JPH0721830A - Manufacture of solid electrolytic membrane - Google Patents

Manufacture of solid electrolytic membrane

Info

Publication number
JPH0721830A
JPH0721830A JP5161276A JP16127693A JPH0721830A JP H0721830 A JPH0721830 A JP H0721830A JP 5161276 A JP5161276 A JP 5161276A JP 16127693 A JP16127693 A JP 16127693A JP H0721830 A JPH0721830 A JP H0721830A
Authority
JP
Japan
Prior art keywords
solid electrolyte
membrane
porous
metal soap
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5161276A
Other languages
Japanese (ja)
Inventor
Makoto Watanabe
誠 渡邉
Yasuhiro Sasaki
康博 佐々木
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5161276A priority Critical patent/JPH0721830A/en
Publication of JPH0721830A publication Critical patent/JPH0721830A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To form a dense membrane on the surface of a porous substrate within a short time and with a lessened number of heat treatments and provide a fuel cell with excellent stability for a long duration wherein peeling of the solid electrolytic membrane of the fuel cell is suppressed. CONSTITUTION:After a porous membrane 2 of a solid electrolyte is formed of none side of a porous substrate 1 to be coated with the membrane by applying a slurry containing a solid electrolyte material powder and then heating the substrate, the porous membrane is immersed in metal soap containing a metal to compose the solid electrolytic material and heated to decompose the metal soap and compose the solid electrolyte and thus make the membrane dense.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池セルなどを製
造する際に、例えば多孔質空気極表面に緻密質な固体電
解質膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a dense solid electrolyte membrane, for example, on the surface of a porous air electrode when manufacturing a fuel cell or the like.

【0002】[0002]

【従来技術】従来より、被成膜体に金属酸化物膜を形成
する方法としては、金属酸化物を含むスラリーを塗布し
た後に熱処理する方法や、化学気相成長法や、物理的気
相成長法などが知られている。一方、燃料電池は、これ
までの水力発電や火力発電に代わる新たな発電システム
として注目され、開発が進められている。
2. Description of the Related Art Conventionally, as a method of forming a metal oxide film on an object to be formed, a method of applying a slurry containing a metal oxide and then heat-treating it, a chemical vapor deposition method, and a physical vapor deposition method. The law is known. On the other hand, fuel cells are drawing attention as a new power generation system that replaces the conventional hydroelectric power generation and thermal power generation, and are being developed.

【0003】図1は、代表的な円筒状の固体電解質型燃
料電池セルの構造を示す斜視図である。通常、このよう
な円筒状燃料電池セルは、LaMnO3 系材料などから
なる多孔質空気極1の表面にY2 3 安定化ZrO
2 (YSZ)などからなる固体電解質層2およびNi−
ZrO2 (Y2 3 含有)等の燃料極層3が形成され
る。
FIG. 1 is a perspective view showing the structure of a typical cylindrical solid oxide fuel cell unit. Usually, such a cylindrical fuel battery cell has Y 2 O 3 -stabilized ZrO on the surface of the porous air electrode 1 made of LaMnO 3 -based material or the like.
2 (YSZ) and other solid electrolyte layers 2 and Ni-
The fuel electrode layer 3 such as ZrO 2 (containing Y 2 O 3 ) is formed.

【0004】そして、発電に際しては、かかるセルを複
数個配列し、空気極1と燃料極層2のいずれか片方と電
気的に接続するように配置されたLaCrO3 系材料か
らなるインターコネクター4によりセル同士が電気的に
接続されて、空気極1側の内部に空気などの酸素含有ガ
スを、燃料極層3側に水素ガスなどの燃料ガスを流すと
1000〜1050℃の温度で発電が行われる。
During power generation, a plurality of such cells are arranged, and an interconnector 4 made of a LaCrO 3 system material is arranged so as to be electrically connected to either one of the air electrode 1 and the fuel electrode layer 2. When the cells are electrically connected to each other and an oxygen-containing gas such as air is supplied to the inside of the air electrode 1 side and a fuel gas such as hydrogen gas is supplied to the fuel electrode layer 3 side, power is generated at a temperature of 1000 to 1050 ° C. Be seen.

