio wave for receiving a radio wave from a satellite to measure its own position. The receiver, dead reckoning sensor for measuring the current position based on the driving history, sensor for detecting running obstacles are installed, and fluorescent light is emitted to the work area along the cut boundary in the grass / lawn cutting work area. Fluorescent paint applying means for applying the paint, images the boundary between the cut and uncut land, and recognizes the fluorescent paint band applied by the fluorescent paint applying means from the captured image to identify the cut boundary. An image pickup means for carrying out the following traveling along is mounted, and highly accurate autonomous traveling can be performed.

【0011】前記衛星電波受信機は、本実施例において
は、GPS衛星からの電波を受信して自己位置を測定す
るためのGPS受信機であり、既知の地点に配置された
固定局で位置観測を行って補正情報(ディファレンシャ
ル情報)を移動局にフィ−ドバックする、いわゆるディ
ファレンシャルGPS(以下、D−GPSと略記する)
用の移動局GPS受信機である。
In the present embodiment, the satellite radio receiver is a GPS receiver for receiving radio waves from GPS satellites to measure its own position, and position observation is performed by a fixed station arranged at a known point. So as to feed back the correction information (differential information) to the mobile station, so-called differential GPS (hereinafter abbreviated as D-GPS).
Is a mobile station GPS receiver for.

【0012】周知のように、GPSによる測位誤差の要
因としては、衛星及び受信機の時計の誤差、衛星の軌道
の誤差、電離層による電波の遅れ、大気圏による電波の
遅れ、マルチパス等があり、その他に、最も大きな誤差
要因としてセレクタブル・アベイラビリティ(S/A)
と呼ばれる運用者による意図的な精度劣化がある。これ
らの要因による誤差のうち、同位相の誤差は既知の地点
の固定局で捕捉した各衛星に対応する補正情報を利用す
ることにより除去することができ、移動局での測位精度
を数m程度まで飛躍的に向上することができる。
As is well known, the factors of positioning errors by GPS include errors of satellite and receiver clocks, errors of satellite orbits, delay of radio waves by the ionosphere, delay of radio waves by the atmosphere, multipath, etc. In addition, the largest error factor is selectable availability (S / A)
There is a deliberate deterioration in accuracy called by the operator. Of the errors due to these factors, the in-phase error can be removed by using the correction information corresponding to each satellite captured by the fixed station at a known point, and the positioning accuracy at the mobile station is about several meters. Can be dramatically improved.

【0013】このため、前記芝刈作業車1には、移動局
GPS受信機のアンテナ2と、固定局からのディファレ
ンシャル情報を受信するための無線通信機のアンテナ3
とが立設されており、車外の既知の地点には図1(b)
に示すように、固定局GPS受信機のアンテナ41と、
移動局GPS受信機へディファレンシャル情報を送信す
るための無線通信機のアンテナ42とを備えた固定局4
0が配置される。
For this reason, the lawnmower vehicle 1 has an antenna 2 for a mobile station GPS receiver and an antenna 3 for a wireless communication device for receiving differential information from a fixed station.
Are installed upright, and at a known location outside the vehicle,
As shown in, the antenna 41 of the fixed station GPS receiver,
Fixed station 4 with an antenna 42 of a wireless communication device for transmitting differential information to a mobile station GPS receiver
0 is placed.

【0014】また、前記推測航法用センサとしては、地
磁気センサ4と車速センサの一例としての車輪エンコ−
ダ5とが前記芝刈作業車1に備えられ、前記障害物検出
用センサとしては、超音波センサあるいは光センサ等の
無接触型センサ6a,6bが前記芝刈作業車1の前後部
に取付けられるとともに、マイクロスイッチ等を使用し
た接触型センサ7a,7bが前記芝刈作業車1の前後端
に取付られている。
As the dead reckoning sensor, a geomagnetic sensor 4 and a wheel encoder as an example of a vehicle speed sensor.
And a contactless sensor 6a, 6b such as an ultrasonic sensor or an optical sensor as the obstacle detection sensor is attached to the front and rear parts of the lawn mowing work vehicle 1. Contact type sensors 7a and 7b using micro switches or the like are attached to the front and rear ends of the lawnmower working vehicle 1.

【0015】また、前記芝刈作業車1の車体1a下部に
は、草・芝刈作業を行うため図2に示すようにモ−ア等
の刈刃8aを複数備えた刈刃機構8が備えられ、車載の
エンジンから前後輪9a,9bに動力を伝達する動力伝
達機構における変速機のPTO軸、図示しない油圧クラ
ッチ機構、ユニバ−サルジョイント等を介して刈刃機構
8に動力伝達し、図示しない伝動機構を介して各刈刃8
aを回転させて草・芝刈を行うよう構成されている。
Further, a cutting blade mechanism 8 having a plurality of cutting blades 8a such as mowers for carrying out grass / lawn mowing work is provided at a lower portion of the vehicle body 1a of the lawn mowing work vehicle 1, Power is transmitted to the cutting blade mechanism 8 via the PTO shaft of the transmission, a hydraulic clutch mechanism (not shown), a universal joint, etc. in the power transmission mechanism for transmitting power from the vehicle-mounted engine to the front and rear wheels 9a, 9b, and transmission (not shown). Each cutting blade 8 through the mechanism
It is configured to rotate a to perform grass / lawn mowing.

【0016】前記蛍光塗料塗布手段としては、2組の蛍
光塗料塗布装置10a,10bを備え、蛍光塗料塗布装
置10a,10bは、図1(a)及び図2に示すように
車輪9bと干渉しない位置で車体1aの後方左右側面に
ステ−11を介してそれぞれ取付られており、草・芝刈
作業走行時に刈刃機構8によって既に草・芝が刈り取ら
れた既刈地Cと未だ草・芝が刈り取られていない未刈地
Bとの刈跡境界Lに沿い、作業地に蛍光塗料を塗布す
る。各蛍光塗料塗布装置10a,10bは、図3に示す
ように、車体1aの後部に搭載された蛍光塗料タンク1
2に塗料供給管13a,13bを介して連通する塗料貯
留部14a,14b、作業地に蛍光塗料を塗布する刷毛
部15a,15b、及び塗料貯留部14a,14bと刷
毛部15a,15bとの間に介設される常閉式の電磁開
閉弁16a,16bから構成されている。
As the fluorescent paint applying means, two sets of fluorescent paint applying devices 10a and 10b are provided, and the fluorescent paint applying devices 10a and 10b do not interfere with the wheels 9b as shown in FIGS. 1 (a) and 2. At the position, they are attached to the rear left and right sides of the vehicle body 1a via the sta- ies 11, respectively, and when the grass / lawn mowing operation is running, the grass cutting area C has already cut the grass / turf and the grass / turf still remains. Fluorescent paint is applied to the work site along the cut line boundary L with the uncut field B. As shown in FIG. 3, each of the fluorescent paint coating devices 10a and 10b includes a fluorescent paint tank 1 mounted on the rear portion of the vehicle body 1a.
2 through the paint supply pipes 13a and 13b, the paint storage parts 14a and 14b, the brush parts 15a and 15b that apply fluorescent paint to the work site, and the paint storage parts 14a and 14b and the brush parts 15a and 15b. It is composed of normally closed electromagnetic on-off valves 16a and 16b.

【0017】そして、電磁開閉弁16a,16bは、そ
れぞれ後述する制御装置50における塗布制御部59に
よって開閉制御され、ONによる通電状態で開弁して刷
毛部15a,15bに蛍光塗料を供給し、OFFによる
非通電状態で閉弁して刷毛部15a,15bへの蛍光塗
料の供給を遮断する。
The electromagnetic on-off valves 16a and 16b are controlled to be opened and closed by a coating controller 59 in a controller 50, which will be described later, and are opened in an energized state to supply fluorescent paint to the brushes 15a and 15b. The valve is closed in the non-energized state by turning off to shut off the supply of the fluorescent paint to the brush portions 15a and 15b.

【0018】なお、本実施例では、刈跡境界に沿う芝刈
作業車1の倣い走行による草・芝刈作業において、常に
前進F状態で草・芝刈作業を行う。そして、草・芝刈作
業時、図2のように既刈地Cが車体1aの前進方向左側
にあり未刈地Bが右側にあるときには、車体1aの右側
に設置されている蛍光塗料塗布装置10bを用い、逆に
既刈地Cが車体1aの前進方向右側にあり未刈地Bが左
側にあるときには、車体1aの左側に設置されている蛍
光塗料塗布装置10aを使用する。
In this embodiment, in the grass / lawn mowing work by the contour traveling of the lawnmower work vehicle 1 along the cut boundary, the grass / lawn mowing work is always performed in the forward F state. During grass and lawn mowing work, when the already-cut land C is on the left side in the forward direction of the vehicle body 1a and the uncut land B is on the right side as shown in FIG. 2, the fluorescent paint application device 10b installed on the right side of the vehicle body 1a. On the contrary, when the cut ground C is on the right side in the forward direction of the vehicle body 1a and the uncut land B is on the left side, the fluorescent paint coating device 10a installed on the left side of the vehicle body 1a is used.

【0019】また、蛍光塗料塗布装置10a,10bの
取付位置は、図2及び図4に示すように、作業領域にお
ける既刈地Cと未刈地Bとの刈跡境界Lに沿い刷毛部1
5a,15bが作業地に接し作業地に蛍光塗料を塗布す
べく、車体の前後方向においてそれぞれ刈刃機構8の左
右の刈刃8aの接線(すなわち、刈跡境界Lに相当す
る)を跨ぐ位置あるいは接線近傍に設定される。また、
蛍光塗料は、作業地への塗布後、経時的に分解する無色
透明のものを用いる。
Further, as shown in FIGS. 2 and 4, the mounting positions of the fluorescent paint coating devices 10a and 10b are along the brush boundary portion 1 along the cut line boundary L between the already-cut land C and the uncut land B in the work area.
Positions where 5a and 15b cross the tangent line of the right and left cutting blades 8a of the cutting blade mechanism 8 (that is, corresponding to the cut boundary L) in the front-rear direction of the vehicle body so as to contact the working surface and apply the fluorescent paint to the working surface. Alternatively, it is set near the tangent line. Also,
As the fluorescent paint, a colorless and transparent one that decomposes over time after being applied to the work site is used.

【0020】ここで、芝刈作業車1の倣い走行による草
・芝刈り作業において、刈残しを防止すべく芝刈オ−バ
ラップ量Oを実現するため、前回の作業レ−ン走行時の
芝刈作業車1の車***置に対し、刈刃機構8の各刈刃8
aによる刈幅Wから上記芝刈オ−バラップ量Oを減算し
た位置で車輌走行する必要がある。このため、後述する
撮像手段としてのCCDカメラにより既刈地Cと未刈地
Bとの境界部を撮像して得た画像から、制御装置50に
より、刈跡境界Lに沿い作業地に塗布された蛍光塗料帯
mを検出し、画像における蛍光塗料帯を直線近似式によ
り直線近似した直線と、予め設定された所定の芝刈オ−
バラップ量Oを得るよう設定される目標直線式とを比較
し、直線近似式により得られる直線が目標直線に一致す
るよう操舵機構を制御して走行する。すなわち、既刈地
Cと未刈地Bとの刈跡境界Lに沿い塗布された蛍光塗料
帯mを検出することにより刈跡境界Lの位置を間接的に
認識し、蛍光塗料帯を直線近似した直線近似式によって
得られる直線と上記目標直線とを一致させるよう操舵機
構を制御して走行することで、刈跡境界Lに沿った倣い
走行を行うのである。
Here, in the grass / lawn mowing work of the lawnmower work vehicle 1 following the traveling of the lawn mowing work vehicle, the lawn mowing work vehicle at the time of the last work lane traveling is realized in order to realize the lawn mowing overlap amount O in order to prevent uncut. Each cutting blade 8 of the cutting blade mechanism 8 with respect to the vehicle body position 1
It is necessary to drive the vehicle at a position where the lawn mowing overlap amount O is subtracted from the mowing width W by a. Therefore, the controller 50 applies the image to the work site along the cut boundary L from the image obtained by imaging the boundary portion between the already-cut land C and the uncut land B by the CCD camera as the image pickup means described later. The fluorescent paint strip m is detected, and the fluorescent paint strip in the image is linearly approximated by a linear approximation formula and a predetermined lawn mowing operation set in advance.
The target straight line equation set to obtain the burlap amount O is compared, and the steering mechanism is controlled so that the straight line obtained by the straight line approximation equation matches the target straight line. That is, the position of the cut boundary L is indirectly recognized by detecting the fluorescent paint band m applied along the cut boundary L between the already-cut land C and the uncut land B, and the fluorescent paint band is linearly approximated. By controlling the steering mechanism so that the straight line obtained by the straight line approximation formula and the target straight line coincide with each other, the contour travel along the cut boundary L is performed.

