JPH0722227A - Production of permanent magnet - Google Patents

Production of permanent magnet

Info

Publication number
JPH0722227A
JPH0722227A JP5300773A JP30077393A JPH0722227A JP H0722227 A JPH0722227 A JP H0722227A JP 5300773 A JP5300773 A JP 5300773A JP 30077393 A JP30077393 A JP 30077393A JP H0722227 A JPH0722227 A JP H0722227A
Authority
JP
Japan
Prior art keywords
permanent magnet
weight
alloy
less
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5300773A
Other languages
Japanese (ja)
Other versions
JP2868062B2 (en
Inventor
Akihiko Tsudai
昭彦 津田井
Isao Sakai
勲 酒井
Tetsuhiko Mizoguchi
徹彦 溝口
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5300773A priority Critical patent/JP2868062B2/en
Publication of JPH0722227A publication Critical patent/JPH0722227A/en
Application granted granted Critical
Publication of JP2868062B2 publication Critical patent/JP2868062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a permanent magnet having high coercive force and high maximum energy product with high productivity by employing a permanent magnet alloy, having a specific composition of R, boron, gallium and the remainder principally comprising iron, as a starting material and then crushing, pressing under magnetic field, and sintering the alloy. CONSTITUTION:A permanent magnet alloy composed of 10-40wt.% of R (R represents at least one element selected from Y and rare earth elements), 0.1-8wt.% of boron, 13wt.% or less of gallium, and the remainder mainly comprising iron is employed as a starting material. 30wt.% or less of Co is also added to the permanent magnet alloy. 90wt.% or less of Ga is substituted by Al. The magnet alloy thus obtained (oxygen concentration is 0.05-0.03wt.%) is crushed roughly in Ar atmosphere and then crushed finely by a jet mill. The fine powder is filled in a predetermined die and compression molded while applying magnetic field and then it is sintered in Ar atmosphere before it is subjected to aging in vacuum at 550-750 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は永久磁石の製造方法に関
し、特に希土類鉄系の永久磁石の製造に使用されるもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a permanent magnet, and more particularly to a method for manufacturing a rare earth iron-based permanent magnet.

【0002】[0002]

【従来の技術】従来から知られている希土類磁石として
は、RCo5 型、R2 (Co,Cu,Fe,M)17
(ただし、RはSm,Ce等の希土類元素、MはTi,
Zr,Hf等の遷移元素)等の希土類コバルト系のもの
が知られている。しかしながら、この系の永久磁石で
は、最大エネルギー積が30MGOe程度であり、また
比較的高価なCoを大量に使用しなければならないとい
う問題点があった。
2. Description of the Related Art Conventionally known rare earth magnets include RCo 5 type and R 2 (Co, Cu, Fe, M) 17 type (where R is a rare earth element such as Sm and Ce, M is Ti,
Rare earth cobalt-based compounds such as Zr, Hf and other transition elements) are known. However, the permanent magnet of this system has a problem that the maximum energy product is about 30 MGOe and that a large amount of relatively expensive Co must be used.

【0003】近年、上記希土類コバルト系の代わりに、
比較的安価な希土類鉄系の永久磁石が研究されている
(特開昭59−46008号、特開昭59−64733
号等)。これはNd−Fe−B系等の構成元素からなる
ものであり、Fe使用によるコスト低下に加え、最大エ
ネルギー積が30MGOeを超えるものが得られるため
非常に有効な材料である。
In recent years, in place of the above rare earth cobalt type,
Relative-earth iron-based permanent magnets, which are relatively inexpensive, have been studied (JP-A-59-46008 and JP-A-59-64733).
Etc.). This is a very effective material because it is composed of a constituent element such as Nd-Fe-B system, and the maximum energy product exceeds 30 MGOe in addition to the cost reduction due to the use of Fe.

