JPH08325775A - Anodic electrode for high temperature solid electrolyte type steam electrolysis - Google Patents

Anodic electrode for high temperature solid electrolyte type steam electrolysis

Info

Publication number
JPH08325775A
JPH08325775A JP7135099A JP13509995A JPH08325775A JP H08325775 A JPH08325775 A JP H08325775A JP 7135099 A JP7135099 A JP 7135099A JP 13509995 A JP13509995 A JP 13509995A JP H08325775 A JPH08325775 A JP H08325775A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
anode
dipping
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7135099A
Other languages
Japanese (ja)
Inventor
Yasumasa Koshiro
育昌 小城
Masao Sumi
正夫 角
Hitoshi Miyamoto
均 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7135099A priority Critical patent/JPH08325775A/en
Publication of JPH08325775A publication Critical patent/JPH08325775A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE: To develope an anode of a high temp. solid electrolyte type steam electrolyzer free from stripping at the time of electrolyzing by Pt plating on the surface of an yttria stabilization type zirconia and laminating a porous body of an electron conductive perovskite type oxide thereon. CONSTITUTION: A thin plate of the yttria stabilization type zirconia is activated by dipping into acetone to degrease, dipping into hydrofluoric acid to etch, successively masking the surface with a silicone resin to form an electrode surface and dipping into a SnCl2 aq. solution and further into a PdCl2 aq. solution. Next, a Pt plated layer 1μm in thickness is formed on the surface by electroless plating method and a slurry of the electron conductive perovskite type oxide such as La1-x Srx MnO3 is applied on the surface, which is fired in the air after dried. The anodic electrode for high temp. solid electrolyte steam electrolysis for generating high purity gaseous hydrogen is produced by using the coated thin plate as the anode, keeping at 900-130 deg.C, supplying steam and electrolyzing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温固体電解質型水蒸気
電解用アノード電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anode electrode for high temperature solid electrolyte type steam electrolysis.

【0002】[0002]

【従来の技術】高温固体電解質型水蒸気電解装置(以
下、SOEと略記する)は主としてイットリア安定化ジ
ルコニア(以下、YSZと略記する。)を固体電解質と
して用い、その片側にカソード極としてニッケル−YS
Zサーメットをコーティングし、もう一方に白金ペース
トあるいはLa1-x Srx MnO3 (x=0〜1)(以
下、LSMと略記する)、La1-x Srx CoO3 (x
=0〜1)(以下、LSCと略記する)、Ca1-x Ce
x MnO3 (以下、CCMと略記する)等の電子電導性
ペロブスカイト型酸化物をコーティングしてアノード極
としており、これを900〜1000℃に保持してカソ
ード側に水蒸気を送り電解することによって水素を得る
構成を有する。
2. Description of the Related Art A high temperature solid electrolyte type steam electrolyzer (hereinafter abbreviated as SOE) mainly uses yttria-stabilized zirconia (hereinafter abbreviated as YSZ) as a solid electrolyte, and has nickel-YS as a cathode on one side thereof.
Z cermet is coated on the other side, and platinum paste or La 1-x Sr x MnO 3 (x = 0 to 1) (hereinafter abbreviated as LSM), La 1-x Sr x CoO 3 (x
= 0 to 1) (hereinafter abbreviated as LSC), Ca 1-x Ce
x MnO 3 (hereinafter abbreviated as CCM) or the like is coated with an electron conductive perovskite type oxide to form an anode electrode, which is kept at 900 to 1000 ° C. and hydrogen vapor is supplied by sending steam to the cathode side for electrolysis. To obtain

【0003】[0003]

【発明が解決しようとする課題】水蒸気電解用アノード
電極としてLSM、LSC、CCM等の電子電導性ペロ
ブスカイト酸化物を用いると、電解条件で電極/YSZ
界面で酸素が生成するため、その界面に閉空間が存在す
ると最高(1)式によって決まる酸素分圧まで高まるた
め、界面で剥離応力が発生して上記構成では容易に剥離
に至る。
When an electron-conducting perovskite oxide such as LSM, LSC, CCM is used as an anode electrode for steam electrolysis, the electrode / YSZ is formed under electrolysis conditions.
Since oxygen is generated at the interface, if a closed space is present at the interface, the oxygen partial pressure determined by the maximum equation (1) rises, so that peeling stress occurs at the interface and the above configuration easily leads to peeling.