【0021】また、前記撮像手段として例えば固体撮像
素子(CCD)を使用したCCDカメラ17が採用さ
れ、芝刈作業車1の車体1a前方中央にア−ム18を介
して設置されている(図1(a)、図2、及び図16
(a),(b)参照)。CCDカメラ17は、倣い走行
において車輌前方を撮像し、作業地に塗布された蛍光塗
料帯mを含む既刈地Cと未刈地Bとの境界部を撮像す
る。また、CCDカメラ17は、倣い走行時に、既刈地
Cと未刈地Bの境界部を撮像するため、所定の取付高さ
h、画角θA 、及び附角θB を有する。
A CCD camera 17 using, for example, a solid-state image pickup device (CCD) is adopted as the image pickup means, and is installed in the front center of the vehicle body 1a of the lawnmower work vehicle 1 via an arm 18 (FIG. 1). (A), FIG. 2, and FIG.
(See (a) and (b)). The CCD camera 17 captures an image of the front of the vehicle during the copy traveling, and captures an image of the boundary portion between the already-cut ground C and the uncut land B including the fluorescent paint band m applied to the work area. Further, the CCD camera 17 has a predetermined mounting height h, an angle of view θA, and an angle of attachment θB in order to capture an image of the boundary between the already-cut land C and the uncut land B during the copying run.

【0022】また、図5に示すように、前記芝刈作業車
1には、複数のマイクロコンピュ−タ等から構成される
制御装置50が搭載されており、この制御装置50にC
CDカメラ17及びセンサ・アクチュエ−タ類が接続さ
れて、該制御装置50により、撮像手段(CCDカメラ
17)により撮像した既作業地(既刈地C)と未作業地
(未刈地B)との境界部の画像から作業地に境界(刈跡
境界L)に沿い塗布された蛍光塗料帯mを検出し、蛍光
塗料帯により得られる線と予め設定された目標線とを比
較して目標位置に対する車体のずれを認識する画像処理
手段としての機能、及び、この認識デ−タに基づき後述
する操舵機構を制御する倣い走行制御手段としての機能
が実現される。さらに制御装置50は、移動局GPS受
信機20、固定局40からのディファレンシャル情報を
受信するための無線通信機21が接続され、D−GPS
による自己位置測位機能、推測航法による自己位置測位
機能、自律走行を制御する自律走行制御機能を実現する
ようになっている。
Further, as shown in FIG. 5, the lawnmower working vehicle 1 is equipped with a control device 50 composed of a plurality of micro computers and the like.
A CD camera 17 and a sensor / actuator are connected to each other, and the control device 50 takes an image of an already-worked land (already cut land C) and an unworked land (uncut land B) imaged by the imaging means (CCD camera 17). The fluorescent paint band m applied along the boundary (cut boundary L) to the work site is detected from the image of the boundary part with the target, and the line obtained by the fluorescent paint band is compared with the target line set in advance. The function as an image processing means for recognizing the displacement of the vehicle body with respect to the position and the function as a copy traveling control means for controlling a steering mechanism described later based on the recognition data are realized. Further, the control device 50 is connected to a mobile station GPS receiver 20, a wireless communication device 21 for receiving differential information from the fixed station 40, and a D-GPS.
The self-positioning function by, the dead-reckoning self-positioning function, and the autonomous traveling control function for controlling autonomous traveling are realized.

【0023】詳細には、前記CCDカメラ17を制御す
ると共にCCDカメラ17からの信号を処理する撮像制
御部51、各センサ・アクチュエ−タ類の信号を処理す
る各検出部、すなわち推測航法位置検出部52、D−G
PS位置検出部53、及び障害物検出部54が備えら
れ、また、これらの撮像制御部51、各検出部52,5
3,54により得られたデ−タに基づき走行制御等を行
うための走行制御部55、この走行制御部55によって
参照される作業デ−タ・マップが格納されている作業デ
−タ蓄積部56、前記走行制御部55からの指示によっ
て車輌制御を行う車輌制御部57が備えられ、さらに、
この車輌制御部57からの出力に基づいて芝刈作業車1
の各機構部を駆動するため、駆動制御部58、塗布制御
部59、操舵制御部60、及び刈刃制御部61が備えら
れている。
More specifically, the image pickup controller 51 for controlling the CCD camera 17 and processing the signals from the CCD camera 17, and the detectors for processing the signals of the sensors and actuators, that is, dead reckoning position detection. Part 52, DG
A PS position detector 53 and an obstacle detector 54 are provided, and the image pickup controller 51 and the detectors 52, 5 are provided.
A traveling control unit 55 for performing traveling control and the like based on the data obtained by 3, 54, and a work data storage unit in which a work data map referred to by the traveling control unit 55 is stored. 56, a vehicle control unit 57 for controlling the vehicle according to an instruction from the traveling control unit 55, and
Based on the output from the vehicle control unit 57, the lawn mower 1
A drive control unit 58, a coating control unit 59, a steering control unit 60, and a cutting blade control unit 61 are provided in order to drive the respective mechanical units.

【0024】前記撮像制御部51では、作業領域におけ
る倣い走行時、CCDカメラ17によって撮像された既
刈地Cと未刈地Bとの境界部の画像から作業地に塗布さ
れた蛍光塗料帯mを検出し、画像における蛍光塗料帯m
の位置から直線近似式を求め、この直線近似式デ−タを
前記走行制御部55に出力する。
In the image pickup control section 51, the fluorescent paint strip m applied to the work site from the image of the boundary between the already-cut ground C and the uncut-ground B imaged by the CCD camera 17 at the time of the traveling in the work area. Detected, and the fluorescent paint band m in the image
The linear approximation formula is obtained from the position of, and the linear approximation formula data is output to the traveling control unit 55.

【0025】前記推測航法位置検出部52は、車輪エン
コ−ダ5によって検出される車速を積分して走行距離を
求め、走行距離を地磁気センサ4により検出した走行方
向の変化に対応させて累積することにより、基準地点か
らの走行履歴を算出して自車輌の現在位置を測定し、測
位デ−タを前記走行制御部55に出力する。尚、走行方
向を認識するためのセンサとしては、地磁気センサ4に
限定されることなく、ジャイロ等を用いても良い。
The dead reckoning position detecting unit 52 integrates the vehicle speed detected by the wheel encoder 5 to obtain the traveling distance, and accumulates the traveling distance in accordance with the change in the traveling direction detected by the geomagnetic sensor 4. As a result, the travel history from the reference point is calculated, the current position of the vehicle is measured, and the positioning data is output to the travel control unit 55. The sensor for recognizing the traveling direction is not limited to the geomagnetic sensor 4, and a gyro or the like may be used.

【0026】前記D−GPS位置検出部53は、前記移
動局GPS受信機20を介して捕捉したGPS衛星群
(3次元測位の場合には少なくとも4個、2次元測位の
場合には少なくとも3個)100からの航法メッセ−
ジ、すなわち、衛星の時計補正係数、軌道情報、衛星の
暦、衛星の配置等の測位情報と、無線通信機21を介し
て受信した固定局40からのディファレンシャル情報と
から自車輌の位置を高精度に測定し、その測位デ−タを
前記走行制御部55に出力する。
The D-GPS position detector 53 includes a group of GPS satellites captured via the mobile station GPS receiver 20 (at least four in the case of three-dimensional positioning and at least three in the case of two-dimensional positioning). ) Navigation Messe from 100-
That is, the position of the vehicle is estimated from the positioning information such as the satellite clock correction coefficient, orbit information, satellite calendar, and satellite placement, and the differential information received from the fixed station 40 via the wireless communication device 21. It measures with accuracy and outputs the positioning data to the traveling control unit 55.

【0027】前記D−GPS位置検出部53に対する固
定局40は、固定局GPS受信機43が接続されるD−
GPS固定局部44、このD−GPS固定局部44から
のディファレンシャル情報を送信するためのD−GPS
情報送信部45、このD−GPS情報送信部45に接続
される無線通信機46等から構成されている。
The fixed station 40 for the D-GPS position detector 53 is a D- to which a fixed station GPS receiver 43 is connected.
GPS fixed local unit 44, D-GPS for transmitting differential information from this D-GPS fixed local unit 44
The information transmitter 45 includes a wireless communication device 46 connected to the D-GPS information transmitter 45.

【0028】前記D−GPS固定局部44では、前記固
定局GPS受信機43を介して受信した衛星群100か
らの測位情報を処理してディファレンシャル補正デ−タ
を作成する。このディファレンシャル補正デ−タは、前
記D−GPS情報送信部45において無線通信のパケッ
トデ−タに変換され、無線通信機46を介して送信され
る。
The D-GPS fixed station section 44 processes the positioning information from the satellite group 100 received via the fixed station GPS receiver 43 to create differential correction data. The differential correction data is converted into wireless communication packet data in the D-GPS information transmitting unit 45 and transmitted via the wireless communication device 46.

【0029】尚、本実施例においては、D−GPSの固
定局40を、前記芝刈作業車1の移動局を対象とした特
定の装置として任意の位置に設置するようにしている
が、ディファレンシャル情報を送信する無線局を備えた
既存のD−GPS固定局、あるいは、通信衛星を介して
ディファレンシャル情報を送信する既存のD−GPS固
定局等を利用することも可能である。
In the present embodiment, the fixed station 40 of the D-GPS is installed at an arbitrary position as a specific device for the mobile station of the lawnmower working vehicle 1, but the differential information is set. It is also possible to use an existing D-GPS fixed station equipped with a wireless station for transmitting the information, or an existing D-GPS fixed station for transmitting differential information via a communication satellite.

【0030】また、前記障害物検出部54は、予測でき
ない障害物を無接触型センサ6a,6b、及び接触型セ
ンサ7a,7bによって検出し、検出信号を前記走行制
御部55に出力する。
Further, the obstacle detecting section 54 detects an unpredictable obstacle by the non-contact type sensors 6a and 6b and the contact type sensors 7a and 7b, and outputs a detection signal to the traveling control section 55.

【0031】前記走行制御部55では、撮像制御部5
1、推測航法位置検出部52、D−GPS位置検出部5
3からの各測位デ−タを適宜選択し、作業デ−タ蓄積部
56の作業デ−タを参照して現在の自車輌の位置と目標
位置との誤差量を算出し、走行経路や車輌制御指示を決
定する。
In the traveling control unit 55, the image pickup control unit 5
1, dead reckoning position detection unit 52, D-GPS position detection unit 5
Each positioning data from No. 3 is appropriately selected, the error amount between the current position of the own vehicle and the target position is calculated by referring to the work data of the work data storage unit 56, and the traveling route and the vehicle are calculated. Determine control instructions.