【0004】しかしながら、この希土類鉄系永久磁石は
製造条件により磁石特性、特に保磁力が300Oeから
10kOeを超えるものまで現われるというように大き
なバラツキを示し、安定した磁石特性を得ることができ
ないという問題点がある。このことは工業上非常に重要
な問題であり、再現性よく安定な磁石特性を有する希土
類鉄系の永久磁石を得ることができれば、その実用性は
大きく向上する。
However, this rare earth iron-based permanent magnet exhibits a large variation such that the magnet characteristics, particularly the coercive force from 300 Oe to more than 10 kOe, varies depending on the manufacturing conditions, and stable magnet characteristics cannot be obtained. There is. This is a very important problem in industry, and if a rare earth iron-based permanent magnet having reproducible and stable magnet characteristics can be obtained, its practicality will be greatly improved.

【0005】また、高保磁力かつ高(BH)max の要求
は強く、より高性能化に向けて研究が進められている。
Further, there is a strong demand for high coercive force and high (BH) max , and research is being advanced toward higher performance.

【0006】[0006]

【発明が解決しようとする課題】本発明は以上の点を考
慮してなされたものであり、高い保磁力、高い(BH)
max を有する希土類鉄系の永久磁石の提供と、良好な磁
石特性を有する永久磁石を再現性をよく製造し得る方法
を提供することを目的とする。
The present invention has been made in consideration of the above points, and has a high coercive force and a high (BH).
It is an object of the present invention to provide a rare earth iron-based permanent magnet having a max and a method capable of manufacturing a permanent magnet having good magnet characteristics with good reproducibility.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者らは上
記問題点を解消すべく鋭意研究を重ねた結果、希土類鉄
系の永久磁石においてはGaの添加が磁石特性、特に保
磁力に顕著な影響を与えるという事実を見出した。
As a result of intensive studies conducted by the present inventors to solve the above-mentioned problems, the present inventors have found that in rare earth iron-based permanent magnets, the addition of Ga is remarkable in magnet characteristics, particularly in coercive force. I found the fact that it has a great influence.

【0008】本願発明はこれに基づいてなされたもので
あり、10〜40重量%のR(ただし、RはY及び希土
類元素から選ばれた少なくとも1種)、0.1〜8重量
%の硼素、13重量%以下のガリウム、残部が主として
鉄からなる組成を有する永久磁石合金を出発原料とし、
該合金を粉砕、磁場中プレス、焼結することを特徴とす
る永久磁石の製造方法である。
The present invention has been made based on this, and is 10 to 40% by weight of R (where R is at least one selected from Y and rare earth elements) and 0.1 to 8% by weight of boron. , 13% by weight or less of gallium, with the balance being mainly iron, as a starting material,
A method for producing a permanent magnet is characterized in that the alloy is crushed, pressed in a magnetic field, and sintered.

【0009】本願発明において、各元素の含有率を上記
範囲に限定したのはそれぞれ以下のような理由による。
In the present invention, the content of each element is limited to the above range for the following reasons.

【0010】Rが10重量%未満ではiHcの増大が得
られず、40重量%を超えるとBrが低下するため、い
ずれの場合でも(BH)max が低下してしまう。したが
って、Rの含有率は10〜40重量%とする。好ましく
は25〜35重量%である。なお、希土類元素のうちで
もNd及びPrは特に高い(BH)max を得るのに有効
な元素であり、Rとしてこの2元素のうち少なくとも1
種を必須元素として含有することが好ましい。このN
d、PrのR量中の割合は70%以上(R量全部でもよ
い)であることが望ましい。
If R is less than 10% by weight, iHc cannot be increased, and if it exceeds 40% by weight, Br is lowered, and in any case, (BH) max is lowered. Therefore, the content ratio of R is set to 10 to 40% by weight. It is preferably 25 to 35% by weight. Of the rare earth elements, Nd and Pr are effective elements for obtaining a particularly high (BH) max , and at least one of these two elements is used as R.
It is preferable to contain a seed as an essential element. This N
The ratio of d and Pr in the R amount is preferably 70% or more (the entire R amount may be sufficient).

【0011】特にNdが90重量%以上である時、優れ
た特性を得ることができる。
Particularly when Nd is 90% by weight or more, excellent characteristics can be obtained.