【0005】また、多孔質空気極1表面に形成される固
体電解質膜はそれ自体緻密質であることが望ましいが、
一般にはその固体電解質を含有するスラリーを塗布乾燥
して熱処理する方法が知られている。その場合、固体電
解質膜の厚みが比較的大きい場合には、浸漬塗布−乾燥
−熱処理を繰り返すことにより厚みの大きい固体電解質
膜を形成している。
The solid electrolyte membrane formed on the surface of the porous air electrode 1 is preferably dense in itself.
Generally, a method is known in which a slurry containing the solid electrolyte is applied, dried, and heat-treated. In that case, when the thickness of the solid electrolyte membrane is relatively large, the solid electrolyte membrane having a large thickness is formed by repeating the dip coating-drying-heat treatment.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、上記
のような浸漬塗布−乾燥−熱処理を繰り返すことは、固
体電解質膜と多孔質空気極との反応を促進させたり、電
極材料に熱サイクルを経験させることとなるために、電
極が本体有する電極特性を低下させ、ひいては燃料電池
セルの特性を低下させるという問題があった。また、1
000℃を越える高温での焼成工程を繰り返す必要があ
るために工程回数が増加し製造コストを高める要因とな
っていた。
However, repeating the above-mentioned dip coating-drying-heat treatment accelerates the reaction between the solid electrolyte membrane and the porous air electrode, and the electrode material undergoes thermal cycling. Therefore, there is a problem in that the electrode characteristics of the main body of the electrode are deteriorated, and thus the characteristics of the fuel cell are deteriorated. Also, 1
Since it is necessary to repeat the firing process at a high temperature exceeding 000 ° C., the number of processes increases, which is a factor of increasing the manufacturing cost.

【0007】これに対する対策として、浸漬塗布−乾燥
を繰り返した後に、最終的に熱処理する方法も考えられ
るが、かかる方法では、膜厚の不均一性、成膜のコンパ
クションの不均一性から熱処理後に膜が剥離したり亀裂
が生じたりするという問題があった。
As a countermeasure against this, a method of finally performing heat treatment after repeating dip coating-drying is conceivable, but in such a method, after heat treatment, due to nonuniformity of film thickness and nonuniformity of compaction of film formation. There is a problem that the film peels off or cracks occur.

【0008】[0008]

【問題点を解決するための手段】本発明者らは上記問題
点に対して検討を重ねた結果、従来法のスラリーの浸漬
塗布−乾燥−熱処理により形成された固体電解質膜には
空隙が存在するが、この空隙に金属石鹸を含浸させた後
に熱処理すると膜の空隙部に固体電解質が生成すること
により、緻密な膜が形成できることを見出し本発明に至
った。
As a result of repeated studies on the above problems, the present inventors have found that voids are present in the solid electrolyte membrane formed by the conventional slurry dip coating-drying-heat treatment. However, it has been found that a dense film can be formed by forming a solid electrolyte in the voids of the membrane when heat treating after impregnating the voids with a metallic soap, and completed the present invention.

【0009】即ち、本発明の固体電解質膜の製造方法
は、多孔質基体の被成膜面の片面に固体電解質粉末を含
有するスラリーを塗布し乾燥した後に加熱処理して前記
固体電解質からなる多孔質膜を形成した後、該多孔質膜
中に前記固体電解質を形成する金属の金属石鹸を含浸さ
せ、これを焼成することを特徴とするものである。
That is, according to the method for producing a solid electrolyte membrane of the present invention, a slurry containing a solid electrolyte powder is applied to one surface of a surface of a porous substrate on which a film is to be formed, dried, and then heat-treated to form a porous film made of the solid electrolyte. After the porous membrane is formed, the porous membrane is impregnated with a metallic soap of a metal forming the solid electrolyte, and the porous membrane is fired.

【0010】[0010]

【作用】本発明の固体電解質膜の製法は、基体が多孔質
体である場合にその表面に緻密な固体電解質膜を緻密に
形成する場合において有効である。例えば、固体電解質
型燃料電池セルを作製する過程で用いられる多孔質基体
は、開気孔率20〜35%程度で、平均細孔径が1.8
μm〜2.5μm程度である。
The method for producing a solid electrolyte membrane of the present invention is effective when the substrate is a porous body and a dense solid electrolyte membrane is densely formed on the surface thereof. For example, the porous substrate used in the process of producing a solid oxide fuel cell has an open porosity of about 20 to 35% and an average pore diameter of 1.8.
It is about μm to 2.5 μm.