【0032】この場合、作業領域への移動に際しては、
前記D−GPS位置検出部53での測位精度を設定レベ
ルと比較し、設定レベルを満足する場合、D−GPS位
置検出部53からの測位デ−タを使用し、設定レベルを
満足しない場合、前記推測航法位置検出部52からの測
位デ−タを使用して自律走行制御を行う。そして、作業
領域における草・芝刈作業では、前記撮像制御部51か
らの直線近似式と予め設定された目標直線式とを比較
し、直線近似式により得られる直線が目標直線式による
目標直線と一致するよう倣い走行を制御する。尚、上記
障害物検出部54により障害物が検出されたときには、
障害物回避あるいは車輌停止を指示する。
In this case, when moving to the work area,
When the positioning accuracy in the D-GPS position detecting unit 53 is compared with a set level and the set level is satisfied, the positioning data from the D-GPS position detecting unit 53 is used, and when the set level is not satisfied, The autonomous traveling control is performed using the positioning data from the dead reckoning position detecting unit 52. Then, in the grass / lawn mowing work in the work area, the straight line approximation formula from the imaging control unit 51 is compared with a preset target straight line formula, and the straight line obtained by the straight line approximation formula matches the target straight line by the target straight line formula. Control the copying travel. When an obstacle is detected by the obstacle detection unit 54,
Instruct to avoid obstacles or stop the vehicle.

【0033】前記作業デ−タ蓄積部56は、固定デ−タ
が記憶されているROMエリアと、制御実行中のワ−ク
デ−タが記憶されるRAMエリアとから構成され、RO
Mエリアには、草・芝刈作業を行う作業領域の地形デ−
タや複数の作業領域を含む領域全体の地形デ−タ等が予
め格納されており、RAMエリアには、後述するよう
に、推測航法による測位デ−タを補正するため設定時間
内でD−GPSの測位デ−タ等が蓄積されるようになっ
ている。
The work data storage unit 56 comprises a ROM area in which fixed data is stored and a RAM area in which work data under control is stored.
Topographic data of the work area for grass and lawn mowing work in the M area
Data and terrain data of the entire area including a plurality of work areas are stored in advance. In the RAM area, as described later, in order to correct positioning data by dead reckoning, D- GPS positioning data and the like are stored.

【0034】前記車輌制御部57では、前記走行制御部
55からの指示を具体的な制御指示量に変換し、駆動制
御部58、塗布制御部59、操舵制御部60、刈刃制御
部61に出力する。これにより、駆動制御部58では、
変速アクチュエ−タ、前後進切換アクチュエ−タ、スロ
ットルアクチュエ−タ、ブレ−キアクチュエ−タ等の走
行制御アクチュエ−タ22を制御して車輌走行制御を行
うと共に、油圧ポンプ23を制御して各機能部を駆動す
るための油圧を発生させ、塗布制御部59では、蛍光塗
料塗布装置10a,10bにおける電磁開閉弁16a,
16bを選択的にON,OFF制御して蛍光塗料塗布装
置10a,10bによる作業地への蛍光塗料塗布の制御
を行い、操舵制御部60では、前輪舵角センサ25a、
後輪舵角センサ25bからの出力に基づいて前輪操舵用
油圧制御弁26a、後輪操舵用油圧制御弁26bを介し
て操舵制御(操舵量フィ−ドバック制御)を行い、刈刃
制御部61では、刈刃制御用油圧制御弁27を介して前
記油圧クラッチ機構を動作して刈刃機構8の制御を行
う。
In the vehicle control unit 57, the instruction from the traveling control unit 55 is converted into a specific control instruction amount, and the drive control unit 58, the coating control unit 59, the steering control unit 60, and the cutting blade control unit 61 are converted. Output. As a result, in the drive control unit 58,
The vehicle control is performed by controlling the traveling control actuator 22 such as a speed change actuator, a forward / reverse switching actuator, a throttle actuator, a brake actuator, etc., and a hydraulic pump 23 is controlled to control each function. A hydraulic pressure for driving the parts is generated, and in the application control part 59, the electromagnetic opening / closing valve 16a in the fluorescent paint application device 10a, 10b,
16b is selectively turned on and off to control the application of the fluorescent paint to the work site by the fluorescent paint application devices 10a and 10b. The steering control unit 60 controls the front wheel steering angle sensor 25a,
Based on the output from the rear wheel steering angle sensor 25b, steering control (steering amount feedback control) is performed via the front wheel steering hydraulic control valve 26a and the rear wheel steering hydraulic control valve 26b. The hydraulic clutch mechanism is operated via the cutting blade control hydraulic control valve 27 to control the cutting blade mechanism 8.

【0035】図6に示すように、芝刈作業車1の操舵系
は、エンジンEによって駆動される前記油圧ポンプ23
に、前記操舵制御部60によって制御される前輪操舵用
油圧制御弁26a及び後輪操舵用油圧制御弁26bが接
続されると共に、各油圧制御弁26a,26bに、前輪
用油圧シリンダ28a、後輪用油圧シリンダ28bがそ
れぞれ接続されており、各油圧シリンダ28a,28b
により、前輪操舵機構29a、後輪操舵機構29bが独
立して駆動される構成となっている。
As shown in FIG. 6, the steering system of the lawnmower working vehicle 1 includes a hydraulic pump 23 driven by an engine E.
Are connected to a front wheel steering hydraulic control valve 26a and a rear wheel steering hydraulic control valve 26b controlled by the steering control unit 60, and the front wheel hydraulic cylinder 28a and the rear wheel hydraulic cylinder 28a are connected to the respective hydraulic control valves 26a and 26b. Hydraulic cylinders 28b are connected to the respective hydraulic cylinders 28a, 28b.
Thus, the front wheel steering mechanism 29a and the rear wheel steering mechanism 29b are independently driven.

【0036】そして、各操舵機構29a,29bに取付
けられた各舵角センサ25a,25bにより検出された
前後輪の各舵角が前記操舵制御部60に入力されると、
検出された舵角と目標舵角との偏差をなくすよう、前記
操舵制御部60によって各油圧制御弁26a,26bを
介して各操舵機構29a,29bが制御される。
When the steering angles of the front and rear wheels detected by the steering angle sensors 25a and 25b attached to the steering mechanisms 29a and 29b are input to the steering control section 60,
The steering control unit 60 controls the steering mechanisms 29a and 29b via the hydraulic control valves 26a and 26b so as to eliminate the deviation between the detected steering angle and the target steering angle.

【0037】図7は、前記撮像制御部51の具体的回路
構成を示し、撮像制御部51は、CPU70に、ワ−ク
デ−タを保持するためのRAM71、制御用固定デ−タ
及び制御プログラムが格納されているROM72、各種
のデ−タ、制御信号の入出力のためのI/Oインタ−フ
ェイス73が、デ−タバス74及びアドレスバス75を
介して接続されたマイクロコンピュ−タを中心として構
成される。そして、前記走行制御部55から倣い走行が
指示されると、CCDカメラ17を作動させて撮像を制
御すると共に、ビデオメモリ76に格納された撮像画像
を処理し、画像中の蛍光塗料帯mを検出し、画像におけ
る蛍光塗料帯mの位置から直線近似式を求め、その直線
近似式のデ−タを前記走行制御部55に出力する。
FIG. 7 shows a specific circuit configuration of the image pickup control section 51. The image pickup control section 51 has a CPU 70 which stores a RAM 71 for holding work data, fixed data for control and control. A ROM 72 in which a program is stored, various data, and an I / O interface 73 for inputting / outputting control signals are connected to a microcomputer via a data bus 74 and an address bus 75. Configured as the center. Then, when the travel control section 55 gives an instruction to follow the travel, the CCD camera 17 is operated to control the imaging, and the captured image stored in the video memory 76 is processed to remove the fluorescent paint band m in the image. The linear approximation formula is detected from the position of the fluorescent paint band m in the image, and the data of the linear approximation formula is output to the traveling control unit 55.

【0038】CCDカメラ17からのビデオ信号はアン
プ77で増幅され、同期回路78、A/D変換器79に
それぞれ供給される。同期回路78では、ビデオ信号か
ら同期信号を分離してタイミング信号を生成し、A/D
変換器79及びアドレス制御回路80に供給する。
The video signal from the CCD camera 17 is amplified by the amplifier 77 and supplied to the synchronizing circuit 78 and the A / D converter 79, respectively. The synchronizing circuit 78 separates the synchronizing signal from the video signal to generate a timing signal, and
It is supplied to the converter 79 and the address control circuit 80.

【0039】A/D変換器79ではアンプ77からのビ
デオ信号を、タイミング信号に同期してデジタル画像に
変換し、デ−タバス81を介して切換回路82に出力す
る。また、アドレス制御回路80では、タイミング信号
に同期してアドレスデ−タを生成し、アドレスバス83
を介して切換回路82に供給する。
The A / D converter 79 converts the video signal from the amplifier 77 into a digital image in synchronization with the timing signal and outputs the digital image to the switching circuit 82 via the data bus 81. Further, the address control circuit 80 generates address data in synchronization with the timing signal, and the address bus 83
Is supplied to the switching circuit 82 via.

【0040】切換回路82は、CPU70側のデ−タバ
ス74及びアドレスバス75と、A/D変換器79側の
デ−タバス81及びアドレスバス83とのいずれか一方
を選択的にビデオメモリ76に接続するものであり、ア
ドレス制御回路80から切換回路82にアドレスデ−タ
が供給されている間は、A/D変換器79側のデ−タバ
ス81をビデオメモリ76に接続して画像デ−タが書き
込まれるようにし、この間、CPU70によるビデオメ
モリ76へのアクセスを禁止する。
The switching circuit 82 selectively stores one of the data bus 74 and address bus 75 on the CPU 70 side and the data bus 81 and address bus 83 on the A / D converter 79 side in the video memory 76. While address data is supplied from the address control circuit 80 to the switching circuit 82, the data bus 81 on the A / D converter 79 side is connected to the video memory 76 and the image data is connected. The CPU 70 is prohibited from accessing the video memory 76 during this time.

【0041】そして、CCDカメラ17からのビデオ信
号の供給が停止し、CPU70のビデオメモリ76への
アクセスが可能になると、ビデオメモリ76から画像デ
−タが読み出され、この画像デ−タが処理されて画像中
における蛍光塗料帯mを検出して、画像における蛍光塗
料帯mの位置から直線近似式を算出し、I/Oインタ−
フェイス73から前記走行制御部55に直線近似式のデ
−タが出力される。
When the supply of the video signal from the CCD camera 17 is stopped and the video memory 76 of the CPU 70 can be accessed, the image data is read from the video memory 76, and this image data is read out. After processing, the fluorescent paint band m in the image is detected, a linear approximation formula is calculated from the position of the fluorescent paint band m in the image, and the I / O interface is calculated.
Data of a linear approximation formula is output from the face 73 to the traveling control unit 55.

【0042】以下、図8に示すような複数の区画の作業
領域に対し、無人で草・芝刈作業を行う場合について説
明する。この場合、芝刈作業車1は作業開始に当たって
任意の準備位置90に待機しているものとすると、最初
の作業領域92への移動、この作業領域92における草
・芝刈作業、作業領域92から次の作業領域96への移
動、この作業領域96における草・芝刈作業、戻り位置
98への移動が、図9〜図14に示すプログラムに従っ
て自律的に行われる。
The case where unmanned grass / lawn mowing work is performed on a plurality of divided work areas as shown in FIG. 8 will be described below. In this case, assuming that the lawn mowing vehicle 1 is waiting at an arbitrary preparation position 90 before starting work, it moves to the first work area 92, the grass / lawn mowing work in this work area 92, and the next work area 92. The movement to the work area 96, the grass / lawn mowing work in the work area 96, and the movement to the return position 98 are autonomously performed according to the programs shown in FIGS. 9 to 14.