【0012】硼素(B)が0.1重量%未満ではiHc
が低下し、8重量%を超えるとBrの低下が顕著とな
る。よって、硼素の含有率は0.1〜8重量%とする。
高保磁力化のためには1.2重量%以上であることが好
ましい。なお、Bの一部をC、N、Si、P、Ge等で
置換してもよい。これにより焼結性の向上、ひいてはB
r、(BH)max の増大を図ることができる。この場合
の置換量はBの80%程度までとすることが望ましい。
When the content of boron (B) is less than 0.1% by weight, iHc
Is decreased, and when it exceeds 8% by weight, the decrease of Br becomes remarkable. Therefore, the content ratio of boron is set to 0.1 to 8% by weight.
In order to increase the coercive force, it is preferably 1.2% by weight or more. A part of B may be replaced with C, N, Si, P, Ge or the like. This improves the sinterability and eventually B
It is possible to increase r and (BH) max . In this case, the amount of substitution is preferably up to about 80% of B.

【0013】ガリウム(Ga)は保磁力(iHc)の向
上に有効な元素である。少量の添加で効果があるが、
0.1重量%以上、好ましくは0.2重量%以上でiH
cの増大が顕著である。13重量%を超えるとBrの低
下が顕著となる。よって、ガリウムの含有率は13重量
%以下とする。このGaの90重量%までをAlで置換
することが可能である。
Gallium (Ga) is an element effective for improving the coercive force (iHc). It is effective to add a small amount,
IH at 0.1% by weight or more, preferably 0.2% by weight or more
The increase of c is remarkable. When it exceeds 13% by weight, the decrease of Br becomes remarkable. Therefore, the gallium content is 13% by weight or less. It is possible to replace up to 90% by weight of this Ga with Al.

【0014】本願磁石はその他酸素等の不可避的不純物
を含有する。所定の組成の永久磁石合金を用いて粉砕・
焼結する場合において最も重要な点は永久磁石合金中の
酸素含有量である。酸素が0.005重量%未満では永
久磁石の製造時に要求される2〜10μm程度の微粉砕
が困難となる。このため、粒径が不均一となり磁場中成
形時の配向性が悪くなり、Brの低下、ひいては(B
H)max の低下をもたらす。また、製造コストも大幅に
上昇する。一方、0.03重量%を超えると保磁力が低
下し、高(BH)max を得ることができない。よって、
永久磁石合金中の酸素の含有率は0.005〜0.03
重量%が好ましい。焼結後の永久磁石中においては若干
増量することがある。
The magnet of the present invention further contains inevitable impurities such as oxygen. Grind using a permanent magnet alloy with a specified composition
When sintering, the most important point is the oxygen content in the permanent magnet alloy. If the amount of oxygen is less than 0.005% by weight, it becomes difficult to finely grind the powder in the range of 2 to 10 μm, which is required when manufacturing a permanent magnet. As a result, the grain size becomes non-uniform, the orientation during molding in a magnetic field deteriorates, and Br decreases, and (B
H) results in a decrease in max . In addition, the manufacturing cost will increase significantly. On the other hand, if it exceeds 0.03% by weight, the coercive force is lowered and a high (BH) max cannot be obtained. Therefore,
The oxygen content in the permanent magnet alloy is 0.005 to 0.03.
Weight percent is preferred. The amount may be slightly increased in the permanent magnet after sintering.

【0015】永久磁石合金中における酸素の働きは明ら
かではないものの、以下のような振舞により高性能の永
久磁石を得ることができるものと推測される。
Although the function of oxygen in the permanent magnet alloy is not clear, it is presumed that a high performance permanent magnet can be obtained by the following behavior.

