JPH07220734A - Manufacture of gas diffusion electrode - Google Patents

Manufacture of gas diffusion electrode

Info

Publication number
JPH07220734A
JPH07220734A JP6009290A JP929094A JPH07220734A JP H07220734 A JPH07220734 A JP H07220734A JP 6009290 A JP6009290 A JP 6009290A JP 929094 A JP929094 A JP 929094A JP H07220734 A JPH07220734 A JP H07220734A
Authority
JP
Japan
Prior art keywords
gas diffusion
carbon black
sheet
polytetrafluoroethylene
diffusion electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6009290A
Other languages
Japanese (ja)
Inventor
Takuya Moriga
卓也 森賀
Isao Hirata
勇夫 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6009290A priority Critical patent/JPH07220734A/en
Publication of JPH07220734A publication Critical patent/JPH07220734A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a gas diffusion electrode having high gas diffusibility for a solid high polymer electrolyte fuel cell by using a porous metal plate to hot press a specific sheet-shaped reaction layer on a specific sheet-shaped gas diffusion layer. CONSTITUTION:Water repellent carbon black is mixed with polytetrafluoroethylene and a carbon of graphite system, to add solvent naphtha and surface active agent rolled by a roll method, and a 6mm thick reserved molded gas diffusion layer sheet is obtained. Hydrophilic carbon black, water repellent carbon black and polytetrafluoroethylene are mixed further rolled by a roll method by adding solvent naphtha, and a 0.3mm thick preliminary molded reaction layer sheet is prepared. Both the sheets are lamination rolled to 0.7mm thickness and heated to remove a surface active agent. This sheet 4 is superposed on a porous metal plate 1, formed of porous metal thin film 2 and metal mesh layer-built sintered body 2, and hot pressed to obtain a 0.65 to 0.7mm thick gas diffusion electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体高分子電解質型燃料
電池に用いるガス拡散電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a gas diffusion electrode used in a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】従来の固体高分子電解質型燃料電池用ガ
ス拡散電極の製造法としては親水性及び疎水性のカーボ
ンブラックとポリ四弗化エチレンよりなる反応層原料粉
末にソルベントを配合して圧延シート成形したものと、
疎水性カーボンブラックとポリ四弗化エチレンよりなる
拡散層原料粉末にソルベントナフサを配合し圧延シート
成形したものを積層し、更に繰返し圧延しシート状に成
形したものがある。
2. Description of the Related Art A conventional method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell is to mix a solvent into a reaction layer raw material powder made of hydrophilic and hydrophobic carbon black and polytetrafluoroethylene and roll it. Sheet molded
There is a product obtained by blending solvent naphtha with a raw material powder for a diffusion layer composed of hydrophobic carbon black and polytetrafluoroethylene, rolled into a sheet, laminated, and repeatedly rolled into a sheet.

【0003】[0003]

【発明が解決しようとする課題】従来のガス拡散電極の
製造法はカーボンブラック又は親水性及び撥水性のカー
ボンブラック、ポリ四弗化エチレンの混合物にソルベン
トナフサを溶剤として加え、ロールなどにより繰返し圧
延し、シート状にするためガス拡散通路がつぶされる結
果ガス拡散性が低下し、燃料電池の性能が低下するとい
う問題があった。
A conventional method for producing a gas diffusion electrode is to add a solvent naphtha as a solvent to carbon black or a mixture of hydrophilic and water-repellent carbon black and polytetrafluoroethylene, and repeatedly roll it by a roll or the like. However, since the sheet is formed into a sheet shape, the gas diffusion passage is crushed, resulting in a decrease in gas diffusivity and a problem in that the performance of the fuel cell is deteriorated.

【0004】そこで、ガス拡散性を向上させ、燃料電池
の性能を向上させるために本発明者らは先に撥水性カー
ボンブラックとポリ四弗化エチレンからなるガス拡散層
中に炭素繊維を混入させたガス拡散電極(特願平5−2
24218号)や多孔性炭素質基材の片面に反応層を他
面に拡散層粉末を担持してなるガス拡散電極(特願平4
−203277号)等を提案している。これらのガス拡
散電極の製造工程のプレス工程において、ガス拡散性を
向上したためにガス拡散電極中に空隙が多く存在するた
めに、プレスにより空隙が圧縮され、プレス解除時に圧
縮された空隙中の空気の解放によりガス拡散電極が破裂
損傷することがあり、製造上の歩留りが悪いものであっ
た。
Therefore, in order to improve the gas diffusibility and the performance of the fuel cell, the present inventors first mixed carbon fibers into the gas diffusion layer composed of water-repellent carbon black and polytetrafluoroethylene. Gas diffusion electrode (Japanese Patent Application No. 5-2
No. 24218) or a porous carbonaceous base material, and a gas diffusion electrode having a reaction layer on one surface and a diffusion layer powder on the other surface (Japanese Patent Application No. 4 (1999) -242242).
No. -203277) is proposed. In the pressing step of the manufacturing process of these gas diffusion electrodes, since there are many voids in the gas diffusion electrode due to improved gas diffusivity, the voids are compressed by the press, and the air in the voids compressed when releasing the press The gas diffusion electrode may be ruptured and damaged due to the release of the gas, and the production yield was poor.