【化1】 Po2=0.21× exp(4FE/RT) (1) 但しFはファラデー定数、Rは気体定数、Tは絶対温
度、Eは空気基準のアノード電極電位、Po2は閉空間内
酸素分圧である。また、LSMやLSCとYSZの界面
にはLa2 Zr2 7 やSrZrO3 という絶縁体が生
成し、CCMとYSZの界面にはCaZrO3 及びCe
2 Zr27 の2種類の絶縁体が生成し、エネルギ効率
が低下するという問題点があったため、LSM、LS
C、CCMの組成のxを適正化するという努力がなされ
てきた。さらに、例えばLSM及びYSZの熱膨張係数
はそれぞれ約11×10-6、10×10-6/Kであり、
熱応力によって剥離が発生するため、LSM粉体に適量
のYSZ粉体を混ぜるなどの対策がとられてきた。
## EQU1 ## Po 2 = 0.21 × exp (4FE / RT) (1) where F is Faraday constant, R is gas constant, T is absolute temperature, E is air-based anode electrode potential, and Po 2 is closed space. Internal oxygen partial pressure. Moreover, LSM and LSC insulator is produced that La 2 Zr 2 O 7 and SrZrO 3 at the interface of YSZ, the interface between the CCM and YSZ CaZrO 3 and Ce
2 Insulators of 2 Zr 2 O 7 are generated, and there is a problem that energy efficiency is lowered. Therefore, LSM, LS
Efforts have been made to optimize x in the composition of C and CCM. Further, for example, the thermal expansion coefficients of LSM and YSZ are about 11 × 10 −6 and 10 × 10 −6 / K, respectively,
Since peeling occurs due to thermal stress, measures such as mixing an appropriate amount of YSZ powder with LSM powder have been taken.

【0004】一方Ptペーストによる白金電極の場合、
白金は高温で容易に塑性変形を起こすためアノード通電
に伴う剥離は発生せず、YSZと反応して界面に第3相
を形成することはないが、白金量を多く必要とするため
コスト的に問題があった。(電極厚さが薄いと横流れ抵
抗が大きくなり、集電時のロスが大きくなる。)
On the other hand, in the case of a platinum electrode made of Pt paste,
Since platinum easily undergoes plastic deformation at high temperatures, peeling does not occur due to energization of the anode, and it does not react with YSZ to form a third phase at the interface, but it requires a large amount of platinum and is cost effective. There was a problem. (If the electrode thickness is thin, the lateral flow resistance will increase and the loss during current collection will increase.)

【0005】このように電解効率上、電極には低過電圧
特性及び長期安定性が要求されるが、これまで満足しう
るアノード電極はなかった。本発明は上記技術水準に鑑
み、高温固体電解質型水蒸気電解用アノード極におい
て、長期安定型低過電圧アノード電極を提供しようとす
るものである。
Thus, in terms of electrolysis efficiency, the electrode is required to have a low overvoltage characteristic and long-term stability, but there has been no satisfactory anode electrode so far. In view of the above-mentioned state of the art, the present invention aims to provide a long-term stable low overvoltage anode electrode for an anode electrode for high temperature solid electrolyte type steam electrolysis.

【0006】[0006]

【課題を解決するための手段】本発明はイットリア安定
化ジルコニアに無電解メッキ法によって緻密な白金層を
形成させ、その上に電子電導性ペロブスカイト型酸化物
の多孔体を積層させてなることを特徴とする高温固体電
解質型水蒸気電解用アノード電極である。
According to the present invention, a dense platinum layer is formed on yttria-stabilized zirconia by an electroless plating method, and a porous body of an electronically conductive perovskite type oxide is laminated thereon. It is a featured anode electrode for high temperature solid electrolyte type steam electrolysis.