【0016】すなわち、溶融合金中の酸素の一部は主成
分元素であるR、Fe原子と結合して酸化物となり、残
りの酸素とともに合金結晶粒界等に偏析して存在してい
ると考えられる。R−Fe−B系磁石が微粒子磁石であ
り、その保磁力が主として逆磁区発生磁場により決定さ
れることを考慮すると、酸化物、偏析等の欠陥が多い場
合、これらが逆磁区発生源として作用することにより保
磁力が低下してしまうと考えられる。また、欠陥が少な
い場合は粒界破壊等が起りにくくなるため、粉砕性が劣
化すると予想される。
That is, it is considered that a part of oxygen in the molten alloy is combined with R and Fe atoms which are main constituent elements to form an oxide, and segregated with the rest of oxygen into alloy crystal grain boundaries. To be Considering that the R-Fe-B magnet is a fine particle magnet, and its coercive force is mainly determined by the reverse magnetic domain generation magnetic field, when there are many defects such as oxides and segregation, these act as the reverse magnetic domain generation source. It is considered that the coercive force is reduced by doing so. Further, when the number of defects is small, grain boundary breakage or the like is less likely to occur, so that it is expected that the pulverizability is deteriorated.

【0017】永久磁石合金中の酸素量は高純度の原料を
用いるとともに、原料合金溶融時の炉中酸素量を厳密に
調節るすことにより制御することができる。
The oxygen content in the permanent magnet alloy can be controlled by using a high-purity raw material and by strictly adjusting the oxygen content in the furnace when the raw material alloy is melted.

【0018】本願発明に係る永久磁石を構成する上記の
各元素以外の残部は主として鉄であるが、Feの一部を
Co、Al、Cr、Ti、Zr、Hf、Nb、Ta、
V、Mn、Mo、W、Ru、Rh、Re、Pd、Os、
Ir等で置換することもできる。その量は30重量%程
度までであり、多すぎると(BH)max の低下等特性劣
化の要因となる。特にCoはキュリー温度上昇に有効で
あり、永久磁石中では1〜30重量%、特に10〜20
重量%の添加が好ましい。
The balance other than the above-mentioned elements constituting the permanent magnet according to the present invention is mainly iron, but a part of Fe is Co, Al, Cr, Ti, Zr, Hf, Nb, Ta,
V, Mn, Mo, W, Ru, Rh, Re, Pd, Os,
It can also be replaced with Ir or the like. The amount is up to about 30% by weight, and if it is too large, it causes a deterioration of characteristics such as a decrease in (BH) max . In particular, Co is effective for increasing the Curie temperature, and is 1 to 30% by weight, especially 10 to 20% in the permanent magnet.
Preference is given to addition by weight.

【0019】このCoはGaと複合添加で保磁力特性等
に極めて顕著な効果を奏する。
This Co, when added in combination with Ga, has a very remarkable effect on coercive force characteristics and the like.

【0020】次に製法について詳細に説明する。Next, the manufacturing method will be described in detail.

【0021】まず、所定量のFe、R、Ga、Bを含有
する永久磁石合金を製造する。次に、ボールミル等の粉
砕手段を用いて永久磁石合金を粉砕する。この際、後工
程の成形と焼結を容易にし、かつ磁気特性を良好にする
ために、粉末の平均粒径が2〜10μmとなるように微
粉砕することが望ましい。粒径が10μmを超えるとi
Hcの低下をもたらし、一方2μm未満にまで粉砕する
ことは困難であるうえに、Br等の磁気特性の低下を招
く。
First, a permanent magnet alloy containing predetermined amounts of Fe, R, Ga and B is manufactured. Next, the permanent magnet alloy is crushed using a crushing means such as a ball mill. At this time, it is desirable that the powder be finely pulverized so that the average particle size of the powder becomes 2 to 10 μm in order to facilitate the molding and sintering in the subsequent steps and to improve the magnetic characteristics. If the particle size exceeds 10 μm i
Hc is lowered, and on the other hand, it is difficult to pulverize to less than 2 μm, and further, magnetic properties such as Br are lowered.