【0005】本発明は上記技術水準に鑑み、従来のプレ
ス工程で発生する不具合を解消した固体高分子電解質型
燃料電池用ガス拡散電極の製造方法を提供しようとする
ものである。
In view of the above-mentioned state of the art, the present invention aims to provide a method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell, which solves the problems that occur in the conventional pressing process.

【0006】[0006]

【課題を解決するための手段】本発明は (1)撥水性カーボンブラック、ポリ四弗化エチレンに
炭素繊維を混入してなるシート状のガス拡散層上に、親
水性カーボンブラック、撥水性カーボンブラック及びポ
リ四弗化エチレンからなるシート状の反応層を多孔質金
属板を用いてホットプレスすることを特徴とするガス拡
散電極の製造方法。(第1発明) (2)多孔質炭素基材の一方の面に親水性カーボンブラ
ック、撥水性カーボンブラック及びポリ四弗化エチレン
からなる反応層原料粉末を、反対の面に撥水性カーボン
ブラック、ポリ四弗化エチレンからなる拡散層原料粉末
を担持させ、その後冷間プレス工程及びそれに続くホッ
トプレス工程を多孔質金属板を用いて行なうことを特徴
とするガス拡散電極の製造方法。(第2発明)である。
Means for Solving the Problems The present invention includes (1) hydrophilic carbon black and water-repellent carbon on a sheet-like gas diffusion layer formed by mixing carbon fibers into water-repellent carbon black and polytetrafluoroethylene. A method for producing a gas diffusion electrode, comprising hot pressing a sheet-like reaction layer made of black and polytetrafluoroethylene using a porous metal plate. (First invention) (2) Raw material powder for a reaction layer comprising hydrophilic carbon black, water-repellent carbon black and polytetrafluoroethylene on one surface of a porous carbon substrate, water-repellent carbon black on the other surface, A method for producing a gas diffusion electrode, comprising supporting a raw material powder for a diffusion layer made of polytetrafluoroethylene, and then performing a cold pressing step and a subsequent hot pressing step using a porous metal plate. (Second invention)

【0007】本発明でいう撥水性カーボンブラックとは
アセチレンブラックという分類に属するもので、代表的
なものとしてはデンカブラック(電気化学工業株式会社
製)があげられ、親水性カーボンブラックとはファーネ
スブラックという分類に属するもので、上記撥水性カー
ボンブラックに対して、カーボンブラックの表面官能基
(−OH基、−COOH基、=O基など)が多いため親
水性を有するものであって、代表的なものとしては Vul
can XC72R(Cabot 社製)があげられる。しかしな
がら、本発明にいう撥水性又は親水性カーボンブラック
は上記代表のものに限定されるものではない。
The water-repellent carbon black referred to in the present invention belongs to the category of acetylene black, and representative one is Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.), and hydrophilic carbon black is furnace black. The water-repellent carbon black has many surface functional groups (—OH group, —COOH group, ═O group, etc.) with respect to the water-repellent carbon black, and thus has hydrophilicity. Vul
The can XC72R (manufactured by Cabot) can be mentioned. However, the water repellent or hydrophilic carbon black referred to in the present invention is not limited to the above representatives.

【0008】本発明の第1発明におけるガス拡散層は圧
延シートの成形上及びガス通路が確保され、かつ生成水
除去が可能な通路が保たれる上から、重量比で撥水性カ
ーボンブラック/ポリ四弗化エチレン=80/20〜5
0/50、好ましくは70/30〜60/40、(撥水
性カーボンブラック+ポリ四弗化エチレン)/炭素繊維
=90/10〜50/50、好ましくは80/20〜6
0/40であるのがよく、したがって全体としては撥水
性カーボンブラック/ポリ四弗化エチレン/炭素繊維=
70/18/10〜25/25/50、好ましくは56
/24/20〜36/24/40とするのがよい。
The gas diffusion layer according to the first aspect of the present invention has a weight ratio of water-repellent carbon black / poly in terms of forming a rolled sheet, ensuring a gas passage, and keeping a passage capable of removing generated water. Tetrafluoroethylene = 80 / 20-5
0/50, preferably 70/30 to 60/40, (water repellent carbon black + polytetrafluoroethylene) / carbon fiber = 90/10 to 50/50, preferably 80/20 to 6
It is preferably 0/40, so overall water repellent carbon black / polytetrafluoroethylene / carbon fiber =
70/18/10 to 25/25/50, preferably 56
/ 24/20 to 36/24/40 is preferable.