【0011】この多孔質基体表面に浸漬塗布法により固
体電解質膜を形成する場合、1回の浸漬塗布−乾燥−熱
処理では、得られる膜中には多量の気孔が存在し緻密な
膜を形成することができない。そのために、緻密化する
ためには、浸漬塗布−乾燥−熱処理を繰り返す必要があ
る。
When a solid electrolyte membrane is formed on the surface of this porous substrate by a dip coating method, a single dip coating-drying-heat treatment forms a dense film with a large number of pores in the resulting membrane. I can't. Therefore, in order to densify, it is necessary to repeat dip coating-drying-heat treatment.

【0012】これに対して、本発明によれば、1回の浸
漬−塗布−熱処理に形成された多孔質の固体電解質膜の
空隙部に、固体電解質を形成する金属の金属石鹸を含浸
させると金属石鹸が金属元素を溶液状態で含んでいるた
めに、多孔質膜の空隙部に容易に含浸させることができ
る。また、この金属石鹸は350〜500℃程度の低温
で容易に分解して金属酸化物を生成することができる。
そのために多孔質膜の空隙部に金属酸化物を析出するこ
とができ、これを最終的に高温で熱処理することにより
例えば、ZrO2 とY2 3 の固溶が進行し空隙部に固
体電解質を生成することができ、結果として緻密な固体
電解質膜を形成することができる。即ち、本発明の方法
によれば、高温(1000℃以上)熱処理を2回行うこ
とのみで高密度の固体電解質膜を形成することができ
る。
On the other hand, according to the present invention, when the void portion of the porous solid electrolyte membrane formed by one dipping-coating-heat treatment is impregnated with the metallic soap forming the solid electrolyte. Since the metallic soap contains the metallic element in a solution state, it is possible to easily impregnate the void portion of the porous membrane. Moreover, this metal soap can easily decompose at a low temperature of about 350 to 500 ° C. to form a metal oxide.
Therefore, a metal oxide can be deposited in the voids of the porous film, and by finally subjecting this to a heat treatment at a high temperature, for example, solid solution of ZrO 2 and Y 2 O 3 progresses and the solid electrolyte is deposited in the voids. Can be generated, and as a result, a dense solid electrolyte membrane can be formed. That is, according to the method of the present invention, a high-density solid electrolyte membrane can be formed only by performing high-temperature (1000 ° C. or higher) heat treatment twice.

【0013】これにより、燃料電池セルの固体電解質膜
の形成において、空気極などに与える熱サイクルを極力
少なくすることができるために、空気極などに対する悪
影響を低減し、信頼性の高い燃料電池セルを製造するこ
とができる。
As a result, in the formation of the solid electrolyte membrane of the fuel cell, the heat cycle given to the air electrode and the like can be minimized, so that the adverse effect on the air electrode and the like can be reduced and the fuel cell with high reliability can be obtained. Can be manufactured.

【0014】[0014]

【実施例】次に、本発明を円筒型燃料電池セルの固体電
解質膜を形成する場合を例にして具体的に説明する。円
筒型燃料電池セルの支持管は、開気孔率が20〜35
%、平均細孔径が1.8〜2.5μm程度のLaMnO
3 などからなる円筒状基体からなり、この支持管は空気
極を兼ねたものとなっている。また、この基体の一端は
閉じられている。
EXAMPLES Next, the present invention will be specifically described by taking the case of forming a solid electrolyte membrane of a cylindrical fuel cell as an example. The supporting tube of the cylindrical fuel cell has an open porosity of 20 to 35.
%, LaMnO having an average pore diameter of about 1.8 to 2.5 μm
It consists of a cylindrical base made of 3 etc., and this support tube also serves as the air electrode. Also, one end of this base is closed.

【0015】本発明によれば、まず、上記多孔質基体の
表面に固体電解質を含有するスラリーを塗布する。スラ
リーを塗布する方法としては、円筒状基体を固体電解質
粉末をトルエンなどの溶媒に分散したスラリー液中に浸
漬する方法や、スラリーをハケ塗りする方法などがある
が、スラリーの塗布の均一性からは減圧浸漬塗布法がよ
い。この減圧浸漬塗布法によれば、円筒状基体の内側を
減圧下に維持したままスラリー中に浸漬することによ
り、スラリーの塗布量を高めることができる。
According to the present invention, first, a slurry containing a solid electrolyte is applied to the surface of the porous substrate. As a method for applying the slurry, there are a method of immersing the cylindrical substrate in a slurry liquid in which a solid electrolyte powder is dispersed in a solvent such as toluene, and a method of brush coating the slurry. Is preferably a reduced pressure dip coating method. According to this reduced pressure dip coating method, the coating amount of the slurry can be increased by immersing the cylindrical substrate in the slurry while keeping the inside of the cylindrical substrate under reduced pressure.