【0007】すなわち、本発明は従来のYSZ/電子電
導性ペロブスカイト酸化物の間に、無電解メッキにより
白金層を薄く施工してサンドイッチ構造とすることによ
って、 アノード通電剥離に係る耐久性の問題、
電極/電解質界面における絶縁体の生成によるエネルギ
効率低下の問題、 熱膨張係数の違いによる剥離の問
題、 電極厚さ確保のために生じる白金のコストの問
題という諸問題を解決した高温固体電解質型水蒸気電解
用アノード電極を提供するものである。これは白金の高
温での可塑性と酸化物との両立性、白金の酸素極として
の過電圧の低さによるものであり、の問題点は電子電
導性ペロブスカイト酸化物を白金メッキ上に厚く積層す
ることによって回避される。
That is, according to the present invention, a platinum layer is thinly applied between the conventional YSZ / electron conductive perovskite oxides by electroless plating to form a sandwich structure, which results in a problem of durability related to delamination of the anode.
High-temperature solid electrolyte type water vapor that solves various problems such as reduction in energy efficiency due to the formation of an insulator at the electrode / electrolyte interface, peeling due to difference in thermal expansion coefficient, and platinum cost problem for securing electrode thickness The present invention provides an anode electrode for electrolysis. This is due to the compatibility of platinum at high temperatures with compatibility with oxides and the low overvoltage of platinum as an oxygen electrode. The problem with is that electron-conducting perovskite oxide should be deposited thickly on platinum plating. Avoided by

【0008】本発明のSOE用アノード電極はYSZを
アセトンのような溶媒で脱脂し、フッ化水素などの強酸
でエッチングし、塩化スズ及び塩化パラジウムにより触
媒化処理を施した後、塩化白金酸溶液と塩化ヒドラジン
溶液からなるメッキ溶液に浸漬して白金の薄膜を形成さ
せ、電子電導性ペロブスカイト酸化物スラリを塗布し、
1300℃〜1500℃で焼成して行うことによって得
られる。
The SOE anode electrode of the present invention is obtained by degreasing YSZ with a solvent such as acetone, etching it with a strong acid such as hydrogen fluoride, catalytically treating it with tin chloride and palladium chloride, and then adding a chloroplatinic acid solution. And a hydrazine chloride solution to immerse it in a plating solution to form a platinum thin film, then apply an electronically conductive perovskite oxide slurry,
It is obtained by baking at 1300 ° C to 1500 ° C.

【0009】[0009]

【作用】SOEに用いられる酸素極はアノードとして働
くため、高酸素分圧下で安定に高い電子電導性を保たな
ければならない。本発明に使用される白金中間層は電子
電導性が高く、また高温、高酸素分圧下でも酸化されな
い。また本発明では白金中間層の施工に無電解メッキ法
を使用するため、YSZとの接着性が良好であり、10
00℃でも凝縮することがなく、LSM、LSC、CC
M等のペロブスカイト酸化物電極とYSZの界面で見ら
れるような、La2 Zr2 7 、SrZrO3 やCaZ
rO3 及びCe2 Zr2 7 という絶縁体が生成するこ
とがない。また高温で塑性変形が容易に起こるため、熱
応力やアノード通電時に発生する剥離応力を緩和する効
果がある。電極性能の面では無電解メッキ法により白金
中間層を施工することによって、固体電解質に微細構造
(粒径が小さく緻密)をもって強固に密着させることが
でき、電極反応が生じる3相界面量が多く、有効電極面
積が大きくなることによってエネルギ効率が増大する。
また、緻密な白金中間層は0.5〜5μmと薄く、ペロ
ブスカイト酸化物酸素極外層は多孔体でガス透過性が大
きいため、大きな電流密度での電解が可能である。更に
白金中間層の施工に無電解メッキ法を採用し0.5〜5
μmと薄く積層させ、横流れ抵抗低減を狙って電極厚み
を確保のためにサンドイッチ構造を採用することによ
り、コスト低減が可能となった。
Since the oxygen electrode used for SOE functions as an anode, it must maintain a stable high electron conductivity under a high oxygen partial pressure. The platinum intermediate layer used in the present invention has high electron conductivity and is not oxidized even at high temperature and high oxygen partial pressure. Further, in the present invention, since the electroless plating method is used for the construction of the platinum intermediate layer, the adhesion with YSZ is good, and 10
No condensation even at 00 ℃, LSM, LSC, CC
La 2 Zr 2 O 7 , SrZrO 3 and CaZ as seen at the interface between a perovskite oxide electrode such as M and YSZ.
The insulators rO 3 and Ce 2 Zr 2 O 7 are not formed. Further, since plastic deformation easily occurs at high temperatures, it has an effect of alleviating thermal stress and peeling stress generated when the anode is energized. In terms of electrode performance, by applying a platinum intermediate layer by electroless plating, it is possible to firmly adhere to the solid electrolyte with a fine structure (particle size is small and dense), and there is a large amount of three-phase interface that causes electrode reaction. Energy efficiency is increased by increasing the effective electrode area.
Further, the dense platinum intermediate layer is as thin as 0.5 to 5 μm, and the perovskite oxide oxygen electrode outer layer is a porous body and has a large gas permeability, so that electrolysis at a large current density is possible. Furthermore, the electroless plating method is adopted for the construction of the platinum intermediate layer, and 0.5 to 5
Costs can be reduced by using a sandwich structure to secure the electrode thickness with the aim of reducing the lateral flow resistance by stacking layers as thin as μm.