【0009】また、本発明の第1発明でいう炭素繊維と
は炭素繊維の原糸をカットしたチョップ又はミルドと呼
ばれるもので、平均長さは0.1〜5mm、繊維径は1
0〜20μmであり、炭素系と黒鉛系の2種があり、そ
れぞれ炭素含有率min95wt%、min99%、体
積固有抵抗10-2〜10-3Ωcmである。好ましくは黒
鉛系で平均繊維長さ:0.1〜0.5mm、繊維径:1
0〜15μmのものが使用される。
The carbon fiber referred to in the first aspect of the present invention is a chop or milled product obtained by cutting a raw fiber of carbon fiber, having an average length of 0.1 to 5 mm and a fiber diameter of 1
It is 0 to 20 μm, and there are two types of carbon type and graphite type, and the carbon content rates are min95 wt% and min99%, respectively, and the volume resistivity is 10 −2 to 10 −3 Ωcm. Preferably, it is a graphite type and the average fiber length is 0.1 to 0.5 mm and the fiber diameter is 1
Those having a thickness of 0 to 15 μm are used.

【0010】本発明の第1発明、第2発明でいう反応層
は触媒が担持され親水部を有する上及びガス通路が確保
され、かつ生成水が除去できるように撥水部やその通路
が確保される上から、重量比で親水性カーボンブラック
/撥水性カーボンブラック=90/10〜40/60、
好ましくは70/30〜50/50で、(親水性カーボ
ンブラック+撥水性カーボンブラック)/ポリ四弗化エ
チレン=90/10〜50/50、好ましくは70/3
0〜60/40とするのがよい。
In the first and second inventions of the present invention, the reaction layer has a hydrophilic portion on which a catalyst is supported and a gas passage is secured, and a water repellent portion and its passage are secured so that generated water can be removed. From the above, hydrophilic carbon black / water repellent carbon black = 90 / 10-40 / 60 in weight ratio,
Preferably 70/30 to 50/50, (hydrophilic carbon black + water repellent carbon black) / polytetrafluoroethylene = 90/10 to 50/50, preferably 70/3
It is good to set it to 0 to 60/40.

【0011】本発明の第1発明、第2発明で使用する撥
水性カーボンブラック及び親水性カーボンブラックとし
ては平均粒径:500Å、ストラクチャー径:約0.5
μmのものを、またポリ四弗化エチレンとしては粒子
径:0.2〜0.4μmのものを使用することが好まし
い。
The water-repellent carbon black and hydrophilic carbon black used in the first and second inventions of the present invention have an average particle diameter of 500Å and a structure diameter of about 0.5.
It is preferable to use a polytetrafluoroethylene having a particle diameter of 0.2 to 0.4 μm.

【0012】本発明の第2発明でいう多孔質炭素基材と
しては体積固有抵抗(Ωcm):10-3〜10-1、好ま
しくは10-2〜10-3、平均気孔径(μm):1〜20
0、好ましくは30〜150、気孔率(%):20〜8
0、好ましくは50〜70、厚み(mm):0.5〜
5、好ましくは0.7〜2を満足するカーボン材が用い
られ、その例としてはポーラスカーボン、カーボンペー
パー、炭素繊維織物などがあげられる。
The porous carbon substrate referred to in the second aspect of the present invention has a volume resistivity (Ωcm): 10 -3 to 10 -1 , preferably 10 -2 to 10 -3 , and an average pore diameter (μm): 1-20
0, preferably 30 to 150, porosity (%): 20 to 8
0, preferably 50 to 70, thickness (mm): 0.5 to
A carbon material satisfying 5, preferably 0.7 to 2, is used, and examples thereof include porous carbon, carbon paper, and carbon fiber woven fabric.