【0043】まず、図9〜図11に示す主制御ル−チン
では、ステップS101で、D−GPSを用いて現在の自己
位置である準備位置90を計測する。この位置計測は、
緯度、経度等のD−GPSの測位デ−タ(必要に応じて
高度デ−タも加えられる)を、作業デ−タ蓄積部56に
格納されている測地系のデ−タに変換することにより行
われる。尚、この測地系へのデ−タ変換は、D−GPS
位置検出部53で行っても良く、あるいは、走行制御部
55において行っても良い。
First, in the main control routine shown in FIGS. 9 to 11, in step S101, the preparation position 90, which is the current self position, is measured using the D-GPS. This position measurement is
Converting D-GPS positioning data such as latitude and longitude (altitude data is also added as necessary) into geodetic system data stored in the work data storage unit 56. Done by. In addition, data conversion to this geodetic system is performed by D-GPS.
It may be performed by the position detection unit 53 or the travel control unit 55.

【0044】次いで、ステップS102へ進むと、作業デ−
タ蓄積部56を参照して最初の作業領域92の地形デ−
タを読出し、計測した準備位置90から作業開始地点P
0 までの経路91を生成してステップS103へ進む。ステ
ップS103では、後述する図12及び図13の自律走行制
御ル−チンを実行して作業開始地点P0 へ車輌を移動
し、ステップS104で、次の作業レ−ンから既刈地Cと未
刈地Bとの刈跡境界Lに沿い倣い走行させるため、ま
ず、作業デ−タ蓄積部56に格納されているデ−タに基
づき、蛍光塗料塗布装置10a,10bの一方を選択す
る。なお、ここでは車輌前進方向右側の蛍光塗料塗布装
置10bを選択する。そして、ステップS105で、選択さ
れた蛍光塗料塗布装置10bの電磁開閉弁16bをON
して電磁開閉弁16bを開弁させ、作業地への蛍光塗料
の塗布を開始し、ステップS106で、刈刃制御用油圧制御
弁27を開弁して油圧クラッチ機構に油圧を供給し、刈
刃8aを作動させて草・芝刈作業を開始する。まず、作
業領域の最初の作業レ−ンの経路93のみ、予め作業デ
−タ蓄積部56に格納されている作業領域デ−タを参照
してD−GPS・推測航法により一定速(例えば、3〜
6Km/h)で直線走行して草・芝刈作業を行う。
Then, in step S102, the work data
The terrain data of the first work area 92 is referred to with reference to the data storage unit 56.
Data is read and the work start point P is measured from the measured preparation position 90.
A path 91 up to 0 is generated and the process proceeds to step S103. In step S103, the autonomous traveling control routine of FIGS. 12 and 13 described later is executed to move the vehicle to the work start point P0, and in step S104, the cut land C and the uncut area are cut from the next work lane. In order to travel along the cut boundary L with the ground B, first, one of the fluorescent paint coating devices 10a and 10b is selected based on the data stored in the work data storage unit 56. Here, the fluorescent paint coating device 10b on the right side in the vehicle forward direction is selected. Then, in step S105, the electromagnetic opening / closing valve 16b of the selected fluorescent paint coating device 10b is turned on.
Then, the electromagnetic on-off valve 16b is opened to start the application of the fluorescent paint to the work site. In step S106, the cutting blade control hydraulic control valve 27 is opened to supply the hydraulic pressure to the hydraulic clutch mechanism, and the cutting operation is performed. The blade 8a is operated to start grass and lawn mowing work. First, only the route 93 of the first work lane in the work area is referred to the work area data stored in advance in the work data storage unit 56, and a constant speed (for example, 3-
6 km / h) runs straight and performs grass and lawn mowing work.

【0045】すなわち、ステップS107で、この作業領域
において作業第1回目の作業レ−ンか否かを調べ、ここ
では最初の作業レ−ンであるためステップS108へ進み、
D−GPS・推測航法により自車輌位置を検出した後、
ステップS109で、作業デ−タ蓄積部56にセットされて
いるデ−タを参照し、作業開始地点P0 から最初の作業
レ−ンの終端地点P1 までを直進走行する経路93に対
する現在の自車輌位置との誤差量を求め、ステップS110
で、誤差量に応じて前後輪の各目標舵角に対する操舵量
を決定し、ステップS111で、前輪操舵用油圧制御弁26
a、後輪操舵用油圧制御弁26bを介して、前輪操舵機
構29a、後輪操舵機構29bをそれぞれ駆動し、前輪
舵角センサ25a及び後輪舵角センサ25bにより前後
輪9a,9bの各舵角を検出して目標舵角を得るよう制
御する。
That is, in step S107, it is checked whether or not it is the first work lane in this work area. Since it is the first work lane here, the process proceeds to step S108.
After detecting the vehicle position by D-GPS / dead reckoning,
In step S109, referring to the data set in the work data storage unit 56, the current vehicle on the route 93 traveling straight from the work start point P0 to the end point P1 of the first work lane. Find the amount of error from the position, step S110
Then, the steering amount for each target steering angle of the front and rear wheels is determined according to the error amount, and in step S111, the front wheel steering hydraulic control valve 26
The front wheel steering mechanism 29a and the rear wheel steering mechanism 29b are respectively driven via a and the rear wheel steering hydraulic control valve 26b, and the front and rear wheels 9a and 9b are steered by the front wheel steering angle sensor 25a and the rear wheel steering angle sensor 25b. The angle is detected and controlled to obtain the target rudder angle.

【0046】そして、ステップS112で、測位デ−タによ
る現在の自車輌位置から作業領域における最初の作業レ
−ンの終端地点P1 に達したか否かを調べ、終端地点P
1 に達していないときにはステップS108に戻り、D−G
PS・推測航法による草・芝刈作業を継続し、終端地点
P1 に達したときには、刈刃機構8の作動を停止させて
ステップS112からステップS113へ進み、終端点位置にお
ける倣い走行時の標識としての蛍光塗料の作業地への塗
布が途切れるのを防ぐため、予めセットされているデ−
タに基づき、そのまま所定地点P2 まで前進して車輌を
停止し、ステップS114で、現在選択されている蛍光塗料
塗布装置10b(10a)の電磁開閉弁16b(16
a)をOFFして閉弁し、作業地への蛍光塗料の塗布を
停止する。
Then, in step S112, it is checked whether or not the end point P1 of the first work lane in the work area has been reached from the current vehicle position based on the positioning data, and the end point P is determined.
When it has not reached 1, the process returns to step S108, and DG
When the grass / lawn mowing work by PS / dead reckoning is continued and the end point P1 is reached, the operation of the cutting blade mechanism 8 is stopped, and the process proceeds from step S112 to step S113, as a marker at the time of copying traveling at the end point position. In order to prevent the application of the fluorescent paint to the work place to be interrupted, a preset data
Based on the data, the vehicle is stopped as it is by moving forward to a predetermined point P2, and in step S114, the electromagnetic opening / closing valve 16b (16) of the currently selected fluorescent paint coating device 10b (10a) is stopped.
Turn off a) and close the valve to stop applying the fluorescent paint to the work site.

【0047】そこで、最初の作業レ−ンにおいて、車輌
の前進、一定速直進走行により草・芝刈作業が行われ、
且つ、このとき蛍光塗料塗布装置10bにより、既刈地
Cと未刈地Bとの刈跡境界Lに沿い、作業地に蛍光塗料
が塗布され、次の作業レ−ンの倣い走行に備えられる。
Therefore, in the first work lane, the grass and lawn mowing work is performed by the forward movement of the vehicle and the straight traveling at a constant speed.
At this time, the fluorescent paint coating device 10b applies the fluorescent paint to the work site along the cut line boundary L between the already-cut land C and the uncut land B, and prepares for the copying run of the next work lane. .

【0048】なお、本実施例では、作業地に塗布された
蛍光塗料帯mを含む既刈地Cと未刈地Bとの境界部をC
CDカメラ17により撮像した画像において、蛍光塗料
帯mを直線近似した直線近似式を基準に倣い走行時の車
体のずれを判断するため、最初の作業レ−ンにおいて
は、D−GPS・推測航法により直線走行を行わせる必
要がある。
In this embodiment, the boundary portion between the already-cut land C and the uncut land B including the fluorescent paint strip m applied to the work site is C.
In the image picked up by the CD camera 17, the deviation of the vehicle body during traveling is determined based on the linear approximation formula that approximates the fluorescent paint band m linearly. Therefore, in the first work lane, the D-GPS / dead reckoning navigation is performed. Therefore, it is necessary to drive straight.

【0049】その後、ステップS115へ進み、車輌のシフ
ト処理を行い車輌を次の作業レ−ンにシフトさせ、刈刃
機構8を作動させると共に操舵機構29a,29bを制
御して、前回の草・芝刈作業による既刈地Cと未刈地B
との刈跡境界Lに沿った経路94の倣い走行を一定速走
行により行い、新たな作業レ−ンの草・芝刈を開始す
る。なお、草・芝刈時の走行速度は、あまり遅いと草・
芝刈作業効率が悪化し、また速いと刈ムラ及び作業地へ
の蛍光塗料の塗布ムラが生じるため、3〜6Km/h程
度が望ましい。
After that, the process proceeds to step S115, the vehicle shift processing is performed, the vehicle is shifted to the next work lane, the cutting blade mechanism 8 is operated, and the steering mechanisms 29a and 29b are controlled to control the previous grass. Past cut area C and uncut area B by lawn mowing work
The contour traveling of the path 94 along the cut line boundary L is carried out at a constant speed to start grass / lawn mowing of a new work lane. In addition, if the traveling speed when cutting grass and lawn is too slow,
The lawn mowing work efficiency is deteriorated, and if it is too fast, uneven cutting and uneven application of fluorescent paint to the work site occur, so about 3 to 6 km / h is desirable.

【0050】次いで、ステップS116へ進み、この草・芝
刈作業領域において、今回の作業レ−ンが最終の作業レ
−ンか否かを、例えば、現在の自車輌位置デ−タと作業
デ−タ蓄積部56に格納されている作業領域の測地デ−
タとを比較することにより調べる。
Next, in step S116, it is determined whether or not the current work lane is the final work lane in this grass / lawn mowing work area, for example, the present vehicle position data and work data. Data of the work area stored in the data storage unit 56
Check by comparing with.

【0051】そして、今回の作業レ−ンは最終の作業レ
−ンではなく、次にも作業レ−ンが有ると判断されると
きには、ステップS117へ進み、作業デ−タ蓄積部56に
セットされているデ−タに基づき、蛍光塗料塗布装置1
0a,10bの一方を選択し、ステップS118で、該当塗
布装置10a(10b)の電磁開閉弁16a(16b)
をONして作業地への蛍光塗料の塗布を開始させてステ
ップS119へ進む。ここで、前述のように車輌前進方向に
対し、車体1aの左側に既刈地Cがあり、右側に未刈地
Bがあるときには、車体1aの右側に設置されている蛍
光塗料塗布装置10bを選択し、車体1aの左側に未刈
地Bがあり、右側に既刈地Cがあるときには、車体1a
の左側に設置されている蛍光塗料塗布装置10aを選択
する。また、最終の作業レ−ンのときには、次の作業レ
−ンが無く、倣い走行時の標識として作業地に蛍光塗料
を塗布する必要がないので、いずれの蛍光塗料塗布装置
10a,10bを作動させることなく、電磁開閉弁16
a,16bをOFFのまま、ステップS119へジャンプす
る。
If it is determined that the current work lane is not the final work lane but the next work lane, the process proceeds to step S117 to set the work data storage unit 56. Fluorescent paint coating device 1 based on the stored data
One of 0a and 10b is selected, and in step S118, the solenoid opening / closing valve 16a (16b) of the corresponding coating device 10a (10b) is selected.
Is turned on to start applying the fluorescent paint to the work place, and the process proceeds to step S119. Here, as described above, when there is an already-cut area C on the left side of the vehicle body 1a and an uncut area B on the right side with respect to the vehicle forward direction, the fluorescent paint coating device 10b installed on the right side of the vehicle body 1a is used. When there is an uncut area B on the left side of the vehicle body 1a and an already cut area C on the right side of the vehicle body 1a, the vehicle body 1a
Select the fluorescent paint coating device 10a installed on the left side of. Further, at the final work lane, there is no next work lane, and it is not necessary to apply the fluorescent paint to the work site as a marker for the copying traveling. Therefore, either fluorescent paint application device 10a or 10b is operated. Solenoid on-off valve 16 without
With a and 16b turned off, the process jumps to step S119.