【0016】次に、スラリーを塗布した円筒状基体を十
分に乾燥した後、熱処理して固体電解質を基体に焼き付
け処理する。この時の熱処理温度は、成膜する固体電解
質により異なるが、例えば、Y2 3 8モル%含有Zr
2 の場合には900〜1200℃の酸化性雰囲気で行
えばよい。この焼き付け処理により固体電解質は強固に
基体に付着するが、この時の固体電解質膜は気孔率が7
0〜90%の多孔質体である。この時にスラリー中のZ
rO2 粉末としては1μm以下であることが熱処理を1
000〜1200℃の比較的低温で行う上で望ましい。
上記のようにして形成される多孔質膜はその厚みが50
μm以下、特に10μm以下であることが望ましく、厚
みが50μmを越えると固体電解質膜が支持管から剥離
することがある。
Next, after the cylindrical substrate coated with the slurry is sufficiently dried, it is heat treated to bake the solid electrolyte on the substrate. The heat treatment temperature at this time varies depending on the solid electrolyte to be formed, but for example, Y 2 O 3 containing 8 mol% Zr
In the case of O 2 , it may be performed in an oxidizing atmosphere at 900 to 1200 ° C. By this baking treatment, the solid electrolyte firmly adheres to the substrate, but the porosity of the solid electrolyte membrane at this time is 7
It is a porous body of 0 to 90%. At this time, Z in the slurry
The heat treatment should be 1 μm or less for the rO 2 powder.
It is desirable to perform at a relatively low temperature of 000 to 1200 ° C.
The porous film formed as described above has a thickness of 50
It is desirable that the thickness is less than or equal to μm, particularly less than or equal to 10 μm, and if the thickness exceeds 50 μm, the solid electrolyte membrane may peel off from the support tube.

【0017】次に、上記のようにして固体電解質膜が形
成された支持管の空隙部に金属石鹸を含浸させる。含浸
させる金属石鹸としては、固体電解質を形成する金属酸
化物、例えばY2 3 安定化ZrO2 の場合には、Yお
よびZrの金属石鹸を用いる。金属石鹸としては例え
ば、各金属のオクチル酸塩、ナフテン酸塩、アセチルア
セトン塩などが挙げられ、これらの金属石鹸を固体電解
質からなる多孔質膜と同一の成分組成となるように混合
したものを用いる。これらの金属石鹸は、トルエン、ア
セトンなどの溶媒に容易に溶解する。金属石鹸を含浸さ
せる方法としては、金属石鹸の溶液中に前記支持管を浸
漬する。この時の溶液は、金属石鹸を上記溶媒中に重量
比で1:0〜3の割合で溶解したものが好適に使用され
る。それは、金属石鹸量が上記範囲より多いと溶液の粘
性が高まるために前記支持管に形成された多孔質膜の空
隙部への含浸が難しくなり、上記範囲より少ないと空隙
部への含浸量が少なく、緻密化が不充分となるか、ある
いは上記含浸工程を多数回繰り返す必要がある。
Next, metal soap is impregnated into the void portion of the support tube on which the solid electrolyte membrane is formed as described above. As the metal soap to be impregnated, in the case of Y 2 O 3 -stabilized ZrO 2 metal oxide forming a solid electrolyte, Y and Zr metal soaps are used. Examples of the metal soap include octylate salts, naphthenate salts, and acetylacetone salts of each metal, and those obtained by mixing these metal soaps to have the same component composition as the porous membrane made of the solid electrolyte are used. . These metal soaps are easily dissolved in solvents such as toluene and acetone. As a method of impregnating the metal soap, the support tube is immersed in a solution of the metal soap. As the solution at this time, a solution prepared by dissolving metal soap in the above solvent in a weight ratio of 1: 0 to 3 is preferably used. It is difficult to impregnate the voids of the porous membrane formed in the support tube because the viscosity of the solution increases when the amount of metal soap is more than the above range, and the amount of impregnation into the voids is less than the above range. If the amount is small, the densification becomes insufficient, or the impregnation step needs to be repeated many times.