【0010】[0010]

【実施例】径:23mm、厚さ:500μmの8mol
%YSZを下記手順で処理して高温固体電解質型水蒸気
電解用酸素極を作成した。 脱脂(アセトンで5分間浸漬洗浄)、 エッチン
グ(フッ化水素酸に10分間浸漬)、 マスキング
(径:10mmの電極面積になるようにシリコーン樹脂
によってマスキング)、 触媒化処理(SnCl2
溶液中に2分間浸漬、PdCl2 水溶液中に2分間浸
漬)、 メッキ処理(H2 PtCl6 ・6H2 O水溶
液+N2 4 ・2HCl水溶液に浸漬)、 酸素極外
層の施工(粒径が0.3μm程度のLa0.9 Sr0.1
nO3 のスラリを白金中間層の上に、焼成後30μm以
上の厚さになるように塗布・乾燥させ、空気中、130
0℃で1時間焼成)なお、上記手順における各水溶
液濃度は数%の濃度であれば良く、白金メッキの厚さが
1μm程度となったところで引き上げた。厚さが5μm
を越えるとガス拡散能が低下するので、メッキ厚さはガ
ス拡散能を考慮して0.5〜5μm程度が望ましい。
Example: Diameter: 23 mm, thickness: 500 μm, 8 mol
% YSZ was treated according to the following procedure to prepare an oxygen electrode for high temperature solid electrolyte type steam electrolysis. Degreasing (immersing in acetone for 5 minutes), etching (immersing in hydrofluoric acid for 10 minutes), masking (masking with silicone resin so that the electrode area of diameter: 10 mm), catalytic treatment ( 2 in SnCl 2 aqueous solution) Immersion for 2 minutes, immersion in PdCl 2 aqueous solution for 2 minutes), plating treatment (immersion in H 2 PtCl 6 · 6H 2 O aqueous solution + N 2 H 4 · 2HCl aqueous solution), construction of oxygen electrode outer layer (particle size of about 0.3 μm) La 0.9 Sr 0.1 M
A slurry of nO 3 is applied on the platinum intermediate layer after firing so as to have a thickness of 30 μm or more, and dried.
It should be noted that the concentration of each aqueous solution in the above procedure may be a few percent, and the platinum plating was pulled up when the thickness of the platinum plating became about 1 μm. Thickness is 5 μm
Since the gas diffusing ability will be reduced if it exceeds the above range, the plating thickness is preferably about 0.5 to 5 μm in consideration of the gas diffusing ability.