【0013】また、本発明の第2発明における反応層原
料粉末、拡散層原料粉末を多孔質炭素基材に担持するに
は、それぞれの原料粉末をふるいを介して多孔質炭素基
材にふりかけることによってなされる。
Further, in order to support the reaction layer raw material powder and the diffusion layer raw material powder in the second invention of the present invention on the porous carbon base material, the respective raw material powders are sprinkled on the porous carbon base material through a sieve. Done by

【0014】本発明の第1発明、第2発明で用いる多孔
質金属板としては好ましくは金属不織布の下側に、上層
から下層に向って細孔径が徐々に大きくなるような複数
枚の金網を積層、加圧、焼結した板状のものがあげられ
る。ガス拡散電極をホットプレスするために、多孔質金
属板の金属不織布は細孔径が50μm以下、開口率が1
0〜40%の平滑なものが好ましい。多孔質金属板の金
網は金属不織布を補強のためのものであるのでプレス工
程で多孔質金属板として使用しうる強度を有するような
ものが使用される。これら金属不織布、金網の材質も限
定的なものではないが、オーステナイト系ステンレス鋼
(SUS304,304L,316,316Lなど)、
ハステロイのようなニッケル基合金系材料が用いられ
る。
As the porous metal plate used in the first and second inventions of the present invention, preferably, a plurality of metal nets whose pore diameters gradually increase from the upper layer to the lower layer are formed on the lower side of the metal nonwoven fabric. Examples include plate-like materials that are laminated, pressed and sintered. In order to hot press the gas diffusion electrode, the metal nonwoven fabric of the porous metal plate has a pore diameter of 50 μm or less and an aperture ratio of 1
It is preferably 0 to 40% smooth. Since the metal wire mesh of the porous metal plate is for reinforcing the metal non-woven fabric, a metal mesh having strength enough to be used as a porous metal plate in the pressing step is used. The materials of these metallic non-woven fabrics and wire meshes are not limited, but austenitic stainless steel (SUS304, 304L, 316, 316L, etc.),
A nickel-based alloy-based material such as Hastelloy is used.

【0015】[0015]

【作用】本発明によれば、ガス拡散電極製造工程中のプ
レス工程においては多孔質金属板を用いることにより、
ガス拡散電極中の空隙に存在する空気を逃がし、プレス
解除時におけるガス拡散電極の破裂、損傷を防ぐことが
できる。
According to the present invention, by using the porous metal plate in the pressing step during the gas diffusion electrode manufacturing process,
Air existing in the voids in the gas diffusion electrode can be released to prevent the gas diffusion electrode from bursting or being damaged when the press is released.

【0016】[0016]

【実施例】以下、実施例により本発明を具体的に説明す
る。 (実施例1)この実施例で用いる多孔質金属板の構造を
図1に示す。上記多孔質金属板1は多孔質金属薄膜2と
してSUS304製の金属不織布を用い、その下側に上
層から下層へ向って細孔径が徐々に大きくなるように複
数枚のSUS304製の金網を積層、加圧、焼結した板
状の金網の積層焼結体3であり、この実施例では金属不
織布として2μベキポア(商品名、目付量:300g/
2 )、補強の金網は金属不織布の下側に上層から下層
へ向って200、100、40、40メッシュの金網を
積層し加圧焼結したものであり、大きさは300mm2
のものを用いた。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 The structure of the porous metal plate used in this example is shown in FIG. The porous metal plate 1 uses a metal non-woven fabric made of SUS304 as the porous metal thin film 2, and a plurality of SUS304 wire meshes are laminated on the lower side thereof so that the pore diameter gradually increases from the upper layer to the lower layer, This is a laminated sintered body 3 of a plate-like wire mesh that has been pressed and sintered, and in this example, as a metallic nonwoven fabric, 2 μ Bekipore (trade name, unit weight: 300 g /
m 2 ), the reinforcing wire mesh is formed by laminating a wire mesh of 200, 100, 40, 40 mesh from the upper layer to the lower layer on the lower side of the metal non-woven fabric, and press-sintering, and the size is 300 mm 2
I used the one.