【0018】本発明によれば、上記含浸に当たっては、
円筒状基体の内側を減圧して行うとさらに効率的に金属
石鹸の含浸を行うことができる。
According to the present invention, in the above impregnation,
When the pressure inside the cylindrical substrate is reduced, the metal soap can be more efficiently impregnated.

【0019】次に、上記のようにして固体電解質の多孔
質膜中に金属石鹸を含浸させた後に350〜500℃の
酸化雰囲気中で熱処理を行い、前記金属石鹸の有機成分
が分解除去し金属酸化物が形成される。
Then, the porous membrane of the solid electrolyte is impregnated with the metal soap as described above, and then heat treatment is performed in an oxidizing atmosphere at 350 to 500 ° C. to decompose and remove the organic component of the metal soap and remove the metal. An oxide is formed.

【0020】上記金属石鹸の含浸−熱処理は多孔質膜に
対する含浸の程度により適宜数回繰り返して行うことが
望ましい。この時の熱処理温度は低いために、繰り返し
行っても何ら影響はない。
The above-mentioned impregnation of metal soap-heat treatment is preferably repeated several times depending on the degree of impregnation of the porous membrane. Since the heat treatment temperature at this time is low, there is no effect even if it is repeatedly performed.

【0021】最後に、上記のように金属石鹸を含浸させ
た多孔質膜を900〜1500℃の酸化性雰囲気中で熱
処理する。この熱処理により、金属石鹸の分解により生
成された例えばZrO2 やY2 3 が焼結すると同時に
2 3 はZrO2 に固溶しY2 3 安定化ZrO2
生成させることができる。
Finally, the porous film impregnated with the metal soap as described above is heat-treated in an oxidizing atmosphere at 900 to 1500 ° C. By this heat treatment, it decomposed by generated the example ZrO 2 and Y 2 O 3 metal soap Y 2 O 3 and at the same time sintering can produce a solid solution in the ZrO 2 Y 2 O 3 stabilized ZrO 2 .

【0022】次に、具体的な実施例により説明する。 実施例1 円筒状基体として、内径11.5mm、外径15.5m
mのLaMnO3 からなる円筒状基体を準備した。この
円筒状基体は、一端が閉じられた構造からなり、気孔率
27%である。一方、固体電解質スラリーとして、平均
粒径が0.5μmの共沈法により得られたY2 3 8モ
ル%含有ZrO2 粉末をバインダーとしてポリビニルア
ルコールを溶解した純水からなる溶媒中に固形分2重量
%で混合した。
Next, a concrete example will be described. Example 1 A cylindrical substrate having an inner diameter of 11.5 mm and an outer diameter of 15.5 m
A cylindrical substrate made of LaMnO 3 of m was prepared. This cylindrical substrate has a structure in which one end is closed and has a porosity of 27%. On the other hand, as a solid electrolyte slurry, ZrO 2 powder containing 8 mol% of Y 2 O 3 obtained by a coprecipitation method with an average particle size of 0.5 μm was used as a binder to dissolve polyvinyl alcohol in a solvent composed of pure water to obtain a solid content. Mixed at 2% by weight.

【0023】そして、この円筒状来基体の内部を100
torrの減圧状態として、上記スラリー中に5秒間浸
漬させた後、これをスラリー中から引き上げて乾燥さ
せ、1000℃で4時間の焼き付けを行い、基体表面に
平均粒径が0.5μmのY2 3 (8モル%)安定化Z
rO2 からなる厚みが10μmの固体電解質の多孔質膜
を形成した。この多孔質膜の気孔率をアルキメデス法に
より測定したところ90%であった。
Then, the inside of this cylindrical substrate is filled with 100
After being immersed in the above slurry for 5 seconds under a reduced pressure of torr, the slurry is pulled out of the slurry and dried, and baked at 1000 ° C. for 4 hours to obtain Y 2 having an average particle diameter of 0.5 μm on the substrate surface. O 3 (8 mol%) stabilized Z
A 10 μm thick solid electrolyte porous membrane of rO 2 was formed. The porosity of this porous film was 90% as measured by the Archimedes method.