【0022】次いで、微粉砕された永久磁石合金粉末を
所望の形状にプレス成形する。成形の際には通常の焼結
磁石を製造するのと同様に、例えば15kOe程度の磁
場を印加し、配向処理を行なう。つづいて、例えば10
00〜1140℃,0.5〜5時間程度の条件で成形体
を焼結する。この焼結は合金中の酸素濃度を増加させな
いように、Arガス等の不活性ガス雰囲気中、もしくは
真空中で行なうことが望ましい。
Next, the finely pulverized permanent magnet alloy powder is press-formed into a desired shape. At the time of molding, a magnetic field of, for example, about 15 kOe is applied and orientation treatment is performed as in the case of manufacturing a normal sintered magnet. Then, for example, 10
The compact is sintered under conditions of 0 to 1140 ° C. and 0.5 to 5 hours. This sintering is preferably performed in an atmosphere of an inert gas such as Ar gas or in a vacuum so as not to increase the oxygen concentration in the alloy.

【0023】こうして得られた焼結体に必要に応じ55
0〜750℃の温度範囲で0.1〜10時間程度の時効
処理を行なう。
If necessary, the sintered body thus obtained may be
Aging treatment is performed in the temperature range of 0 to 750 ° C. for about 0.1 to 10 hours.

【0024】時効処理温度が550℃未満又は750℃
を超えると、iHcの減少又は角形性の劣化を招き、磁
気特性は大幅に低下する。よって、時効処理温度は55
0〜750℃の範囲が好ましい。
Aging treatment temperature is less than 550 ° C or 750 ° C
When it exceeds, the iHc is reduced or the squareness is deteriorated, and the magnetic properties are significantly deteriorated. Therefore, the aging temperature is 55
The range of 0-750 degreeC is preferable.

【0025】以上のような方法によれば、Br、iH
c、(BH)max 等の磁気特性に優れた永久磁石を特性
のバラツキを招くことなく、再現性よく製造することが
できる。
According to the above method, Br, iH
Permanent magnets having excellent magnetic characteristics such as c and (BH) max can be manufactured with good reproducibility without causing characteristic variations.

【0026】[0026]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0027】実施例1 所定の組成で原料を混合し、Ar雰囲気中で水冷銅ボー
トを用いてアーク溶解した。得られた磁石合金(酸素濃
度0.02wt%)をAr雰囲気中で粗粉砕し、更にジ
ェットミルにより約3.0μmの粒度まで微粉砕した。
Example 1 Raw materials having a predetermined composition were mixed and arc-melted using a water-cooled copper boat in an Ar atmosphere. The obtained magnet alloy (oxygen concentration 0.02 wt%) was roughly pulverized in an Ar atmosphere, and further finely pulverized by a jet mill to a grain size of about 3.0 μm.

【0028】この微粉末を所定の押型に充填して20k
Oeの磁界を印加しつつ、2ton/cm2 の圧力で圧
縮成形した。この成形体をAr雰囲気中、1020〜1
120℃で1h焼結し、室温まで急冷した後、真空中で
550〜750℃,3〜10時間時効処理を行ない、室
温まで急冷した。
This fine powder was filled in a predetermined die and 20 k
Compression molding was performed at a pressure of 2 ton / cm 2 while applying a magnetic field of Oe. This molded body is placed in an Ar atmosphere at 1020 to 1
After sintering at 120 ° C. for 1 h and quenching to room temperature, aging treatment was performed in vacuum at 550 to 750 ° C. for 3 to 10 hours, and quenching to room temperature.

【0029】その結果を表1に示す。Nd量はR幅の9
0重量%以上となっている。
The results are shown in Table 1. Nd amount is R width 9
It is 0% by weight or more.

【0030】[0030]

【表1】 実施例2 組成がネオジウム30.8重量%、ボロン0.86重量
%、ガリウム1.0重量%、残部鉄となるように各元素
を配合し、2kgをアルゴン雰囲気下、水冷銅ボート中
でアーク溶融した。その際、炉中の酸素量を厳密に調節
することにより、調整合金中の酸素を増減させた。
[Table 1] Example 2 Each element was blended so that the composition was neodymium 30.8% by weight, boron 0.86% by weight, gallium 1.0% by weight, and the balance was iron, and 2 kg was arced in a water-cooled copper boat under argon atmosphere. Melted At that time, oxygen in the adjustment alloy was increased or decreased by strictly adjusting the amount of oxygen in the furnace.