【0017】平均粒径:420Åの撥水性カーボンブラ
ック(デンカブラック)に、平均粒径:0.3μmのポ
リ四弗化エチレン及び黒鉛系で平均糸長:0.13m
m、繊維径:13μmの炭素繊維を、重量比50:4
0:20の割合で混合し、それにソルベントナフサを
1:1.6の比率で混合し、さらに界面活性剤を添加し
たものをロール法で圧延成形し、6mm厚の予備成形ガ
ス拡散層シートを得た。また、平均粒径:400Åの親
水性カーボンブラック( Valcan XC72R)と平均粒
径:420Åの撥水性カーボンブラック(デンカブラッ
ク)と平均粒径:0.3μmのポリ四弗化エチレンを重
量比50:20:30の割合で混合し、それにソルベン
トナフサを1:1.8の割合で混合してロール法により
圧延し、0.3mm厚の予備成形反応層シートを得た。
この6mm厚の予備成形ガス拡散層シートと0.3mm
厚の予備成形反応層シートを積層し、ロール法により更
に0.7mm厚まで圧延し、大きさ250mm2 の圧延
シートを得た。
Water-repellent carbon black (Denka Black) having an average particle diameter of 420Å, polytetrafluoroethylene having an average particle diameter of 0.3 μm and a graphite type, and an average yarn length of 0.13 m.
m, fiber diameter: 13 μm carbon fiber, weight ratio 50: 4
The mixture was mixed at a ratio of 0:20, solvent naphtha was mixed at a ratio of 1: 1.6, and a surfactant was added thereto, and the mixture was roll-molded by a roll method to obtain a 6 mm-thick preformed gas diffusion layer sheet. Obtained. Further, hydrophilic carbon black (Valcan XC72R) having an average particle size of 400Å, water repellent carbon black (Denka black) having an average particle size of 420Å and polytetrafluoroethylene having an average particle size of 0.3 μm are used in a weight ratio of 50 :. The mixture was mixed at a ratio of 20:30, solvent naphtha was mixed at a ratio of 1: 1.8, and the mixture was rolled by a roll method to obtain a preformed reaction layer sheet having a thickness of 0.3 mm.
This 6 mm thick preformed gas diffusion layer sheet and 0.3 mm
Thick preformed reaction layer sheets were laminated and rolled to a thickness of 0.7 mm by a roll method to obtain a rolled sheet having a size of 250 mm 2 .

【0018】次に、上記方法で得た圧延シートを電気炉
中で加熱して脱界面活性剤した後、該圧延シートを図1
で説明した多孔質金属薄膜2と金網の積層焼結体3より
なる多孔質金属板1を用いて、図2に示すようなホット
プレス装置で380℃×50kg/cm2 ×3sec.
でホットプレスした。なお、図2において、4はホット
プレス装置で更に圧延される上記の圧延シートを示す。
このホットプレス装置によって、後記表1に示すように
損傷なく透過性の優れた0.65〜0.7mm厚のガス
拡散電極が得られた。
Next, the rolled sheet obtained by the above method is heated in an electric furnace to remove the surfactant, and then the rolled sheet is subjected to the process shown in FIG.
Using the porous metal plate 1 composed of the porous metal thin film 2 and the laminated sintered body 3 of the wire mesh described in 1., a hot press machine as shown in FIG. 2 was used at 380 ° C. × 50 kg / cm 2 × 3 sec.
Hot-pressed at. In addition, in FIG. 2, 4 shows the above-mentioned rolled sheet further rolled by a hot press machine.
With this hot press machine, as shown in Table 1 below, a gas diffusion electrode having a thickness of 0.65 to 0.7 mm and excellent in permeability was obtained without damage.

【0019】(比較例1)実施例1で得られた圧延シー
ト4を図3に示すようなホットプレス装置によって、1
0mm厚のSUS薄板(又は真ちゅう薄板)5を用いて
ガス拡散電極を得た。このガス拡散電極は後記表1に示
すようにガス透過性に劣ったものであった。
(Comparative Example 1) The rolled sheet 4 obtained in Example 1 was placed in a hot pressing machine as shown in FIG.
A gas diffusion electrode was obtained using a 0 mm thick SUS thin plate (or brass thin plate) 5. This gas diffusion electrode was inferior in gas permeability as shown in Table 1 below.