【0024】一方、オクチル酸ジルコニウムとオクチル
酸イットリウムを前記固体電解質組成となるように混合
し、これをトルエンの溶媒中に溶解して金属石鹸の溶液
を調製した。そして、上記円筒状基体を金属石鹸溶液中
に室温で浸漬した後、400℃の酸化雰囲気中で1時間
熱処理した。これを3回繰り返したが、1回目の浸漬処
理では、金属石鹸:溶媒が重量比で1:0.2の溶液中
に、2回目、3回目では金属石鹸:溶媒が重量比で1:
0.3の溶液中に浸漬した。
On the other hand, zirconium octylate and yttrium octylate were mixed so as to have the above solid electrolyte composition, and this was dissolved in a solvent of toluene to prepare a metal soap solution. Then, the cylindrical substrate was immersed in a metal soap solution at room temperature and then heat-treated in an oxidizing atmosphere at 400 ° C. for 1 hour. This was repeated 3 times, but in the first immersion treatment, the metal soap: solvent was in a solution with a weight ratio of 1: 0.2, and in the second and third times, the metal soap: solvent was in a weight ratio of 1: 0.2.
It was immersed in a solution of 0.3.

【0025】上記浸漬塗布後に1200℃の大気中で4
時間焼成した。得られた固体電解質膜の気孔率を測定し
たところ、4%と高密度体であることがわかった。ま
た、組織観察したところ、浸漬法により形成された多孔
質膜の固体電解質が骨格を形成しその空隙部に金属石鹸
を用いた浸漬法により形成された固体電解質が析出した
組織を呈してした。
After the above dip coating, it was performed in the atmosphere at 1200 ° C. 4
Burned for hours. When the porosity of the obtained solid electrolyte membrane was measured, it was found to be a high density body of 4%. In addition, when the structure was observed, the solid electrolyte of the porous membrane formed by the dipping method formed a skeleton, and the solid electrolyte formed by the dipping method using a metal soap was present in the voids to present a structure.

【0026】また、金属石鹸として、前記オクチル酸塩
を用いる代わり、ナフテン酸塩やアセチルアセトン塩を
用いても同様に気孔率が5%以下の高密度の固体電解質
膜を得ることができた。
Also, instead of using the octylate as the metal soap, a high density solid electrolyte membrane having a porosity of 5% or less could be obtained by using naphthenate or acetylacetone salt.

【0027】比較例として、上記の方法において、円筒
状基体に対して前記固体電解質スラリー中に5秒間浸漬
させた後、これをスラリー中から引き上げて乾燥させ、
これを5回繰り返し行った。その後、最終的に1400
℃で1時間の焼き付けを行い、基体表面に平均粒径が
0.5μmのY2 3 (8モル%)安定化ZrO2 から
なる厚みが45μmの固体電解質膜を形成した。この多
孔質膜の気孔率をアルキメデス法により測定したところ
10%と低いものであった。
As a comparative example, in the above method, the cylindrical substrate was dipped in the solid electrolyte slurry for 5 seconds, then pulled out from the slurry and dried.
This was repeated 5 times. Then finally 1400
After baking for 1 hour at 0 ° C., a solid electrolyte membrane having a thickness of 45 μm and made of Y 2 O 3 (8 mol%) stabilized ZrO 2 having an average particle size of 0.5 μm was formed on the surface of the substrate. When the porosity of this porous film was measured by the Archimedes method, it was as low as 10%.

【0028】[0028]

【発明の効果】以上詳述したように、本発明の固体電解
質膜の製法によれば、多孔質な基体の表面に緻密な膜を
短時間で且つ高温での熱処理回数を低減して成膜するこ
とができ、これを燃料電池セルにおける固体電解質膜の
剥離などを抑制し長期安定性に優れた燃料電池セルを得
ることができる。
As described in detail above, according to the method for producing a solid electrolyte membrane of the present invention, a dense membrane is formed on the surface of a porous substrate in a short time and with a reduced number of heat treatments at high temperature. It is possible to suppress the peeling of the solid electrolyte membrane in the fuel cell and to obtain a fuel cell excellent in long-term stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型燃料電池セルの構造を示す図である。FIG. 1 is a diagram showing a structure of a cylindrical fuel cell unit.