【0052】ステップS119では、CCDカメラ17の作
動を開始させ、CCDカメラ17により撮像された既刈
地Cと未刈地Bとの境界部の画像デ−タを、ビデオメモ
リ76から読み出し、ステップS120で、画像中に撮像さ
れている作業地における蛍光塗料帯mを、輝度階調の差
等により認識し(図15(a)参照)、図15(b)に
示すように、画像における左下隅を原点とし、画像上下
軸をY、左右軸をXとして画像上の蛍光塗料帯mの位置
を求め、最少自乗法あるいはハフ変換により直線近似式
y=ax+bを算出する。
In step S119, the operation of the CCD camera 17 is started, and the image data of the boundary between the cut ground C and the uncut land B captured by the CCD camera 17 is read from the video memory 76. In S120, the fluorescent paint strip m in the work place captured in the image is recognized by the difference in the brightness gradation (see FIG. 15A), and as shown in FIG. With the corner as the origin, the vertical axis of the image as Y, and the horizontal axis as X, the position of the fluorescent paint band m on the image is obtained, and the linear approximation formula y = ax + b is calculated by the least square method or the Hough transform.

【0053】ここで、蛍光塗料帯mは、蛍光塗料塗布装
置10a,10bにより、常に、既刈地Cと未刈地Bと
の刈跡境界Lに沿い略一定の状態で作業地上に塗布され
ていることから、画像上において蛍光塗料帯mを最少自
乗法あるいはハフ変換により直線近似した直線近似式に
より、間接的に刈跡境界Lの位置を認識することができ
るのである。ここで、倣い走行時の標識として蛍光塗料
を用いることで、作業地が光量の少ない状態下にあって
も、確実に輝度階調の差により作業地に塗布された蛍光
塗料帯mを画像上において検出することができ、倣い走
行の信頼性が向上する。また、作業地に塗布された蛍光
塗料は、前述のように経時的に分解し、作業地に何時ま
でも残ることがなく、作業地の汚損が防止される。
Here, the fluorescent paint strip m is always applied to the work ground by the fluorescent paint applying devices 10a and 10b along the cut boundary L between the already-cut land C and the uncut land B in a substantially constant state. Therefore, the position of the cut boundary L can be indirectly recognized on the image by a linear approximation formula in which the fluorescent paint band m is linearly approximated by the least square method or the Hough transform. Here, by using the fluorescent paint as a marker during the copying traveling, even if the work place is in a state of low light intensity, the fluorescent paint band m applied to the work place is surely displayed on the image due to the difference in the brightness gradation. Can be detected and the reliability of the copy traveling is improved. Further, the fluorescent paint applied to the work site is decomposed with time as described above and does not remain on the work site for a long time, so that the work site is prevented from being soiled.

【0054】そして、ステップS121へ進み、上記直線近
似式y=ax+bによる直線と、図15(b)に破線で
示すように、車輌の進行方向に応じ予め設定されている
画像上の目標直線y1 =c1 x+d1 とを比較し、目標
直線に対する直線近似式による直線の偏差量Z、及び偏
差角θとを算出し、これら偏差角θ及び偏差量Zによ
り、車体1aがどの方向にどれだけずれているのかを認
識する(なお、偏差量Zの+−により車体1aが進行方
向左右のどちら側にずれているのかが判る)。
Then, the process proceeds to step S121, and the straight line obtained by the straight line approximation formula y = ax + b and the target straight line y1 on the image preset according to the traveling direction of the vehicle as shown by the broken line in FIG. 15 (b). = C1 x + d1 and the deviation amount Z and deviation angle θ of the straight line from the straight line approximation formula with respect to the target straight line are calculated. The deviation angle θ and the deviation amount Z cause the vehicle body 1a to deviate in what direction. It is recognized whether the vehicle body 1a is deviated to the left or right in the traveling direction by +/− of the deviation amount Z.

【0055】すなわち、図16(a),(b)に示すよ
うに、CCDカメラ17が地上高hに、附角θB を有し
て取付られ、CCDカメラ17により撮像される作業地
の視野範囲をS、光軸Fの作業地に対する投影線をFX
とすると、この投影線FX のカメラ中心から偏差σ1 を
有し投影線FX に平行な作業地上の直線Lh 、及び、カ
メラ中心から偏差σ2 を有して投影線FX に所定角度θ
D で交差する直線Laは、CCDカメラのレンズ球面収
差等の影響で同図(c)に示すような画像デ−タとして
得られ、同図(d)に示すように、直線Lh',La'とし
て画面上の左下隅を原点とするX,Y座標上に直線近似
することができる。
That is, as shown in FIGS. 16 (a) and 16 (b), the CCD camera 17 is mounted at a height h above the ground with an included angle θB, and the field of view of the work site is imaged by the CCD camera 17. S, the projection line of the optical axis F on the work site is FX
Then, the projection line FX has a deviation σ1 from the camera center and is parallel to the projection line FX on the work ground straight line Lh, and the projection line FX has a deviation σ2 from the camera center at a predetermined angle θ.
The straight line La intersecting at D is obtained as image data as shown in FIG. 7C due to the influence of the spherical aberration of the lens of the CCD camera, and as shown in FIG. A straight line can be approximated on the X and Y coordinates with the origin at the lower left corner of the screen.

【0056】従って、CCDカメラ17の車体1aへの
取付状態(地上高h、附角θB 、画角θA 等)を考慮
し、予め実験等により、所定の芝刈オ−バラップ量Oを
得る車***置で、作業地に塗布された蛍光塗料帯mを含
む既刈地Cと未刈地Bとの境界部をCCDカメラ17に
より撮像し、このとき、画像上の蛍光塗料帯mによる直
線近似式により得られる直線を、目標直線として、予め
作業デ−タ蓄積部56のROMエリアに格納しておき、
倣い走行時、画像上の蛍光塗料帯mを直線近似した直線
近似式により得られる直線が、上記目標直線に一致する
よう前後輪9a,9bの舵角を、各操舵機構29a,2
9bを制御することにより修正することで、既刈地Cと
未刈地Bとの刈跡境界Lに沿い、所定の芝刈オ−バラッ
プ量Oを有し倣い走行して次作業レ−ンの草・芝刈作業
を行うことが可能となる。
Therefore, in consideration of the mounting state of the CCD camera 17 on the vehicle body 1a (ground height h, attached angle θB, angle of view θA, etc.), the vehicle body position for obtaining a predetermined lawn mowing overlap amount O by experiments in advance. Then, the CCD camera 17 captures an image of the boundary between the existing cut area C and the uncut area B including the fluorescent paint band m applied to the work site. At this time, the linear approximate expression of the fluorescent paint band m on the image is used. The obtained straight line is stored in advance in the ROM area of the work data storage unit 56 as a target straight line,
At the time of copying traveling, the steering angles of the front and rear wheels 9a and 9b are adjusted so that the straight line obtained by the straight line approximation formula in which the fluorescent paint band m on the image is linearly approximated matches the target straight line.
By correcting 9b by controlling it, along the cut line boundary L between the already-cut land C and the un-cut land B, the vehicle has a predetermined lawn mowing overlap amount O and follows and travels to the next work lane. It becomes possible to perform grass and lawn mowing work.

【0057】なお、上記目標直線は、車輌進行方向に応
じ画像が左右反転するため、当然、車輌進行方向に応じ
て変える必要があり、車輌前進方向に対し、車体1aの
左側に既刈地Cがあり、右側に未刈地Bがあるときに
は、図15(b)に破線で示すy1 =c1 x+d1 を目
標直線として設定し、車体1aの左側に未刈地bがあ
り、右側に既刈地cがあるときには、同図に一点鎖線で
示すy2 =c2 x+d2 を用いる。
Since the image of the target straight line is reversed horizontally depending on the traveling direction of the vehicle, it is naturally necessary to change it according to the traveling direction of the vehicle. The cut land C on the left side of the vehicle body 1a with respect to the traveling direction of the vehicle. When there is an uncut land B on the right side, y1 = c1 x + d1 shown by a broken line in FIG. 15B is set as a target straight line, and the uncut land b is on the left side of the vehicle body 1a and the cut land is on the right side. When c is present, y2 = c2 x + d2 shown by the alternate long and short dash line in the figure is used.

【0058】そして、ステップS121における認識結果に
基づき、ステップS122で車体1aのずれを修正するよう
前後輪9a,9b各々の目標舵角を設定する。この目標
舵角の設定は、例えば前記偏差角θと偏差量Zとをパラ
メ−タとして作業デ−タ蓄積部56に予め格納されてい
るテ−ブルを参照することにより行う。
Then, based on the recognition result in step S121, the target steering angles of the front and rear wheels 9a and 9b are set in step S122 so as to correct the deviation of the vehicle body 1a. The target rudder angle is set, for example, by referring to a table stored in advance in the work data storage unit 56 using the deviation angle θ and the deviation amount Z as parameters.

【0059】その後、ステップS123で、前,後輪舵角セ
ンサ25a,25bからの信号を入力処理して前,後輪
9a,9bの舵角をそれぞれ算出すると、ステップS124
へ進み、先ず前輪舵角と前輪目標舵角とを比較する。そ
して前輪舵角が前輪目標舵角と等しいかあるいはそれよ
りも大きいと判断されるときにはステップS125へ進み、
前輪操舵用油圧制御弁26aをOFFして前輪用油圧シ
リンダ28aを介して前輪操舵機構29aを動作し、前
輪9aの舵角を減じ、前輪舵角が前輪目標舵角よりも小
さいときにはステップS126へ進み、前輪操舵用油圧制御
弁26aをONして逆に前輪9aの舵角を増加させるよ
う制御する。
After that, in step S123, the signals from the front and rear wheel steering angle sensors 25a and 25b are input and processed to calculate the steering angles of the front and rear wheels 9a and 9b, respectively.
First, the front wheel rudder angle is compared with the front wheel target rudder angle. When it is determined that the front wheel steering angle is equal to or larger than the front wheel target steering angle, the process proceeds to step S125.
When the front wheel steering hydraulic control valve 26a is turned off and the front wheel steering mechanism 29a is operated via the front wheel hydraulic cylinder 28a, the steering angle of the front wheels 9a is reduced, and when the front wheel steering angle is smaller than the front wheel target steering angle, the process proceeds to step S126. Then, the front wheel steering hydraulic control valve 26a is turned on to control the front wheel 9a so that the steering angle is increased.

【0060】次いで、ステップS127へ進み、後輪舵角と
後輪目標舵角とを比較し、後輪舵角が後輪目標舵角と等
しいかあるいはそれよりも大きいときにはステップS128
へ進み、後輪操舵用油圧制御弁26bをOFFして後輪
用油圧シリンダ28bを介して後輪操舵機構29bを動
作し、後輪9bの舵角を減じ、後輪舵角が目標後輪舵角
よりも小さいときにはステップS129へ進み、逆に後輪操
舵用油圧制御弁26bをONして後輪9bの舵角を増加
させるよう制御する。そして、ステップS130で、予め設
定された制御インタ−バルが経過したかを判断し、制御
インタ−バルが経過するまでの間、ステップS123〜S130
を繰り返し、前後輪9a,9bの舵角が目標舵角に一致
するよう舵角フィ−ドバック制御を継続し、制御インタ
−バルが経過すると、ステップS131へ進み、現在の自車
輌位置を例えば現在の自己位置測位デ−タにより検出
し、ステップS132で、現在の自車輌位置がこの作業レ−
ンの終端地点に達したか否かを判断し、作業レ−ンの終
端地点に達していないときには、前記ステップS119へ戻
る。
Next, the process proceeds to step S127, the rear wheel steering angle is compared with the rear wheel target steering angle, and if the rear wheel steering angle is equal to or larger than the rear wheel target steering angle, step S128.
Then, the rear wheel steering hydraulic control valve 26b is turned off and the rear wheel steering mechanism 29b is operated via the rear wheel hydraulic cylinder 28b to reduce the steering angle of the rear wheel 9b so that the rear wheel steering angle is the target rear wheel. When the steering angle is smaller than the steering angle, the process proceeds to step S129, and conversely, the rear wheel steering hydraulic control valve 26b is turned on to increase the steering angle of the rear wheel 9b. Then, in step S130, it is determined whether a preset control interval has elapsed, and steps S123 to S130 are performed until the control interval elapses.
By repeating the above, the steering angle feedback control is continued so that the steering angles of the front and rear wheels 9a, 9b match the target steering angle, and when the control interval elapses, the process proceeds to step S131, where the current vehicle position is, for example, the current position. Is detected by the self-positioning data in step S132, and the current position of the vehicle is calculated in step S132.
It is determined whether or not the end point of the work lane has been reached, and if the end point of the work lane has not been reached, the process returns to step S119.