【0031】得られた永久磁石合金をAr雰囲気中で粗
粉砕し、更にステンレスボールミルにて3〜5μmの粒
径まで微粉砕した。
The obtained permanent magnet alloy was coarsely pulverized in an Ar atmosphere and further finely pulverized by a stainless ball mill to a particle size of 3 to 5 μm.

【0032】この微粉末を所定の押し型に充填して20
000Oeの粒界を印加しつつ、2ton/cm2 の圧
力で圧縮成形した。得られた成形体をアルゴン雰囲気
中、1080℃で1時間焼結し、室温まで急冷した。そ
の後、真空中、600℃で1時間時効処理を行ない、室
温まで急冷した。
This fine powder is filled in a predetermined pressing die, and 20
While applying a grain boundary of 000 Oe, compression molding was performed at a pressure of 2 ton / cm 2 . The obtained molded body was sintered in an argon atmosphere at 1080 ° C. for 1 hour and rapidly cooled to room temperature. Then, it was subjected to an aging treatment at 600 ° C. for 1 hour in vacuum, and then rapidly cooled to room temperature.

【0033】得られた永久磁石について、永久磁石合金
中の酸素濃度と、粗粉を3〜5μmの粒度まで微粉砕す
るに必要な時間、残留磁束密度(Br)、保磁力(iH
c)及び最大エネルギー積((BH)max )との関係を
図1に示す。
Regarding the obtained permanent magnet, the oxygen concentration in the permanent magnet alloy, the time required for finely grinding the coarse powder to a particle size of 3 to 5 μm, the residual magnetic flux density (Br), the coercive force (iH)
The relationship between c) and the maximum energy product ((BH) max ) is shown in FIG.

【0034】図1から明らかなように、合金の粉砕性及
び永久磁石の磁石特性は合金中の酸素濃度に大きく依存
している。すなわち、酸素濃度が0.005重量%未満
では粉砕性が極端に悪くなり、この結果磁場中成形時の
配向性も悪くなるためBrが低下している。一方、酸素
濃度が0.03重量%を超えると保磁力が極端に低下し
ている。
As is clear from FIG. 1, the pulverizability of the alloy and the magnetic properties of the permanent magnet depend greatly on the oxygen concentration in the alloy. That is, when the oxygen concentration is less than 0.005% by weight, the pulverizability becomes extremely poor, and as a result, the orientation during molding in a magnetic field also becomes poor, so Br decreases. On the other hand, when the oxygen concentration exceeds 0.03% by weight, the coercive force is extremely reduced.

【0035】実施例3 実施例2と同様な方法により、組成がネオジム31.0
重量%、ボロン0.84重量%、コバルト14.6重量
%、ガリウム1.1重量%、酸素0.03重量%、残部
鉄からなる組成を有する永久磁石合金を得た。
Example 3 By the same method as in Example 2, the composition was 31.0 Neodymium.
A permanent magnet alloy having a composition of wt%, boron 0.84 wt%, cobalt 14.6 wt%, gallium 1.1 wt%, oxygen 0.03 wt% and balance iron was obtained.

【0036】得られた永久磁石合金を用い実施例1と同
様にして粉砕、圧縮成形、焼結を行なった。
The obtained permanent magnet alloy was pulverized, compression molded and sintered in the same manner as in Example 1.

【0037】焼結後の試料を300〜900℃の各温度
で1時間時効処理した後、急冷して保磁力を調べた。こ
の結果を図2に示す。
The sintered sample was aged for 1 hour at each temperature of 300 to 900 ° C. and then rapidly cooled to examine the coercive force. The result is shown in FIG.

【0038】図2から明らかなように、時効温度は保磁
力に大きく影響し、550〜750℃で最も優れた特性
が得られることがわかる。
As is clear from FIG. 2, the aging temperature has a great influence on the coercive force, and it is clear that the best characteristics are obtained at 550 to 750 ° C.