【0011】この本発明空気極を用いてSOE作動条件
での耐久性をみるために、酸素極の裏面に対極として
径:10mmの電極面積になるように、またYSZ板側
面全周に基準極として白金ペーストを塗布・乾燥し、1
100℃で焼成してPt多孔質電極を施工した。酸素極
と基準極には空気を200ml/minで供給し、対極
には水素分圧0.04atm、水蒸気分圧0.12at
m、窒素バランスガスを200ml/minで供給し
た。雰囲気温度は1000℃とした。電解は定電流電解
装置を用いて600mA/cm2 でアノード通電を行
い、酸素極の過電圧変化をモニターした。
In order to check the durability under the SOE operating conditions using the air electrode of the present invention, the electrode area of the counter electrode on the back surface of the oxygen electrode was 10 mm in diameter, and the reference electrode was formed on the entire side surface of the YSZ plate. Apply and dry platinum paste as
The Pt porous electrode was constructed by firing at 100 ° C. Air is supplied at 200 ml / min to the oxygen electrode and the reference electrode, and the counter electrode has a hydrogen partial pressure of 0.04 atm and a water vapor partial pressure of 0.12 at.
m and nitrogen balance gas were supplied at 200 ml / min. The ambient temperature was 1000 ° C. For electrolysis, a constant current electrolyzer was used to conduct an anode current at 600 mA / cm 2 , and the change in overvoltage of the oxygen electrode was monitored.

【0012】本発明酸素極を用いて水蒸気電解を行った
ときの酸素極アノード過電圧の経時変化を図1に示す。
図2に示すように従来の電子電導性ペロブスカイト酸化
物を酸素極として直接YSZにコーティングした電極で
はアノード通電後短時間で過電圧が急上昇するのに対し
て、本発明による酸素極は100時間の間極めて低い過
電圧で安定に作動した。なお、図1に示すように本発明
酸素極はアノード通電後20時間で過電圧が低下してい
るが、これは白金中間層において、酸素発生に伴いPt
/YSZ界面に存在する閉空間内の酸素分圧が上昇し、
その塑性変形によって、電極反応場である電極/電解質
/気相の3相界面量が増大したことによると考えられ
る。
FIG. 1 shows changes with time in the anode overvoltage of the oxygen electrode when steam electrolysis was performed using the oxygen electrode of the present invention.
As shown in FIG. 2, in an electrode in which a conventional electron-conducting perovskite oxide was directly coated on YSZ as an oxygen electrode, the overvoltage rapidly increased in a short time after the anode was energized, whereas the oxygen electrode according to the present invention was used for 100 hours. Stable operation with extremely low overvoltage. As shown in FIG. 1, in the oxygen electrode of the present invention, the overvoltage decreased 20 hours after the anode was energized. This was due to the oxygen generation in the platinum intermediate layer.
The oxygen partial pressure in the closed space existing at the / YSZ interface increases,
It is considered that the plastic deformation increased the three-phase interface amount of the electrode / electrolyte / gas phase which is the electrode reaction field.

【0013】[0013]

【発明の効果】本発明により、電解時に剥離を生じず、
低過電圧で安定に作動するアノード極が提供され、SO
Eを成立させるためのキー技術の一つが確立された。
According to the present invention, peeling does not occur during electrolysis,
An anode that operates stably at low overvoltage is provided, and SO
One of the key technologies for establishing E has been established.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る酸素極を用いて水蒸気
電解を行ったときの酸素極アノード過電圧の経時変化の
図。
FIG. 1 is a diagram showing a change with time of an oxygen electrode anode overvoltage when steam electrolysis is performed using an oxygen electrode according to an embodiment of the present invention.

【図2】従来の電子電導性ペロブスカイト酸化物(LS
M:La0.9 Sr0.1 MnO3,CCM:Ca0.9 Ce
0.1 MnO3 )を酸素極として直接YSZにコーティン
グした電極を用いて水蒸気電解を行ったときの酸素極ア
ノード過電圧の経時変化の図。
FIG. 2 is a conventional electron-conductive perovskite oxide (LS
M: La 0.9 Sr 0.1 MnO 3 , CCM: Ca 0.9 Ce
FIG. 3 is a diagram showing changes with time of the anode overvoltage of the oxygen electrode when steam electrolysis was performed using an electrode in which 0.1 MnO 3 ) was directly coated on YSZ as the oxygen electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イットリア安定化ジルコニアに無電解メ
ッキ法によって緻密な白金層を形成させ、その上に電子
電導性ペロブスカイト型酸化物の多孔体を積層させてな
ることを特徴とする高温固体電解質型水蒸気電解用アノ
ード電極。
1. A high-temperature solid electrolyte type characterized in that a dense platinum layer is formed on yttria-stabilized zirconia by an electroless plating method, and a porous body of an electroconductive perovskite type oxide is laminated thereon. Anode electrode for steam electrolysis.
JP7135099A 1995-06-01 1995-06-01 Anodic electrode for high temperature solid electrolyte type steam electrolysis Withdrawn JPH08325775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7135099A JPH08325775A (en) 1995-06-01 1995-06-01 Anodic electrode for high temperature solid electrolyte type steam electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7135099A JPH08325775A (en) 1995-06-01 1995-06-01 Anodic electrode for high temperature solid electrolyte type steam electrolysis