【0020】(実施例2)平織り1K(K:炭素繊維中
のフィラメントの数、K=1000)、厚み:0.5m
m、目付:220g/m2 の炭素繊維織物を基材とし、
実施例1と同様な方法で平均粒径:400Åの親水性カ
ーボンブラック( Valcan XC72R)、平均粒径:4
20Åの撥水性カーボンブラック(デンカブラック)、
平均粒径:0.3μmのポリ四弗化エチレンを重量比3
5:35:30の割合で混合乾燥した反応層原料粉末及
び平均粒径:420Åの撥水性カーボンブラック(デン
カブラック)、平均粒径:0.3μmのポリ四弗化エチ
レンを重量比65:35の割合で混合乾燥した拡散層原
料粉末をそれぞれミルで微粉砕し、先ずステンレス薄板
の表面に100メッシュの篩を介して拡散層原料粉末を
150g/m2 の割合で均等にふりかけ、その上に炭素
繊維織物を重ね、更にその織物の上に、同様に100メ
ッシュの篩を介して反応層原料粉末を60g/m2 の割
合でふりかけた。
Example 2 Plain weave 1K (K: number of filaments in carbon fiber, K = 1000), thickness: 0.5 m
m, basis weight: 220 g / m 2 carbon fiber woven fabric as a base material,
In the same manner as in Example 1, hydrophilic carbon black (Valcan XC72R) having an average particle size of 400Å, average particle size: 4
20Å water repellent carbon black (Denka Black),
Average particle size: 0.3 μm polytetrafluoroethylene weight ratio 3
A reaction layer raw material powder mixed and dried at a ratio of 5:35:30, water-repellent carbon black (Denka black) having an average particle size of 420Å, and polytetrafluoroethylene having an average particle size of 0.3 μm in a weight ratio of 65:35. The diffusion layer raw material powder mixed and dried at a ratio of 1 is finely pulverized by a mill, and the diffusion layer raw material powder is sprinkled evenly on the surface of the stainless thin plate at a rate of 150 g / m 2 through a 100-mesh sieve. A carbon fiber woven fabric was overlaid, and the reaction layer raw material powder was further sprinkled on the woven fabric through a 100-mesh sieve at a rate of 60 g / m 2 .

【0021】その後、実施例1で説明した多孔質金属板
を用いて冷間成形(50kg/cm 2 )し、さらに電気
炉中で加熱して脱界面活性剤した後、同様な多孔質金属
板を用いてホットプレス(380℃×50kg/cm2
×3sec)することによって損傷なく後記表1に示す
ようなガス透過性の優れたガス拡散電極を得た。
Then, the porous metal plate described in Example 1 was used.
Cold forming using (50 kg / cm 2) And then electric
After heating in a furnace to remove the surfactant, a similar porous metal
Hot pressing using a plate (380 ° C x 50 kg / cm2
× 3 sec) is shown in Table 1 below without damage.
A gas diffusion electrode having such excellent gas permeability was obtained.

【0022】(比較例2)実施例2と同じ炭素繊維織物
基材の両面に、実施例2と同じ反応層原料粉末、拡散層
原料粉末を担持させた後、冷間成形(50kg/c
2 )する際に、図3に示すようなSUS薄板(1mm
厚)を用いて行ったところ、プレス解除時に担持した原
料粉体が飛散し、ガス拡散電極の製造は不可能であっ
た。
Comparative Example 2 The same raw material powder for reaction layer and raw material powder for diffusion layer as in Example 2 were carried on both sides of the same carbon fiber woven substrate as in Example 2, and then cold-formed (50 kg / c).
m 2 ), the SUS thin plate (1 mm
However, it was impossible to manufacture a gas diffusion electrode because the raw material powder carried when the press was released was scattered.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明によれば、固体高分子電解質型燃
料電池用の高いガス拡散性を有するガス拡散電極を提供
することができる。
According to the present invention, it is possible to provide a gas diffusion electrode having high gas diffusivity for a solid polymer electrolyte fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス拡散電極を製造する際に用いられ
る多孔質金属板の断面模式図。
FIG. 1 is a schematic cross-sectional view of a porous metal plate used when manufacturing the gas diffusion electrode of the present invention.

【図2】本発明方法における多孔質金属板を用いる冷間
又はホットプレス機の概略説明図。
FIG. 2 is a schematic explanatory view of a cold or hot press using a porous metal plate in the method of the present invention.