【0061】これにより、刈跡境界に対する車体1aの
ずれ認識とこのずれ認識に基づく舵角制御とを制御イン
タ−バルにより定まる一定時間毎に繰り返し、既刈地C
と未刈地Bとの刈跡境界Lに沿った芝刈作業車1の倣い
走行による草・芝刈が実現される。
As a result, the recognition of the displacement of the vehicle body 1a with respect to the boundary of the cut and the steering angle control based on this displacement recognition are repeated at regular intervals determined by the control interval, and the cut land C
The lawn mowing work vehicle 1 follows the cutting boundary B between the uncut area B and the uncut area B to perform grass / lawn mowing.

【0062】やがて、倣い走行による1行程(1列)の
作業レ−ン終端地点に達すると、刈刃制御用油圧制御弁
27を閉弁し刈刃機構8の作動を停止させてステップS1
32からステップS133へ進み、CCDカメラ17による撮
像を停止する。そして、ステップS134で、現在の自車輌
位置デ−タから、1区画(作業領域92)の全作業を終
了したか否かを判断する。そして未だ作業領域92の全
作業を終了していないときには前記ステップS107へ戻
り、所定位置まで直進して現在選択されている蛍光塗料
塗布装置10a或は10bの電磁開閉弁16a或は16
bをOFFして閉弁し、作業地への蛍光塗料の塗布を停
止後、車輌のシフト処理を行い次行程(次の作業レ−
ン)の倣い走行による草・芝刈作業を行う。
When the work lane end point of one stroke (one row) by copying travel is reached, the cutting blade control hydraulic control valve 27 is closed to stop the operation of the cutting blade mechanism 8 and step S1.
The process proceeds from 32 to step S133, and the image pickup by the CCD camera 17 is stopped. Then, in step S134, it is determined from the current vehicle position data whether or not all the work in one section (work area 92) has been completed. When all the work in the work area 92 has not been completed yet, the process returns to the step S107, goes straight to a predetermined position, and the electromagnetic open / close valve 16a or 16 of the currently selected fluorescent paint coating device 10a or 10b.
After turning off b and closing the valve, stopping the application of the fluorescent paint to the work site, the vehicle shift processing is performed and the next step (next work step
The grass and lawn mowing work is carried out by following the running.

【0063】ここで、図17に示すように、芝刈作業車
1が草・芝刈作業1行程の作業レ−ン終端地点P3 に達
したときには、作業デ−タ蓄積部56による作業デ−
タ、及び予めセットされている制御デ−タに基づき、前
述のD−GPS・推測航法により作業レ−ン終端地点P
1 に達したときと同様に、終端点位置における倣い走行
時の標識としての蛍光塗料の作業地への塗布が途切れる
のを防ぐため、そのまま前進F状態で点P4 まで直進し
た後、蛍光塗料塗布装置の電磁開閉弁を閉弁し、前進状
態で点P4 から点P5 まで略90°右旋回し、その後、
点P5 から点P6まで後進R状態で直進し、さらに、点
P6 から点P7 まで略90度右旋回して前進すること
で、最少範囲で車輌を反転させる。そして、以上の車輌
反転処理により、各油圧制御弁26a,26b、各シリ
ンダ28a,28bを介して各操舵機構29a,29b
を制御して、所定の芝刈オ−バラップ量Oを得る位置P
7 で、車体1aを前回の作業レ−ン走行時と平行状態に
し、すなわち各刈刃8aによる幅Wから芝刈オ−バラッ
プ量Oを減算した分だけ芝刈作業車1を横シフトさせた
後、作業レ−ンの開始位置P8 まで前進して刈刃機構8
を作動させ、再び車輌前進状態による一定速走行で、前
記ステップS116ないしS134を実行し、CCDカメラ17
により車輌前方を撮像して前回の作業レ−ン走行時に蛍
光塗料塗布装置10a或は10bにより作業地に塗布さ
れた蛍光塗料帯mの画像上の位置から直線近似式を求
め、この直線近似式によって得られる直線がそのときの
車輌進行方向に応じて設定される目標直線に一致するよ
う各操舵機構29a,29bを制御することで、刈跡境
界Lに沿った倣い走行により草・芝刈作業を行う。また
このとき、蛍光塗料塗布装置10a或は10bにより次
の作業レ−ンの倣い走行に備え、既刈地Cと未刈地Bと
の刈跡境界Lに沿って蛍光塗料が作業地に新たに塗布さ
れる。
Here, as shown in FIG. 17, when the lawn mowing vehicle 1 reaches the work lane end point P3 of one stroke of grass / lawn mowing operation, the work data accumulated by the work data accumulating section 56 is used.
Work lane end point P by the above-mentioned D-GPS / dead reckoning based on the control data and the preset control data.
In order to prevent the application of the fluorescent paint as a marker at the end point position during the follow-up running to the work site to be interrupted, as in the case of reaching 1, the fluorescent paint is applied after moving straight to point P4 in the forward F state. Close the electromagnetic on-off valve of the device, and in the forward state, turn right about 90 ° from point P4 to point P5, then
By going straight from the point P5 to the point P6 in the reverse R state, and further by making a right turn from the point P6 to the point P7 by about 90 degrees, the vehicle is reversed in the minimum range. By the above vehicle reversing process, the steering mechanisms 29a and 29b are passed through the hydraulic control valves 26a and 26b and the cylinders 28a and 28b.
Position P to obtain a predetermined lawn mowing overlap amount O
At 7, the body 1a is made parallel to the previous run of the work lane, that is, after the lawn mowing work vehicle 1 is laterally shifted by the amount obtained by subtracting the lawn mowing overlap amount O from the width W by each cutting blade 8a, The cutting blade mechanism 8 moves forward to the start position P8 of the work lane.
Is activated, the steps S116 to S134 are executed again at a constant speed while the vehicle is moving forward, and the CCD camera 17
An image of the front of the vehicle is taken by using the fluorescent paint applicator 10a or 10b during the previous run of the work lane, and a linear approximation formula is obtained from the position on the image of the fluorescent paint band m applied to the work site. By controlling each of the steering mechanisms 29a and 29b so that the straight line obtained in accordance with the target straight line set according to the traveling direction of the vehicle at that time, grass and lawn mowing work can be performed by copying along the cut boundary L. To do. Further, at this time, the fluorescent paint is newly added to the work site along the cut line boundary L between the already-cut land C and the uncut land B in preparation for the next traveling run of the work lane by the fluorescent-paint coating device 10a or 10b. Applied to.

【0064】従って、図8のように車輌反転を交互に繰
り返しながら芝刈作業車1は倣い走行を行い、作業領域
92の草・芝刈作業が行われる。
Therefore, as shown in FIG. 8, the lawn mowing work vehicle 1 travels along the lines while alternately reversing the vehicle, and the grass and lawn mowing work in the work area 92 is performed.

【0065】そして、1区画(作業領域92)での作業
を終了するまでステップS107〜S134を繰返して、倣い走
行による1区画の草・芝刈作業を継続し、1区画の全作
業を終了したとき、ステップS134からステップS135へ進
んで、全区画の作業を終了したか否かを判断する。ここ
では、まだ、次の作業領域96での作業を終了していな
いため、前述のステップS102へ戻り、同様の手順で作業
領域92から作業領域96への経路95を生成すると、
図12及び図13の自律走行制御ル−チンに従って次の
作業領域96に移動し、作業領域96の草・芝刈作業を
行う。
When steps S107 to S134 are repeated until the work in one section (working area 92) is completed, the grass / lawn mowing work for one section by copying traveling is continued, and when all the work for one section is completed. Then, the process proceeds from step S134 to step S135, and it is determined whether or not the work of all the sections is completed. Here, since the work in the next work area 96 has not been completed yet, the process returns to step S102 described above, and when the route 95 from the work area 92 to the work area 96 is generated by the same procedure,
In accordance with the autonomous traveling control routine of FIGS. 12 and 13, the work area 96 is moved to the next work area 96, and grass and lawn mowing work in the work area 96 is performed.

【0066】やがて、全区画の作業を終了すると、ステ
ップS135からステップS136へ進み、作業デ−タ蓄積部5
6を参照して戻り位置98への経路97を生成すると、
ステップS137で、図12及び図13の自律走行制御ル−
チンに従って戻り位置98まで移動し、ル−チンを終了
して車輌を停止させる。
When the work of all the sections is finished, the process proceeds from step S135 to step S136 and the work data storage unit 5
6, when the route 97 to the return position 98 is generated,
In step S137, the autonomous traveling control routine of FIGS.
Follow the chin to the return position 98 to end the routine and stop the vehicle.

【0067】次に、図12及び図13に示す自律走行制
御ル−チンによる経路91,93,95,97における
自律走行について説明する。尚、前述の主制御ル−チン
においては、自己位置の測位デ−タと作業デ−タ蓄積部
56の作業デ−タとから経路91,93,95,97を
生成するようにしているが、経路91,93,95,9
7そのものを予め作業デ−タ蓄積部56に記憶させてお
いても良い。
Next, the autonomous traveling on the routes 91, 93, 95, 97 by the autonomous traveling control routine shown in FIGS. 12 and 13 will be described. In the main control routine described above, the routes 91, 93, 95 and 97 are generated from the positioning data of the self position and the work data of the work data storage unit 56. , Routes 91, 93, 95, 9
7 itself may be stored in the work data storage unit 56 in advance.

【0068】D−GPSによる自己位置の測定では、単
独のGPSに比較してはるかに良好な精度が得られる
が、衛星の捕捉状態や電波の受信状態等によっては、自
律走行制御時に必要とするタイミングで必要とする精度
が得られない場合がある。従って、ステップS201で、現
在のD−GPSの精度情報を得ると、ステップS202で、
この精度情報を、作業デ−タ蓄積部56に予め記憶され
ている規定の位置精度評価設定値と比較し、ステップS2
03で、D−GPSの測位精度が設定レベルを満足するか
否かを判断する。
The self-position measurement by the D-GPS can obtain much better accuracy than that of the single GPS, but it is necessary for the autonomous traveling control depending on the satellite capturing state or the radio wave receiving state. The accuracy required for timing may not be obtained. Therefore, when the current D-GPS accuracy information is obtained in step S201, in step S202
This accuracy information is compared with a prescribed position accuracy evaluation set value stored in advance in the work data storage unit 56, and step S2
At 03, it is determined whether or not the positioning accuracy of D-GPS satisfies the set level.

【0069】そして、D−GPSの測位精度が設定レベ
ルを満足する場合には、ステップS204へ進んで、芝刈作
業車1の移動速度を、作業デ−タ蓄積部56に記憶され
ている通常速度(例えば5km/h)となるよう制御
し、ステップS205で、D−GPSの位置情報と経路情報
とから自車輌位置の誤差量を求めると、ステップS206
で、誤差量に応じて前後輪の操舵量を決定する。
When the positioning accuracy of D-GPS satisfies the set level, the process proceeds to step S204, and the moving speed of the lawnmower work vehicle 1 is set to the normal speed stored in the work data storage unit 56. (For example, 5 km / h), and in step S205, when the error amount of the vehicle position is obtained from the D-GPS position information and the route information, step S206
Then, the steering amounts of the front and rear wheels are determined according to the error amount.