Publications (1)

Publication Number Publication Date
JPH08325775A true JPH08325775A (en) 1996-12-10

Family

ID=15143821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7135099A Withdrawn JPH08325775A (en) 1995-06-01 1995-06-01 Anodic electrode for high temperature solid electrolyte type steam electrolysis

Country Status (1)

Country Link
JP (1) JPH08325775A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034727A (en) * 2012-08-10 2014-02-24 National Institute For Materials Science Electrode catalyst of oxygen electrode for solid oxide type steam electrolytic cell, and production method of the same
CN105839138A (en) * 2016-05-10 2016-08-10 东北林业大学 Preparing method for high-temperature melting carbonate air electrode of solid oxide electrolytic cell
WO2018128116A1 (en) * 2017-01-06 2018-07-12 富士通株式会社 Oxygen generating electrode and oxygen generating device
CN116024516A (en) * 2023-01-09 2023-04-28 中山大学 Preparation method of infrared heat absorption composite coating for stainless steel water-cooling heat shield of monocrystalline silicon furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034727A (en) * 2012-08-10 2014-02-24 National Institute For Materials Science Electrode catalyst of oxygen electrode for solid oxide type steam electrolytic cell, and production method of the same
CN105839138A (en) * 2016-05-10 2016-08-10 东北林业大学 Preparing method for high-temperature melting carbonate air electrode of solid oxide electrolytic cell
WO2018128116A1 (en) * 2017-01-06 2018-07-12 富士通株式会社 Oxygen generating electrode and oxygen generating device
JP2018111843A (en) * 2017-01-06 2018-07-19 富士通株式会社 Oxygen generating electrode and oxygen generator
US11098411B2 (en) 2017-01-06 2021-08-24 Fujitsu Limited Oxygen generating electrode and oxygen generator
CN116024516A (en) * 2023-01-09 2023-04-28 中山大学 Preparation method of infrared heat absorption composite coating for stainless steel water-cooling heat shield of monocrystalline silicon furnace

Similar Documents

Publication Publication Date Title
US4582766A (en) High performance cermet electrodes
US4702971A (en) Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
US4812329A (en) Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
JP2695641B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP4840718B2 (en) Solid oxide fuel cell
JP3978603B2 (en) Cell plate for solid oxide fuel cell and method for producing the same
JP2001351642A (en) Separator for fuel cell
JP6045881B2 (en) Electrochemical cell and method for producing the same
JP2007012361A (en) Solid-oxide fuel cell
US5672437A (en) Solid electrolyte for a fuel cell
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
JP6208315B2 (en) Electrochemical cell and method for producing the same
US7691770B2 (en) Electrode structure and methods of making same
JPH08325775A (en) Anodic electrode for high temperature solid electrolyte type steam electrolysis
JPH05151981A (en) Solid electrolyte fuel cell
JP2008300269A (en) Solid oxide fuel cell and method of manufacturing the same
JP2003263996A (en) Solid oxide fuel cell
KR102427681B1 (en) Thin film solid oxide fuel cell having hydrogen oxidation reaction catalyst layer and method of manufacturing the same
KR102335014B1 (en) Electrode material for solid oxide fuel cell and method for manufacturing the same
Yoo et al. Electrochemical Performance of Solid Oxide Electrolysis Cells with LSCF6428-SDC/SDC Electrode for H2O/CO2 High Temperature Co-Electrolysis
JPH07320756A (en) Solid electrolytic fuel cell
JPH06103988A (en) Solid electrolyte type fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JPH09326258A (en) Manufacture of solid electrolyte film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020806