【図3】従来法における冷間又はホットプレス機の概略
説明図。
FIG. 3 is a schematic explanatory view of a cold or hot press machine in a conventional method.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 撥水性カーボンブラック、ポリ四弗化エ
チレンに炭素繊維を混入してなるシート状のガス拡散層
上に、親水性カーボンブラック、撥水性カーボンブラッ
ク及びポリ四弗化エチレンからなるシート状の反応層を
多孔質金属板を用いてホットプレスすることを特徴とす
るガス拡散電極の製造方法。
1. A sheet comprising hydrophilic carbon black, water-repellent carbon black and polytetrafluoroethylene on a sheet-like gas diffusion layer comprising water-repellent carbon black and polytetrafluoroethylene mixed with carbon fibers. A method for producing a gas diffusion electrode, characterized in that the reaction layer having a circular shape is hot-pressed using a porous metal plate.
【請求項2】 多孔質炭素基材の一方の面に親水性カー
ボンブラック、撥水性カーボンブラック及びポリ四弗化
エチレンからなる反応層原料粉末を、反対の面に撥水性
カーボンブラック、ポリ四弗化エチレンからなる拡散層
原料粉末を担持させ、その後冷間プレス工程及びそれに
続くホットプレス工程を多孔質金属板を用いて行なうこ
とを特徴とするガス拡散電極の製造方法。
2. A reaction layer raw material powder comprising hydrophilic carbon black, water repellent carbon black and polytetrafluoroethylene on one surface of a porous carbon substrate, and water repellent carbon black and polytetrafluoride on the other surface. A method for producing a gas diffusion electrode, which comprises supporting a diffusion layer raw material powder made of ethylene oxide, and then performing a cold pressing step and a subsequent hot pressing step using a porous metal plate.
JP6009290A 1994-01-31 1994-01-31 Manufacture of gas diffusion electrode Withdrawn JPH07220734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6009290A JPH07220734A (en) 1994-01-31 1994-01-31 Manufacture of gas diffusion electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6009290A JPH07220734A (en) 1994-01-31 1994-01-31 Manufacture of gas diffusion electrode

Publications (1)

Publication Number Publication Date
JPH07220734A true JPH07220734A (en) 1995-08-18

Family

ID=11716352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6009290A Withdrawn JPH07220734A (en) 1994-01-31 1994-01-31 Manufacture of gas diffusion electrode

Country Status (1)

Country Link
JP (1) JPH07220734A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052241A1 (en) * 1997-05-13 1998-11-19 Loughborough University Innovations Limited Current distributors of sintered metals and fuel cells using them
WO2001067532A1 (en) * 2000-03-07 2001-09-13 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
WO2001086738A1 (en) * 2000-04-26 2001-11-15 Kukil Inntot Industries Co., Ltd. Fixture for fuel cell of proton exchange membrane type
WO2002075827A1 (en) * 2001-03-16 2002-09-26 Kth Holding Ab Oxygen reduction electrode
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell
WO2005004260A1 (en) * 2003-07-07 2005-01-13 Revolt Technology As Production of gas diffusion electrodes
KR100474940B1 (en) * 2001-09-28 2005-03-10 마쯔시다덴기산교 가부시키가이샤 Polymer electrolyte fuel cell
US6991869B2 (en) * 1999-05-08 2006-01-31 Lynntech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
KR100791810B1 (en) * 2002-04-01 2008-01-04 한국화학연구원 Method for preparing gas diffusion electrode
WO2008136236A1 (en) * 2007-04-26 2008-11-13 Mitsui Mining & Smelting Co., Ltd. Clad filter material, and method for production of clad filter
JP2009252560A (en) * 2008-04-07 2009-10-29 Asahi Glass Co Ltd Coating liquid for forming gas diffusion layer of solid polymer fuel cell, and forming method of solid polymer fuel cell gas diffusion layer
JP2010092877A (en) * 2003-07-24 2010-04-22 Nissan Motor Co Ltd Current collection structure for fuel battery and solid oxide fuel battery stack
KR100968237B1 (en) * 2005-11-24 2010-07-06 도요타 지도샤(주) Electrically conductive porous body for a fuel cell, fuel cell having same, method of manufacturing same
WO2012026498A1 (en) 2010-08-27 2012-03-01 東邦テナックス株式会社 Conductive sheet and production method for same
US8568939B2 (en) 2006-08-24 2013-10-29 Toyota Jidosha Kabushiki Kaisha Fuel cell including fluid-permeable members of differing thermal resistances with respect to an electrolytic membrane
JP2014216232A (en) * 2013-04-26 2014-11-17 日産自動車株式会社 Gas diffusion layer, method for producing the same and membrane electrode assembly for fuel cell using the gas diffusion layer, and fuel cell
CN116428154A (en) * 2023-03-27 2023-07-14 南方科技大学 Composite gas diffusion layer, preparation method thereof, membrane electrode and compressor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998052241A1 (en) * 1997-05-13 1998-11-19 Loughborough University Innovations Limited Current distributors of sintered metals and fuel cells using them
US6991869B2 (en) * 1999-05-08 2006-01-31 Lynntech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
WO2001067532A1 (en) * 2000-03-07 2001-09-13 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
US6921598B2 (en) 2000-03-07 2005-07-26 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and method of manufacturing the same
WO2001086738A1 (en) * 2000-04-26 2001-11-15 Kukil Inntot Industries Co., Ltd. Fixture for fuel cell of proton exchange membrane type
US7220514B2 (en) 2000-07-03 2007-05-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
WO2002075827A1 (en) * 2001-03-16 2002-09-26 Kth Holding Ab Oxygen reduction electrode
KR100474940B1 (en) * 2001-09-28 2005-03-10 마쯔시다덴기산교 가부시키가이샤 Polymer electrolyte fuel cell
KR100791810B1 (en) * 2002-04-01 2008-01-04 한국화학연구원 Method for preparing gas diffusion electrode
JP2004127566A (en) * 2002-09-30 2004-04-22 Mitsubishi Materials Corp Gas diffusion layer for fuel cell
WO2005004260A1 (en) * 2003-07-07 2005-01-13 Revolt Technology As Production of gas diffusion electrodes
KR101142309B1 (en) * 2003-07-07 2012-05-22 리볼트 테크놀로지 리미티드 Production of gas diffusion electrodes
JP2010092877A (en) * 2003-07-24 2010-04-22 Nissan Motor Co Ltd Current collection structure for fuel battery and solid oxide fuel battery stack
KR100968237B1 (en) * 2005-11-24 2010-07-06 도요타 지도샤(주) Electrically conductive porous body for a fuel cell, fuel cell having same, method of manufacturing same
US7811715B2 (en) * 2005-11-24 2010-10-12 Toyota Jidosha Kabushiki Kaisha Electrically conductive porous body for a fuel cell, fuel cell having same, and method of manufacturing same
US8568939B2 (en) 2006-08-24 2013-10-29 Toyota Jidosha Kabushiki Kaisha Fuel cell including fluid-permeable members of differing thermal resistances with respect to an electrolytic membrane
WO2008136236A1 (en) * 2007-04-26 2008-11-13 Mitsui Mining & Smelting Co., Ltd. Clad filter material, and method for production of clad filter
JPWO2008136236A1 (en) * 2007-04-26 2010-07-29 三井金属鉱業株式会社 Clad filter material and method for producing the clad filter material
JP2009252560A (en) * 2008-04-07 2009-10-29 Asahi Glass Co Ltd Coating liquid for forming gas diffusion layer of solid polymer fuel cell, and forming method of solid polymer fuel cell gas diffusion layer
WO2012026498A1 (en) 2010-08-27 2012-03-01 東邦テナックス株式会社 Conductive sheet and production method for same
US8916310B2 (en) 2010-08-27 2014-12-23 Toho Tenax Co., Ltd. Conductive sheet and production method for same
JP2014216232A (en) * 2013-04-26 2014-11-17 日産自動車株式会社 Gas diffusion layer, method for producing the same and membrane electrode assembly for fuel cell using the gas diffusion layer, and fuel cell
CN116428154A (en) * 2023-03-27 2023-07-14 南方科技大学 Composite gas diffusion layer, preparation method thereof, membrane electrode and compressor