【0070】次いで、ステップS207へ進むと、前輪操舵
用油圧制御弁26a、後輪操舵用油圧制御弁26bを介
して前輪操舵機構29a、後輪操舵機構29bをそれぞ
れ駆動し、目標舵角を得るよう制御し、ステップS208
で、D−GPSで測位した現在位置と目標位置とを比較
し、ステップS209で、目標位置に到達したか否かを判断
する。その結果、目標位置に到達していないときには、
ステップS204へ戻って現在位置をD−GPSによって測
位しながら走行を続け、目標位置に到達したとき、ステ
ップS225で、車輌を停止してル−チンを抜ける。
Next, in step S207, the front wheel steering mechanism 29a and the rear wheel steering mechanism 29b are respectively driven via the front wheel steering hydraulic control valve 26a and the rear wheel steering hydraulic control valve 26b to obtain the target steering angle. Control, step S208
Then, the current position measured by D-GPS is compared with the target position, and it is determined in step S209 whether or not the target position has been reached. As a result, when the target position is not reached,
Returning to step S204, the vehicle continues traveling while positioning the current position by the D-GPS, and when the target position is reached, the vehicle is stopped and the routine is exited in step S225.

【0071】一方、前記ステップS203で、D−GPSの
測位精度が設定レベルを満足しない場合には、前記ステ
ップS203からステップS210へ分岐し、推測航法による自
律走行を行う。すなわち、ステップS210で、車輌の移動
速度を、作業デ−タ蓄積部56に記憶されている低速度
(例えば、3km/h)に設定することにより、車輌の
スリップによって生じる推測航法の累積誤差が最小とな
るようにし、ステップS211で、推測航法による位置情報
と経路情報とから自車輌位置の誤差量を求める。
On the other hand, if the positioning accuracy of the D-GPS does not satisfy the set level in step S203, the process branches from step S203 to step S210, and the dead reckoning autonomous driving is performed. That is, in step S210, by setting the moving speed of the vehicle to a low speed (for example, 3 km / h) stored in the work data storage unit 56, the cumulative error of dead reckoning caused by the slip of the vehicle is reduced. Then, in step S211, the error amount of the vehicle position is obtained from the position information and the route information based on dead reckoning.

【0072】次いで、ステップS212で、誤差量に応じて
前後輪の操舵量を決定すると、ステップS213で、前輪操
舵用油圧制御弁26a、後輪操舵用油圧制御弁26bを
介して前輪操舵機構29a、後輪操舵機構29bをそれ
ぞれ駆動し、目標舵角を得るよう制御する。そして、ス
テップS214で、推測航法による現在位置と目標位置とを
比較し、ステップS215で、目標位置に到達したか否かを
判断する。
Next, in step S212, the steering amount of the front and rear wheels is determined according to the error amount. In step S213, the front wheel steering mechanism 29a is operated via the front wheel steering hydraulic control valve 26a and the rear wheel steering hydraulic control valve 26b. The rear wheel steering mechanism 29b is driven to control the target steering angle. Then, in step S214, the current position by dead-reckoning and the target position are compared, and in step S215, it is determined whether or not the target position has been reached.

【0073】目標位置に到達していないときには、ステ
ップS215からステップS210へ戻って現在位置を推測航法
によって測位しながら自律走行を続け、目標位置に到達
したとき、ステップS215からステップS216へ進んで車輌
を停止すると、ステップS217で、D−GPSによる現在
位置計測を行い、測位デ−タを作業デ−タ蓄積部56の
RAMエリアに蓄積する。
When the target position has not been reached, the process returns from step S215 to step S210 to continue autonomous traveling while positioning the current position by dead reckoning. When the target position is reached, the process proceeds from step S215 to step S216. When the current position is stopped, the current position is measured by the D-GPS and the positioning data is stored in the RAM area of the work data storage unit 56 in step S217.

【0074】その後、ステップS218へ進み、予め設定さ
れたデ−タ蓄積設定時間と、前記ステップS217における
デ−タ蓄積時間とを比較し、ステップS219で、設定時間
が経過したか否かを調べる。そして、設定時間が経過し
ていないときには、ステップS217へ戻ってD−GPSに
よる測位デ−タの蓄積を続行し、設定時間が経過する
と、D−GPSによる測位デ−タの蓄積を終了してステ
ップS220へ進む。
After that, the process proceeds to step S218, the preset data accumulation set time is compared with the data accumulation time set in step S217, and it is checked in step S219 whether the set time has elapsed. . Then, when the set time has not elapsed, the process returns to step S217 to continue accumulating the positioning data by the D-GPS, and when the set time elapses, the accumulation of the positioning data by the D-GPS ends. Proceed to step S220.

【0075】ステップS220では、蓄積したD−GPSに
よる測位デ−タを平均し、この平均値より現在位置を求
めると、ステップS221へ進んで、現在位置と目標位置と
を比較し、ステップS222で、真の目標位置に到達してい
るか否かを判断する。その結果、真の目標に到達してい
ると判断される場合、前述のステップS225で車輌を停止
してル−チンを抜け、真の目標位置に到達していないと
判断される場合には、ステップS223で、推測航法の測位
デ−タをD−GPSによる測位デ−タの平均値で補正す
ると、ステップS224へ進んで真の目標位置への経路を生
成し、前述のステップS210へ戻って走行を再開し、真の
目標位置に到達するまで以上の処理を繰返す。
In step S220, the accumulated positioning data by D-GPS is averaged, and the current position is obtained from this average value. Then, the process proceeds to step S221, the current position is compared with the target position, and in step S222. , Determine whether the true target position has been reached. As a result, when it is determined that the true target position is reached, when it is determined that the vehicle is stopped and the routine is exited in step S225 described above and the true target position is not reached, When the dead reckoning positioning data is corrected by the average value of the positioning data by D-GPS in step S223, the process proceeds to step S224, a route to the true target position is generated, and the process returns to step S210. The traveling is restarted, and the above processing is repeated until the true target position is reached.

【0076】すなわち、D−GPSの測位精度が悪化し
た場合においても、一定の地点に留まって所定時間測定
を続けることにより測位精度を向上することができ、自
律走行中にD−GPSによって必要な位置精度が得られ
ない場合、一旦、推測航法によって目標位置まで走行し
て停止し、停止状態でD−GPSの測位デ−タを設定時
間累積して平均値を取ることにより、正確な現在位置を
知ることができる。そして、推測航法による位置がずれ
ていた場合には、D−GPSの測位デ−タの設定時間の
平均値で推測航法の測位デ−タを補正することにより、
常に正確な自律走行を行うことができるのである。
That is, even if the positioning accuracy of the D-GPS deteriorates, the positioning accuracy can be improved by staying at a certain point and continuing the measurement for a predetermined time, which is required by the D-GPS during autonomous traveling. If the position accuracy is not obtained, the dead-reckoning navigation is performed to the target position and then stopped, and in the stopped state, the D-GPS positioning data is accumulated for a set time and the average value is taken to obtain the accurate current position. You can know. If the dead-reckoning position is displaced, the dead-reckoning positioning data is corrected by the average value of the set times of the D-GPS positioning data.
It is possible to always perform accurate autonomous driving.

【0077】また、D−GPSにおける固定局40と移
動局との間のデ−タ通信は、図14に示すD−GPS無
線通信ル−チンによりパケットデ−タで行われる。この
デ−タ通信では、ステップS301で、移動局GPS受信機
20を初期化し、ステップS302で、固定局GPS受信機
43を、無線通信機21,46を介したデ−タ送信で初
期化すると、ステップS303へ進み、固定局40からのデ
ィファレンシャル情報を無線デ−タ通信により得る。
Data communication between the fixed station 40 and the mobile station in D-GPS is performed by packet data by the D-GPS wireless communication routine shown in FIG. In this data communication, if the mobile station GPS receiver 20 is initialized in step S301, and the fixed station GPS receiver 43 is initialized by data transmission via the wireless communication devices 21 and 46 in step S302. , Proceeds to step S303 to obtain the differential information from the fixed station 40 by wireless data communication.

【0078】次いで、ステップS304へ進むと、D−GP
S位置検出部53で、固定局40からのディファレンシ
ャル情報を移動局GPS受信機20から得られる測位デ
−タに適用し、ディファレンシャル演算を行って自車輌
位置を測定する。そして、その測位情報を走行制御部5
5に送ると、ステップS303へ戻り、次のデ−タ処理を繰
返す。この場合、固定局40とのディファレンシャル演
算は、移動局受信機20固有の機能によって行っても良
い。
Next, in step S304, the D-GP
In the S position detection unit 53, the differential information from the fixed station 40 is applied to the positioning data obtained from the mobile station GPS receiver 20, and the differential operation is performed to measure the own vehicle position. Then, the positioning information is transmitted to the travel control unit 5
When sent to step 5, the process returns to step S303 to repeat the next data processing. In this case, the differential calculation with the fixed station 40 may be performed by a function unique to the mobile station receiver 20.

【0079】なお、本実施例では、倣い走行による草・
芝刈作業において、芝刈作業車1を常に前進状態とし、
CCDカメラ17を車体1aの前方に設置するようにし
ているが(図1(a)及び図2参照)、後進状態で倣い
走行するようにしても良く、この場合には、CCDカメ
ラを車体1aの後方に設置し、車輌後方の既刈地Cと未
刈地Bとの境界部を撮像する。また、車輌前進による倣
い走行と後進による倣い走行の両方とも対処するため、
CCDカメラを車体1aの前方及び後方にそれぞれ設置
し、車輌前進による倣い走行時には車体1aの前方に設
置したCCDカメラを用い、後進による倣い走行時には
車体1aの後方に設置したCCDカメラを用いるように
しても良い。
Incidentally, in this embodiment, the grass
In lawn mowing work, the lawn mowing vehicle 1 is always in the forward state,
Although the CCD camera 17 is installed in front of the vehicle body 1a (see FIGS. 1 (a) and 2), it may be configured to travel in the reverse direction. In this case, the CCD camera is mounted on the vehicle body 1a. It is installed in the rear of the vehicle and images the boundary between the already-cut land C and the uncut land B behind the vehicle. In addition, in order to deal with both copying traveling by moving the vehicle forward and copying traveling by the reverse,
CCD cameras are installed respectively in front of and behind the vehicle body 1a, and CCD cameras installed in front of the vehicle body 1a are used when the vehicle travels forward while the vehicle is moving forward, and CCD cameras installed behind the vehicle body 1a are used when traveling in the backward vehicle. May be.

【0080】また、本実施例では、準備位置90から作
業領域92への移動、作業領域92、96間の移動、各
作業領域92、96における最初の作業レ−ンの作業走
行、及び作業領域96から戻り位置98への移動を、D
−GPSあるいは推測航法により無人で自律走行するよ
うにしているが、これらを有人により走行するようにし
ても良い。
Further, in this embodiment, the movement from the preparation position 90 to the work area 92, the movement between the work areas 92 and 96, the work travel of the first work lane in each work area 92 and 96, and the work area. Move from 96 to return position 98
-Unmanned autonomous driving is performed by GPS or dead reckoning. However, these may be driven by manned vehicles.

【0081】さらに、自律走行作業車は、芝刈作業車に
限定されず、既作業地と未作業地との境界に沿い倣い走
行する自律走行作業車であれば適用できる。
Further, the autonomous traveling work vehicle is not limited to the lawn mowing work vehicle, and any autonomous traveling work vehicle that travels along the boundary between the already-worked site and the unworked site can be applied.

【0082】[0082]

【発明の効果】以上説明したように本発明によれば、車
輌走行に伴い、撮像手段により既作業地と未作業地との
境界部を撮像し、撮像された画像から、前回の作業レ−
ン走行時に既作業地と未作業地との境界に沿い作業地に
塗布された蛍光塗料帯を検出し、この蛍光塗料帯により
得られる線と予め設定された目標線とを比較して目標位
置に対する車体のずれを認識し、この認識デ−タに基づ
き操舵機構が制御されて境界に沿った倣い走行が行わ
れ、またこのとき、次の作業レ−ンの倣い走行に備え蛍
光塗料塗布手段によって既作業地と未作業地との境界に
沿い蛍光塗料が塗布されるので、作業地が光量の少ない
状態下にあっても確実に既作業地と未作業地との境界に
沿い自律走行することが可能となり、倣い走行の信頼性
が向上する。
As described above, according to the present invention, the image of the boundary between the existing work site and the unworked site is imaged by the image pickup device as the vehicle travels, and the previous work record is taken from the imaged image.
When the vehicle is traveling, it detects the fluorescent paint band applied to the work site along the boundary between the existing work site and the unworked site, and compares the line obtained by this fluorescent paint band with the preset target line to determine the target position. The deviation of the vehicle body with respect to the vehicle body is recognized, and the steering mechanism is controlled based on the recognition data to perform the contour travel along the boundary. At this time, the fluorescent paint coating means is prepared for the contour travel of the next work lane. Since fluorescent paint is applied along the boundary between the already-worked and unworked sites, the vehicle will surely run autonomously along the boundary between the already-worked site and the unworked site even when the work site is in a low light condition. This makes it possible to improve the reliability of copy travel.

【図面の簡単な説明】[Brief description of drawings]

【図1】D−GPS用移動局を備えた芝刈作業車の側面
図とD−GPS用固定局とを示す説明図
FIG. 1 is an explanatory view showing a side view of a lawnmower equipped with a D-GPS mobile station and a D-GPS fixed station.

【図2】芝刈作業車における各機構、装置の取付け位置
関係を示す平面図
FIG. 2 is a plan view showing a mounting position relationship of each mechanism and device in the lawnmower work vehicle.

【図3】蛍光塗料塗布装置の構成を示す説明図FIG. 3 is an explanatory diagram showing a configuration of a fluorescent paint coating device.

【図4】蛍光塗料塗布装置による作業地への塗布状態を
示す説明図
FIG. 4 is an explanatory diagram showing a coating state on a work site by a fluorescent paint coating device.

【図5】制御装置のブロック図FIG. 5 is a block diagram of a control device.

【図6】操舵制御系の構成を示す説明図FIG. 6 is an explanatory diagram showing a configuration of a steering control system.

【図7】撮像制御部の回路構成図FIG. 7 is a circuit configuration diagram of an imaging control unit.

【図8】走行経路及び作業領域を示す説明図FIG. 8 is an explanatory diagram showing a travel route and a work area.

【図9】主制御ル−チンのフロ−チャ−トFIG. 9: Flow chart of main control routine

【図10】主制御ル−チンのフロ−チャ−ト(続き)FIG. 10: Flow chart of main control routine (continued)

【図11】主制御ル−チンのフロ−チャ−ト(続き)FIG. 11 Flow chart of main control routine (continued)

【図12】自律走行制御ル−チンのフロ−チャ−トFIG. 12: Flow chart of autonomous traveling control routine

【図13】自律走行制御ル−チンのフロ−チャ−ト(続
き)
[Fig. 13] Flow chart of autonomous driving control routine (continued)

【図14】D−GPS無線通信ル−チンのフロ−チャ−
FIG. 14 is a flowchart of a D-GPS wireless communication routine.
To

【図15】CCDカメラにより撮像された画像において
作業地に塗布された蛍光塗料帯、蛍光塗料帯から求めた
直線近似式と目標直線との関係を示す説明図
FIG. 15 is an explanatory diagram showing a relationship between a fluorescent paint band applied to a work site in an image captured by a CCD camera, a linear approximation formula obtained from the fluorescent paint band, and a target straight line.

【図16】CCDカメラの取付状態、撮像画像、及び直
線近似の関係を示す説明図
FIG. 16 is an explanatory diagram showing a relationship between a mounting state of a CCD camera, a captured image, and a linear approximation.

【図17】草・芝刈作業による1行程の作業レ−ン終了
時の車輌シフト状態を示す説明図
FIG. 17 is an explanatory view showing a vehicle shift state at the end of the work lane for one stroke by grass / lawn mowing work.

【符号の説明】[Explanation of symbols]

1 芝刈作業車(自律走行作業車) 1a 車体 10a,10b 蛍光塗料塗布装置(蛍光塗料塗布手
段) 17 CCDカメラ(撮像手段) 29a,29b 操舵機構 50 制御装置 92,96 作業領域 B 未刈地(未作業地) C 既刈地(既作業地)
1 Lawn mowing work vehicle (autonomous traveling work vehicle) 1a Body 10a, 10b Fluorescent paint applying device (fluorescent paint applying means) 17 CCD camera (imaging means) 29a, 29b Steering mechanism 50 Control device 92, 96 Working area B Uncut land ( Unworked land) C Mowed land (Worked land)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 作業領域における既作業地と未作業地と
の境界部を撮像手段により撮像し、撮像した画像に基づ
き境界位置に対する車体のずれを認識し、境界位置に対
する車体のずれに基づき操舵機構を制御して境界に沿っ
た倣い走行を行う自律走行作業車において、 車輌の進行に伴い、既作業地と未作業地との境界に沿い
作業地に蛍光塗料を塗布する蛍光塗料塗布手段と、 倣い走行による作業レ−ン走行時に、前記撮像手段によ
り撮像した画像において前回の作業レ−ン走行時に上記
蛍光塗料塗布手段により作業地に塗布された蛍光塗料帯
を検出し、蛍光塗料帯により得られる線と予め設定され
た目標線とを比較して目標位置に対する車体のずれを認
識する画像処理手段と、 上記画像処理手段により得た認識デ−タに基づき操舵機
構を制御する倣い走行制御手段と、を備えることを特徴
とする自律走行作業車。
1. A boundary portion between a work area and a non-working area in a work area is imaged by an image pickup means, a displacement of a vehicle body with respect to a boundary position is recognized based on the captured image, and steering is performed based on the displacement of the vehicle body with respect to the boundary position. In an autonomous work vehicle that controls the mechanism and follows the boundary, as the vehicle advances, a fluorescent paint application means that applies fluorescent paint to the work site along the boundary between the existing work site and the unworked site. During the work lane traveling by copying travel, the fluorescent paint band applied to the work site by the fluorescent paint applying means at the time of the previous work lane travel is detected in the image captured by the imaging means, and the fluorescent paint band is detected. Image processing means for recognizing the deviation of the vehicle body from the target position by comparing the obtained line with a preset target line, and controlling the steering mechanism based on the recognition data obtained by the image processing means. An autonomous traveling work vehicle, comprising:
JP6016600A 1994-02-10 1994-02-10 Self-traveling working vehicle Pending JPH07222509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6016600A JPH07222509A (en) 1994-02-10 1994-02-10 Self-traveling working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6016600A JPH07222509A (en) 1994-02-10 1994-02-10 Self-traveling working vehicle

Publications (1)

Publication Number Publication Date
JPH07222509A true JPH07222509A (en) 1995-08-22

Family

ID=11920795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6016600A Pending JPH07222509A (en) 1994-02-10 1994-02-10 Self-traveling working vehicle

Country Status (1)

Country Link
JP (1) JPH07222509A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257195A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Mobile body and control method for it
JP2013153413A (en) * 2012-01-25 2013-08-08 Honda Research Inst Europe Gmbh System, method, and apparatus for unsupervised adaptation of perception of autonomous mower
JP5900996B1 (en) * 2015-01-26 2016-04-06 ニチユ三菱フォークリフト株式会社 Automated transport system
JP2016139405A (en) * 2016-01-19 2016-08-04 ニチユ三菱フォークリフト株式会社 Automatic guided vehicle system
JP2019088272A (en) * 2018-10-22 2019-06-13 井関農機株式会社 Work vehicle, and automatic straight-advancing travel supporting system of work vehicle
JP2020103183A (en) * 2018-12-27 2020-07-09 井関農機株式会社 Working vehicle
WO2021020333A1 (en) * 2019-07-29 2021-02-04 ヤンマーパワーテクノロジー株式会社 Automatic traveling system
JP2021054408A (en) * 2020-12-23 2021-04-08 株式会社クボタ Tractor
US20210176912A1 (en) * 2019-12-16 2021-06-17 Cnh Industrial America Llc System and method for assessing agricultural operation performance based on image data of processed and unprocessed portions of the field

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257195A (en) * 2006-03-22 2007-10-04 Toyota Motor Corp Mobile body and control method for it
JP4577247B2 (en) * 2006-03-22 2010-11-10 トヨタ自動車株式会社 Mobile body and control method thereof
JP2013153413A (en) * 2012-01-25 2013-08-08 Honda Research Inst Europe Gmbh System, method, and apparatus for unsupervised adaptation of perception of autonomous mower
JP5900996B1 (en) * 2015-01-26 2016-04-06 ニチユ三菱フォークリフト株式会社 Automated transport system
JP2016139405A (en) * 2016-01-19 2016-08-04 ニチユ三菱フォークリフト株式会社 Automatic guided vehicle system
JP2019088272A (en) * 2018-10-22 2019-06-13 井関農機株式会社 Work vehicle, and automatic straight-advancing travel supporting system of work vehicle
JP2020103183A (en) * 2018-12-27 2020-07-09 井関農機株式会社 Working vehicle
WO2021020333A1 (en) * 2019-07-29 2021-02-04 ヤンマーパワーテクノロジー株式会社 Automatic traveling system
JP2021022209A (en) * 2019-07-29 2021-02-18 ヤンマーパワーテクノロジー株式会社 Autonomous travelling system
US20210176912A1 (en) * 2019-12-16 2021-06-17 Cnh Industrial America Llc System and method for assessing agricultural operation performance based on image data of processed and unprocessed portions of the field
JP2021054408A (en) * 2020-12-23 2021-04-08 株式会社クボタ Tractor

Similar Documents

Publication Publication Date Title
US11670193B2 (en) Extrinsic parameter of on-board sensor
CN108688659B (en) Vehicle travel control device
US10386840B2 (en) Cruise control system and method
US5563786A (en) Autonomous running control system for vehicle and the method thereof
US8200428B2 (en) Multi-vehicle high integrity perception
US8437901B2 (en) High integrity coordination for multiple off-road vehicles
US8639408B2 (en) High integrity coordination system for multiple off-road vehicles
US8818567B2 (en) High integrity perception for machine localization and safeguarding
CN114845915A (en) Real-time adjustment carrier sensor field of view volume
CN112537294B (en) Automatic parking control method and electronic equipment
JP4061596B2 (en) Movement control device, environment recognition device, and moving body control program
CN111724614B (en) Traffic control system for automatic driving vehicle
JPH07222509A (en) Self-traveling working vehicle
JPH07184415A (en) Autonomously traveling working vehicle
JPH07203706A (en) Autonomous travel working vehicle
JPH07104847A (en) Traveling controller for autonomously traveling vehicle
JPH07222508A (en) Self-traveling working vehicle
Kelly et al. Terrain map building for fast navigation on rugged outdoor terrain
JP3564201B2 (en) Self-position detection device for autonomous traveling work vehicles
JPH07104846A (en) Traveling controller for autonomously traveling vehicle
JPH07184414A (en) Apparatus for detecting boundary of reaped track and autonomously traveling working vehicle
GB2290212A (en) Automatic steering of agricultural machine
JPH07104848A (en) Traveling controller for autonomously traveling vehicle
WO2022202801A1 (en) Autonomous travel system, work vehicle, and recording medium on which autonomous travel program is recorded
US20240132065A1 (en) Method and device for operating a parking assistance system, parking garage, and vehicle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406