【符号の説明】[Explanation of symbols]

1 空気極(多孔質基体) 2 固体電解質層 3 燃料極層 4 インターコネクター 1 Air electrode (porous substrate) 2 Solid electrolyte layer 3 Fuel electrode layer 4 Interconnector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】多孔質基体の片面に固体電解質粉末を含有
するスラリーを塗布し乾燥した後に加熱処理して前記固
体電解質からなる多孔質膜を形成した後、該多孔質膜中
に前記固体電解質を形成する金属の金属石鹸を含浸さ
せ、これを焼成することを特徴とする固体電解質膜の製
法。
1. A slurry containing a solid electrolyte powder is applied to one surface of a porous substrate, dried, and then heat-treated to form a porous membrane made of the solid electrolyte, and then the solid electrolyte is contained in the porous membrane. A method for producing a solid electrolyte membrane, which comprises impregnating a metal soap forming a metal with a metal soap and baking the soap.
JP5161276A 1993-06-30 1993-06-30 Manufacture of solid electrolytic membrane Pending JPH0721830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161276A JPH0721830A (en) 1993-06-30 1993-06-30 Manufacture of solid electrolytic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161276A JPH0721830A (en) 1993-06-30 1993-06-30 Manufacture of solid electrolytic membrane

Publications (1)

Publication Number Publication Date
JPH0721830A true JPH0721830A (en) 1995-01-24

Family

ID=15732032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161276A Pending JPH0721830A (en) 1993-06-30 1993-06-30 Manufacture of solid electrolytic membrane

Country Status (1)

Country Link
JP (1) JPH0721830A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362913A (en) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP2008153213A (en) * 2006-11-30 2008-07-03 General Electric Co <Ge> Ceramic electrolyte structure, manufacturing method, and related article
JP2008300353A (en) * 2007-05-30 2008-12-11 General Electric Co <Ge> Composite ceramic electrolyte structure, its manufacturing method, and related product
WO2013115001A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Fuel cell electrolyte, solid oxide fuel cell, and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362913A (en) * 2003-06-04 2004-12-24 Nissan Motor Co Ltd Electrolyte for solid oxide fuel cell, and manufacturing method of the same
JP2008153213A (en) * 2006-11-30 2008-07-03 General Electric Co <Ge> Ceramic electrolyte structure, manufacturing method, and related article
JP2008300353A (en) * 2007-05-30 2008-12-11 General Electric Co <Ge> Composite ceramic electrolyte structure, its manufacturing method, and related product
WO2013115001A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Fuel cell electrolyte, solid oxide fuel cell, and method for manufacturing same

Similar Documents

Publication Publication Date Title
RU2236068C1 (en) Zirconium-based electrode-electrolyte couple (alternatives), its manufacturing process (alternatives), and organogel
Setoguchi et al. Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC
JP5030359B2 (en) Production of hollow ceramic membranes by electrophoretic deposition.
CN1312803C (en) Tubular solid oxide fuel cell stack
CA2680534C (en) Solid state electrochemical cell having reticulated electrode matrix and method of manufacturing same
JP2005529464A5 (en)
US5277995A (en) Electrode and method of interconnection sintering on an electrode of an electrochemical cell
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
CN105593413B (en) Method for depositing a layer of material on a metal support for a fuel cell or electrolyser
JPH0721830A (en) Manufacture of solid electrolytic membrane
US3671317A (en) Method of making fuel cell electrodes
CA2833438A1 (en) Method of preparing an electrochemical half-cell
RU2236722C1 (en) Electrode-electrolyte pair on base of cerium dioxide (variants), method for making it (variants) and organogel
JPH0395859A (en) Solid electrolyte fuel cell
US6093297A (en) Method for depositing solid electrolyte layer
JP4012846B2 (en) Manufacturing method of fuel cell
JPH08273675A (en) Cell of fuel cell
US20210218037A1 (en) Protection of a metal substrate for solid oxide fuel cells by inkjet printing
CN113929498B (en) Coating for preparing barrier layer, preparation method of barrier layer and barrier layer
JPH08325775A (en) Anodic electrode for high temperature solid electrolyte type steam electrolysis
JP3393019B2 (en) Fuel cell manufacturing method
JP3795172B2 (en) Method for forming a fuel electrode in a solid oxide fuel cell
JP4154748B2 (en) Method for manufacturing cell for solid oxide fuel cell
JP2006351403A (en) Green sheet of sofc fuel electrode substrate, and manufacturing method of fuel electrode
JPH07316819A (en) Production of metal oxide film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105