Similar Documents

Publication Publication Date Title
JPH07220734A (en) Manufacture of gas diffusion electrode
JP3549241B2 (en) Electrode for polymer solid electrolyte fuel cell and joined body thereof with polymer solid electrolyte
EP0791974B2 (en) Catalytically active gas diffusion electrodes comprising a nonwoven fibrous structure
US6949308B2 (en) Gas diffusion substrate
JP5041459B2 (en) Gas diffusion layer for fuel cells
JP4738569B2 (en) Non-woven fiber web
DE112006002719T5 (en) Ternary nanocatalyst and method of preparation
JP2003511828A (en) Electrochemical electrode for fuel cell
JP2001283865A (en) Electrode catalyst layer, film-electrode complex and their manufacturing method and battery using same
US11682770B2 (en) Catalyst layer for fuel cell, membrane electrode assembly, and fuel cell
EP2396842B1 (en) Gas diffusion substrate
JP2001283878A (en) Conductive sheet and fuel cell electrode equipped with the sheet
EP1165885B1 (en) Nonwoven web
JP2000353528A (en) Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer
WO2002039526A1 (en) Gas diffusion substrate
EP3260579B1 (en) Method for producing nickel alloy porous body
JP2003036860A (en) Electrode backing and its manufacturing method and fuel cell using the same
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP2001216972A (en) Electrode, membrane-electrode complex and its production as well as fuel cell using these
EP1139470A1 (en) Porous conductive sheet and method for producing the same
JP2004363018A (en) Porous electrode base material for polymer electrolyte fuel cell
JPH0778617A (en) Gas diffusion electrode and manufacture thereof
JP3229025B2 (en) Gas diffusion electrode manufacturing method
WO2013057483A1 (en) Gas diffusion substrate
WO2021131679A1 (en) Membrane electrode assembly for fuel cell, and fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403