【0039】希土類鉄系永久磁石はNd2 Fe14B型の
正方晶系の強磁性Feリッチ相を主相とし、その他Nd
97Fe3 、Nd95Fe5 等のR成分を80重量%以上含
有する立方晶系の非磁性Rリッチ相、Nd2 Fe7 6
等の正方晶系の非磁性Bリッチ相、更に酸化物等を含有
することが知られている。本願発明のガリウムはRリッ
チ相に濃縮して存在しているようである。
The rare earth iron-based permanent magnet has an Nd 2 Fe 14 B type tetragonal ferromagnetic Fe-rich phase as a main phase, and other Nd.
Nd 2 Fe 7 B 6 which is a cubic non-magnetic R-rich phase containing 80% by weight or more of R components such as 97 Fe 3 and Nd 95 Fe 5.
It is known to contain a tetragonal non-magnetic B-rich phase such as, and an oxide. It seems that the gallium of the present invention is concentrated in the R-rich phase.

【0040】[0040]

【発明の効果】以上詳述した如く本発明によれば、高い
保磁力、(BH)max を有する希土類鉄系の永久磁石を
安定して得ることができ、工業的価値が極めて大なるも
のである。
As described above in detail, according to the present invention, it is possible to stably obtain a rare earth iron-based permanent magnet having a high coercive force and (BH) max, which is extremely industrially valuable. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の永久磁石における酸素濃
度と、粉砕時間、残留磁束密度、保磁力及び最大エネル
ギー積との関係を示す特性図。
FIG. 1 is a characteristic diagram showing a relationship between oxygen concentration, a pulverization time, a residual magnetic flux density, a coercive force, and a maximum energy product in a permanent magnet of Example 1 of the present invention.

【図2】 本発明の実施例2の永久磁石における時効温
度と保磁力との関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between an aging temperature and a coercive force in a permanent magnet of Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猪俣 浩一郎 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichiro Inomata 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 10〜40重量%のR(ただし、RはY
及び希土類元素から選ばれた少なくとも1種)、0.1
〜8重量%の硼素、13重量%以下のガリウム、残部が
主として鉄からなる組成を有する永久磁石合金を出発原
料とし、該合金を粉砕、磁場中プレス、焼結することを
特徴とする永久磁石の製造方法。
1. 10 to 40% by weight of R (where R is Y
And at least one selected from rare earth elements), 0.1
-8% by weight of boron, 13% by weight or less of gallium, the balance being a permanent magnet alloy having a composition mainly composed of iron as a starting material, and the alloy is crushed, pressed in a magnetic field, and sintered. Manufacturing method.
【請求項2】 前記永久磁石合金中の酸素濃度が0.0
05〜0.03重量%であることを特徴とする請求項1
記載の永久磁石の製造方法。
2. The oxygen concentration in the permanent magnet alloy is 0.0
05-0.03% by weight.
A method for producing the permanent magnet described.
【請求項3】 前記永久磁石合金中がCoを30重量%
以下含有することを特徴とする請求項1記載の永久磁石
の製造方法。
3. The permanent magnet alloy contains 30% by weight of Co.
The method for producing a permanent magnet according to claim 1, wherein the permanent magnet is contained below.
【請求項4】 Gaの90重量%以下をAlで置換する
ことを特徴とする請求項1乃至3に記載の永久磁石の製
造方法。
4. The method for producing a permanent magnet according to claim 1, wherein 90% by weight or less of Ga is replaced with Al.
【請求項5】 10〜40重量%のR(ただし、RはY
及び希土類元素から選ばれた少なくとも1種)、0.1
〜8重量%の硼素、13重量%以下のガリウム、残部が
主として鉄からなる組成を有する永久磁石合金を出発原
料とし、該合金を粉砕、磁場中プレス、焼結した後、5
50〜750℃の温度で時効処理することを特徴とする
請求項1記載の永久磁石の製造方法。
5. 10 to 40% by weight of R (where R is Y
And at least one selected from rare earth elements), 0.1
-8% by weight boron, 13% by weight or less gallium, the balance being a permanent magnet alloy having a composition mainly composed of iron as a starting material, and the alloy was crushed, pressed in a magnetic field and sintered, and then 5
The method for producing a permanent magnet according to claim 1, wherein the aging treatment is performed at a temperature of 50 to 750 ° C.
【請求項6】 前記永久磁石合金中の酸素濃度が0.0
05〜0.03重量%であることを特徴とする請求項5
記載の永久磁石の製造方法。
6. The oxygen concentration in the permanent magnet alloy is 0.0
The amount is 05 to 0.03% by weight.
A method for producing the permanent magnet described.
【請求項7】 前記永久磁石合金中はCoを30重量%
以下含有することを特徴とする請求項5記載の永久磁石
の製造方法。
7. The permanent magnet alloy contains 30% by weight of Co.
The method for producing a permanent magnet according to claim 5, further comprising:
【請求項8】 前記永久磁石合金中のGaの90重量%
以下をAlで置換することを特徴とする請求項5乃至7
のいずれかに記載の永久磁石の製造方法。
8. 90% by weight of Ga in the permanent magnet alloy
8. The following are replaced by Al:
The method for producing a permanent magnet according to any one of 1.
JP5300773A 1993-11-08 1993-11-08 Manufacturing method of permanent magnet Expired - Fee Related JP2868062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300773A JP2868062B2 (en) 1993-11-08 1993-11-08 Manufacturing method of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300773A JP2868062B2 (en) 1993-11-08 1993-11-08 Manufacturing method of permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62041364A Division JP2577373B2 (en) 1986-06-12 1987-02-26 Sintered permanent magnet

Publications (2)

Publication Number Publication Date
JPH0722227A true JPH0722227A (en) 1995-01-24
JP2868062B2 JP2868062B2 (en) 1999-03-10

Family

ID=17888920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300773A Expired - Fee Related JP2868062B2 (en) 1993-11-08 1993-11-08 Manufacturing method of permanent magnet

Country Status (1)

Country Link
JP (1) JP2868062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
CN103812281A (en) * 2014-03-01 2014-05-21 南通万宝实业有限公司 Preparing process for built-up magnet for energy-saving permanent magnet alternating current synchronous motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221550A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS60238448A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS60238447A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS60243247A (en) * 1984-05-15 1985-12-03 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS62136558A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material
JPS62136551A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221550A (en) * 1984-04-18 1985-11-06 Seiko Epson Corp Rare earth permanent magnet
JPS60238448A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS60238447A (en) * 1984-05-14 1985-11-27 Seiko Epson Corp Permanent magnet containing rare earth element
JPS60243247A (en) * 1984-05-15 1985-12-03 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS62136558A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material
JPS62136551A (en) * 1985-12-10 1987-06-19 Daido Steel Co Ltd Permanent magnet material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199690B2 (en) 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
CN103812281A (en) * 2014-03-01 2014-05-21 南通万宝实业有限公司 Preparing process for built-up magnet for energy-saving permanent magnet alternating current synchronous motor

Also Published As

Publication number Publication date
JP2868062B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPH0216368B2 (en)
EP0216254A1 (en) Permanent magnet
JP2003193208A (en) Magnet material and production method therefor
JPH0685369B2 (en) Permanent magnet manufacturing method
JP2537189B2 (en) permanent magnet
JP3296507B2 (en) Rare earth permanent magnet
JP2747236B2 (en) Rare earth iron permanent magnet
JP2868062B2 (en) Manufacturing method of permanent magnet
JP2577373B2 (en) Sintered permanent magnet
JPS62291903A (en) Permanent magnet and manufacture of the same
JPS6318603A (en) Permanent magnet
JPH0418441B2 (en)
JPH0583627B2 (en)
JP2825449B2 (en) Manufacturing method of permanent magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH06112019A (en) Nitride magnetic material
JPH0815123B2 (en) permanent magnet
JP3255593B2 (en) Manufacturing method of sintered permanent magnet with good thermal stability
JPH07120575B2 (en) Permanent magnet and manufacturing method thereof
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
JPS6247454A (en) Permanent magnet alloy
JPH055362B2 (en)
JPH06163228A (en) Nitride magnetic powder and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees