JPH0721637B2 - Method of forming positive photoresist - Google Patents

Method of forming positive photoresist

Info

Publication number
JPH0721637B2
JPH0721637B2 JP18703188A JP18703188A JPH0721637B2 JP H0721637 B2 JPH0721637 B2 JP H0721637B2 JP 18703188 A JP18703188 A JP 18703188A JP 18703188 A JP18703188 A JP 18703188A JP H0721637 B2 JPH0721637 B2 JP H0721637B2
Authority
JP
Japan
Prior art keywords
electrodeposition coating
parts
water
film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18703188A
Other languages
Japanese (ja)
Other versions
JPH0239050A (en
Inventor
昌弘 星野
健治 瀬古
直純 岩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Mitsubishi Electric Corp
Original Assignee
Kansai Paint Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd, Mitsubishi Electric Corp filed Critical Kansai Paint Co Ltd
Priority to JP18703188A priority Critical patent/JPH0721637B2/en
Priority to KR1019890003940A priority patent/KR940008381B1/en
Priority to US07/329,636 priority patent/US4898656A/en
Priority to AU31735/89A priority patent/AU613463B2/en
Priority to EP19890105457 priority patent/EP0335330B1/en
Priority to CA 594851 priority patent/CA1337864C/en
Priority to DE89105457T priority patent/DE68907101T2/en
Publication of JPH0239050A publication Critical patent/JPH0239050A/en
Publication of JPH0721637B2 publication Critical patent/JPH0721637B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はポジ型フオトレジストの形成方法に関し、さら
に詳しくは、銅張積層板に2コート電着塗装方法によっ
て表面粘着性のない平滑な且つポジマスクを通して紫外
線等の活性光線を照射することによって容易に画像を形
成することが可能なポジ型フオトレジスト被膜の形成方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a positive photoresist, and more specifically to a copper-clad laminate using a two-coat electrodeposition coating method to obtain a smooth and non-sticky surface. The present invention relates to a method for forming a positive photoresist coating capable of easily forming an image by irradiating an actinic ray such as an ultraviolet ray through a positive mask.

[従来の技術] 従来、集積回路用などのスルホールを有するプリント配
線板は、一般に、絶縁体に銅箔を張ったスルーホール部
を有する基板上に銅めっきを施してなる基板上に感光性
レジストフイルムをラミネートし、さらに写真ネガを重
ねて露光および現像をしたのち、回路パターン以外の不
要の銅箔をエッチング処理し、しかる後感光性レジスト
フイルムを除去することからなるドライフイルム法と呼
ばれる方法で形成されている。しかし、この方法に用い
られる感光性レジストフイルムは、一般に、膜厚が50μ
mと比較的厚いために露光、現像して形成される回路パ
ターンがシャープでなく、しかも銅箔面に均一にラミネ
ートするのが困難であり、特にスルーホール部分を被覆
することは殆ど不可能である等の欠点がある。
[Prior Art] Conventionally, a printed wiring board having a through hole for an integrated circuit or the like is generally a photosensitive resist formed on a substrate obtained by copper plating on a substrate having a through hole portion in which an insulator is covered with a copper foil. After laminating the film, exposing and developing it with a photographic negative overlaid, etching unnecessary copper foil other than the circuit pattern, and then removing the photosensitive resist film by a method called dry film method. Has been formed. However, the photosensitive resist film used in this method generally has a film thickness of 50 μm.
Since it is relatively thick as m, the circuit pattern formed by exposure and development is not sharp, and it is difficult to uniformly laminate to the copper foil surface, and it is almost impossible to cover the through hole part in particular. There are some drawbacks.

また、スルーホール部を有する銅張基板上にエッチング
レジストインキをスクリーン印刷し、次にエッチングを
行なって印刷されていない部分の銅を除去し、さらに印
刷部のレジストインキを除去することからなるスクリー
ン印刷法と呼ばれる方法でプリント配線用回路パターン
を形成させる方法も知られている。しかしながら、該方
法ではスルーホール部に該インキを塗布することが困難
であるために、スルーホール部の銅がエッチング処理に
よって除去されてしまうことが多い。このため予めスル
ーホール部内に有機材料を埋込み、エッチング処理に際
してスルーホール部の銅に除去されないように保護した
のち、最終的に該有機材料を除去することにより、回路
板を形成することも行われているが、該方法では最終的
に得られる回路板のコストが高くなるとともに回路パタ
ーンのシャープ性にも劣るという欠点がある。
A screen consisting of screen-printing an etching resist ink on a copper-clad substrate having through-holes, then etching to remove copper in the unprinted portion, and further removing the resist ink in the printed portion. A method of forming a circuit pattern for printed wiring by a method called a printing method is also known. However, since it is difficult to apply the ink to the through holes by this method, the copper in the through holes is often removed by the etching process. Therefore, it is also possible to form a circuit board by previously embedding an organic material in the through-hole portion, protecting the through-hole portion from being removed by the copper during the etching process, and finally removing the organic material. However, this method has the drawback that the cost of the finally obtained circuit board is high and the sharpness of the circuit pattern is also poor.

これらの従来の欠点を改良する方法として、前記基板に
ポジ型感光性樹脂レジスト被膜を電着塗装によって形成
させ、その上にポジ型マスクを重ねて露光したのち、露
光部分をアルカリ水溶液で現像して除去することによっ
てエッチングレジストを得る方法が提案されている(特
開昭60-207139号公報、特開昭61-206293号公報など参
照)。該方法は、電着塗装により容易に小さな口径のス
ルーホール部分にもレジスト被膜を形成させることがで
き、しかも未露光部分がレジスト被膜として残るので、
ネガ型フオトレジストの場合のようにスルーホール内の
レジスト被膜を露光により硬化させる必要がなく、光源
として完全な平行光源を使用することができるので、解
像性が高く且つスルーホール内の銅等の導体が完全に保
護されるプリント配線基板を得ることができるという利
点がある。
As a method for improving these conventional drawbacks, a positive type photosensitive resin resist film is formed on the substrate by electrodeposition coating, a positive type mask is overlaid thereon and exposed, and then the exposed portion is developed with an alkaline aqueous solution. A method has been proposed in which an etching resist is obtained by removing by etching (see JP-A-60-207139 and JP-A-61-206293). In this method, the resist coating can be easily formed on the through-hole portion having a small diameter by electrodeposition coating, and the unexposed portion remains as the resist coating.
There is no need to harden the resist coating in the through holes by exposure as in the case of negative photoresist, and a perfect parallel light source can be used as the light source, so the resolution is high and copper in the through holes, etc. There is an advantage that a printed wiring board can be obtained in which the conductor is completely protected.

[発明が解決しようとする問題点] 前記した改良方法では、現像工程は、通常、露光部にお
けるポジ型フオトレジスト被膜の感光性基の光分解や被
膜形成ポリマー主鎖の切断等によるアルカリまたは酸水
溶液現像液に対する可溶化現像を利用して行なわれる。
[Problems to be Solved by the Invention] In the improved method described above, the developing step is usually carried out by photolysis of the photosensitive groups of the positive photoresist film in the exposed area or by the cleavage of the main chain of the film-forming polymer or an alkali or acid. It is carried out by utilizing solubilized development in an aqueous developer.

しかしながら、電着塗装型のポジ型フオトレジスト被膜
の場合、未露光部分の被膜も、カルボキシル基又はアミ
ノ基等の極性基を有しているため、水溶性の性質を有し
ており、溶剤型のポジ型レジスト被膜に比較して露光部
と未露光部の現像液に対する溶解性の差が小さいという
問題がある。このため電着塗装型のポジ型フオトレジス
ト被膜を用いて良好なプリント配線基板を得るには、被
膜の現像液に対する溶解性を調整したり、膜厚を均一に
するなどフオトレジスト被膜の表面特性厳密にコントロ
ールする必要がある。
However, in the case of the electrodeposition coating type positive photoresist film, the unexposed film also has a polar group such as a carboxyl group or an amino group, and therefore has a water-soluble property and is a solvent type. There is a problem that the difference in solubility between the exposed portion and the unexposed portion in the developing solution is smaller than that of the positive type resist coating. Therefore, in order to obtain a good printed wiring board using a positive-type photoresist coating of electrodeposition coating type, the surface characteristics of the photoresist coating must be adjusted by adjusting the solubility of the coating in a developing solution or by making the thickness uniform. It needs to be tightly controlled.

また、電着塗装によってフオトレジスト被膜を形成する
場合、電着塗装されたフオトレジスト被膜は通常水洗さ
れるので、その被膜上に水滴跡が残る。しかしながら、
実際の工業ラインでは工程上水滴跡を完全に除去するこ
とは困難である。このため、水滴跡の生じた部分の被膜
はそうでない部分に比較して膜厚が薄くなるため、レジ
スト被膜は現像、エッチング工程において十分な保護被
膜として作用せず、その結果プリント配線基板に線切れ
や画線が設置した巾より細くなる線細り等の欠陥が屡々
生じる。
In addition, when the photoresist coating is formed by electrodeposition coating, the electrodeposited photoresist coating is usually washed with water, so that traces of water drops remain on the coating. However,
In an actual industrial line, it is difficult to completely remove traces of water drops in the process. For this reason, the film on the portion where the water drop traces are formed has a smaller film thickness than that on the other portion, so that the resist film does not act as a sufficient protective film in the development and etching steps, and as a result, the wiring on the printed wiring board does not work. Defects such as cuts and line thinning in which the strokes are narrower than the installed width are often generated.

実際の工業ラインでは水滴跡防止のため、水洗後エアブ
ローを行なったり、搬送装置を工夫するなど種々の対策
がとられているが、完全なものではなく、また設備費
用、運転費用が高くなる等の問題がある。
In order to prevent traces of water droplets in actual industrial lines, various measures have been taken, such as performing air blow after washing and devising a transfer device, but this is not complete, and equipment costs and operating costs are high. I have a problem.

[問題点を解決するための手段] 本発明者らは、前記の問題点を解決するための技術手段
を見い出すべく鋭意研究を重ねた結果、今回、フオトレ
ジスト被膜の形成を2回の電着塗装によって行なうこと
によって前記の問題を見事に解決できることを見い出
し、本発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to find a technical means for solving the above-mentioned problems, and as a result, this time, the formation of the photoresist film is performed twice by electrodeposition. The inventors have found that the above problems can be solved satisfactorily by painting, and have completed the present invention.

かくして、本発明に従えば、銅張積層板上にポジ型フオ
トレジスト被膜を電着塗装によって形成し、さらにその
被膜上に水溶性または水分散性樹脂を主成分とする電着
塗料組成物を電着塗装することを特徴とするポジ型フオ
トレジストの形成方法が提供される。
Thus, according to the present invention, a positive photoresist film is formed on a copper-clad laminate by electrodeposition coating, and an electrodeposition coating composition containing a water-soluble or water-dispersible resin as a main component is further formed on the film. Provided is a method for forming a positive photoresist, which is characterized by electrodeposition coating.

本発明において、ポジ型フオトレジスト被膜を形成する
ために用いられるポジ型電着塗料組成物は、従来から当
該分野で既知のものであることができ、例えば、水溶性
もしくは水分散性にするための塩形成基及び感光性基を
有するポリオキシメチレンポリマー、O−ニトロカルビ
ノールエステル、O−ニトロフエニルアセタール、ベン
ゾ(もしくはナフト)キノンジアジド単位を含む樹脂な
どを主成分とするものを挙げるとができる(例えば、特
開昭60-207139号公報、特開昭60-206293号公報、特開昭
63-6070号公報、特願昭62-157841号、特願昭62-157842
号、特願昭62-245840号、特願昭62-279288号など参
照)。
In the present invention, the positive electrodeposition coating composition used for forming the positive photoresist coating may be one conventionally known in the art, for example, to make it water-soluble or water-dispersible. Examples of the main component include a polyoxymethylene polymer having a salt-forming group and a photosensitive group, an O-nitrocarbinol ester, an O-nitrophenyl acetal, and a resin containing a benzo (or naphtho) quinonediazide unit. It is possible (for example, JP-A-60-207139, JP-A-60-206293, JP-A-60-207293
63-6070, Japanese Patent Application No. 62-157841, Japanese Patent Application No. 62-157842
No., Japanese Patent Application No. 62-245840, Japanese Patent Application No. 62-279288).

また、電着塗装によって形成されたポジ型フオトレジス
ト被膜の上に、さらに2回目の電着塗装を施すために用
いられる電着塗料組成物としては、ポジ型フオトレジス
ト被膜の形成に用いられたものと同じものであることが
でき、また感光性基を有さない従来が既知の塩形成基含
有樹脂を主成分とするものを使用してもよい。なお、後
者の電着塗料組成物に用いられる樹脂のガラス転移温度
(Tg)は20℃以上、好ましくは30〜120℃の範囲内にあ
ることが好ましく、さらにTgが前者のポジ型電着塗料組
成物に用いられる樹脂のTgより少なくとも5℃高くなる
ように設計することが好ましい。電着塗料組成物に用い
られる樹脂のTgを前記のように設計するとフオトレジス
ト被膜とポジフイルムと密着露光する際、両者が粘着性
を示しくっつくという問題を完全に避けることができる
ので有利である。
Further, as an electrodeposition coating composition used for applying a second electrodeposition coating on the positive type photoresist coating formed by electrodeposition coating, it was used for forming a positive type photoresist coating. It may be the same as the above-mentioned one, and those having a conventionally known salt-forming group-containing resin having no photosensitive group as a main component may be used. The glass transition temperature (Tg) of the resin used in the latter electrodeposition coating composition is preferably 20 ° C. or higher, preferably in the range of 30 to 120 ° C., and the Tg is the former positive type electrodeposition coating composition. It is preferably designed to be at least 5 ° C. higher than the Tg of the resin used in the composition. When the Tg of the resin used in the electrodeposition coating composition is designed as described above, it is advantageous because it is possible to completely avoid the problem of sticking and sticking between the photoresist film and the positive film when they are exposed by contact. .

本発明において用いられる電着塗料組成物は、アニオン
型、カチオン型いずれのタイプのものであっても構わな
いが、一般には、1回目の電着塗装をアニオン型電着塗
料組成物を用いて行なえば、2回目の電着塗装もアニオ
ン型電着塗料組成物を用いて行ない、また前者1回目の
電着塗装をカチオン型電着塗料組成物を用いて行なえ
ば、2回目の電着塗装もカチオン型電着塗料組成物を用
いて行なうのが好都合である。
The electrodeposition coating composition used in the present invention may be either anion type or cation type, but generally, the first electrodeposition coating is carried out by using the anion type electrodeposition coating composition. If performed, the second electrodeposition coating is also performed using the anion type electrodeposition coating composition, and if the former first electrodeposition coating is performed using the cation type electrodeposition coating composition, the second electrodeposition coating is performed. Also, it is convenient to use a cationic electrodeposition coating composition.

本発明のポジ型フオトレジスト被膜の形成及びプリント
配線基板の製造は通常次のようにして行なわれる。
The formation of the positive photoresist film of the present invention and the production of a printed wiring board are usually performed as follows.

ポジ型電着塗料組成物からなる電着塗料浴をpH5〜10、
浴濃度(固形分)3〜30重量%、好ましくは5〜15重量
%、及び浴温度15〜40℃、好適には15〜30℃に管理す
る。ついで、この電着塗料浴に、銅箔を張った絶縁体に
銅メッキを施してなるプリント配線基板を、電着塗料が
アニオン型の場合には陽極として、またカチオン型の場
合には陰極として浸漬し、20〜400Vの直流電流を通電す
ることによって電着塗装を行なう。通電時間は通常30秒
〜5分が適当であり、膜厚は乾燥膜厚で一般に2〜50μ
m、好適には3〜20μmの範囲内であることが望まし
い。
A positive electrodeposition coating composition composed of an electrodeposition coating bath having a pH of 5 to 10,
The bath concentration (solid content) is controlled to 3 to 30% by weight, preferably 5 to 15% by weight, and the bath temperature is controlled to 15 to 40 ° C, preferably 15 to 30 ° C. Then, in this electrodeposition paint bath, a printed wiring board made by copper-plating an insulator with a copper foil is used as an anode when the electrodeposition paint is an anion type, and as a cathode when it is a cation type. Immerse and apply a direct current of 20 to 400 V to perform electrodeposition coating. A suitable energizing time is usually 30 seconds to 5 minutes, and the film thickness is generally 2 to 50μ in dry film thickness.
m, preferably 3 to 20 μm.

電着塗装後、電着浴から被塗物を引き上げ水洗したの
ち、そのまま、または要すればエアーブロー、熱風など
により水切乾燥する。
After electrodeposition coating, the object to be coated is lifted from the electrodeposition bath and washed with water, and then dried as it is, or if necessary, by air blow, hot air, etc.

ついで、この被塗物を水溶性または水分散性樹脂を主成
分とする電着組成物を用いて前記と同じ条件で管理され
た電着塗装浴中に浸漬し、前記と同じ条件で2回目の電
着塗装を行なう。但し、電着時間は通常10秒から3分間
の範囲内が好ましい。電着浴から被塗物を引き上げ水洗
したのち、そのまま、または要すればエアーブロー、熱
風などにより水切乾燥する。かくして、基板上に本発明
によるポジ型フオトレジストが形成される。
Then, the article to be coated is immersed in an electrodeposition coating bath controlled under the same conditions as above using an electrodeposition composition containing a water-soluble or water-dispersible resin as a main component, and the second time under the same conditions as described above. Perform electrodeposition coating of. However, the electrodeposition time is usually preferably in the range of 10 seconds to 3 minutes. After pulling up the article to be coated from the electrodeposition bath and washing it with water, it is drained and dried as it is, or if necessary, by air blow, hot air or the like. Thus, the positive type photoresist according to the present invention is formed on the substrate.

ついで、形成されたポジ型フオトレジスト被膜面にパタ
ーンマスク(写真ポジ)を重ねて導体回路(回路パター
ン)以外の不要部分のみに紫外線などの活性光線を照射
露光する。
Then, a pattern mask (photo positive) is superimposed on the surface of the formed positive photoresist film, and only the unnecessary portion other than the conductor circuit (circuit pattern) is exposed to actinic rays such as ultraviolet rays.

その後、該被塗物をそのまま又は表面温度100℃〜180
℃、さらに好ましくは120℃〜160℃の温度で1秒〜30分
間加熱処理を行ったのち、露光部分をアルカリ水溶液な
どの現像液で現像処理することにより、高解像度の回路
画像が形成される。
Then, the object to be coated as it is or the surface temperature 100 ℃ ~ 180
A high-resolution circuit image is formed by performing heat treatment at a temperature of 120 ° C., more preferably 120 ° C. to 160 ° C. for 1 second to 30 minutes, and then developing the exposed portion with a developing solution such as an alkaline aqueous solution. .

かくして出来上ったポジ型画像は最小線巾40μm(ライ
ンアンドスペース)の高解像度が得られた。
The positive image thus obtained had a high resolution with a minimum line width of 40 μm (line and space).

本発明において露光に使用する活性光線は3000〜4500Å
の波長を有する光線がよい。該光線を含む光源としては
例えば太陽光、水銀灯、クセノンランプ、アーク灯など
を用いることができる。活性光線の照射は通常1秒〜20
分の範囲で行なわれる。
The actinic ray used for exposure in the present invention is 3000 to 4500Å
A light beam having a wavelength of As the light source containing the light rays, for example, sunlight, mercury lamp, xenon lamp, arc lamp or the like can be used. Irradiation with actinic rays is usually 1 second to 20
It takes place in the range of minutes.

また、加熱処理は、特に限定されるものではなく、従来
から既知の手段を用いて行なうことができ、例えば熱風
乾燥、赤外線乾燥、誘導加熱乾燥、マウクロウエーブに
よる乾燥等を単独もしくは適宜組合せて用いて行なうこ
とができる。
Further, the heat treatment is not particularly limited and can be carried out by using a conventionally known means, for example, hot air drying, infrared drying, induction heating drying, drying with a maw wave or the like alone or in an appropriate combination. Can be done using.

また、現像処理は、アニオン型電着塗料を用いた場合に
は、塗膜面上にアルカリ水を吹きつけることによって塗
膜の感光部分を洗い流すことによって行なうことができ
る。アルカリ水は通常pH8〜14のカセイソーダ、炭酸ソ
ーダ、カセイカリ、アンモニア水、メラケイ酸ソーダ、
有機アミン水溶液など塗膜中に有する遊離のカルボン酸
と中和して水溶性を与えることのできるものが使用可能
である。他方、カチオン型電着塗料を用いた場合には、
現像処理はpH5以下の酸水溶液を用いて同様に行なうこ
とができる。
When an anionic electrocoating paint is used, the developing treatment can be carried out by spraying alkaline water onto the surface of the coating film to wash away the exposed portion of the coating film. Alkaline water is usually caustic soda of pH 8-14, sodium carbonate, caustic potash, ammonia water, sodium melasilicate,
It is possible to use, for example, an organic amine aqueous solution that can be neutralized with the free carboxylic acid contained in the coating film to give water solubility. On the other hand, when a cationic electrodeposition coating is used,
The development process can be similarly performed using an acid aqueous solution having a pH of 5 or less.

ついで、現像処理によって基板上に露出した銅箔部分
(非回路部分)は例えば、塩化第2鉄溶液等を用いた通
常のエッチング処理によって除去することができる。し
かる後、回路パターン上の未露光塗膜をエチルセロソル
ブ、エチルセロソルブアセテートなどのセロソルブ系溶
剤;トルエン、キシレンなどの芳香族炭化水素系溶剤;
メチルエチルケトン、メチルイソブチルケトンなどのケ
トン系溶剤;酢酸エチル、酢酸ブチルなどの酢酸エステ
ル系溶剤;トリクロルエチレンなどのクロル系溶剤また
は3〜10%のカセイソーダ、カセイカリなどの水溶液
(カチオン型電着塗料の場合は酸水溶液)によって溶解
除去し基板上にプリント回路を形成することができる。
Then, the copper foil portion (non-circuit portion) exposed on the substrate by the developing treatment can be removed by a usual etching treatment using, for example, ferric chloride solution. Thereafter, the unexposed coating film on the circuit pattern is treated with a cellosolve solvent such as ethyl cellosolve or ethyl cellosolve acetate; an aromatic hydrocarbon solvent such as toluene or xylene;
Ketone-based solvents such as methyl ethyl ketone and methyl isobutyl ketone; Acetate-based solvents such as ethyl acetate and butyl acetate; Chlorine-based solvents such as trichloroethylene or 3-10% caustic soda and caustic solution (for cationic electrocoating) Can be dissolved and removed with an acid aqueous solution) to form a printed circuit on the substrate.

[作用及び効果] 本発明のようにポジ型フオトレジスト被膜を2回の電着
塗装によって形成することにより、水洗時の水滴跡に起
因する画像欠陥を全く生じないプリント配線基板が得ら
れる作用については正確には明らかになっていないが、
2回目の電着塗装を行ない際に発生する熱により、1回
目の電着塗装によって形成されたポジ型フオトレジスト
被膜が再流動し、水滴跡を修復するためと推測される。
[Operations and Effects] By forming a positive photoresist film by electrodeposition coating twice as in the present invention, an operation of obtaining a printed wiring board that does not cause image defects at all due to traces of water droplets during washing with water can be obtained. Is not exactly known,
It is presumed that the heat generated during the second electrodeposition coating causes the positive photoresist film formed by the first electrodeposition coating to reflow and to repair the water drop traces.

しかして、本発明の方法に基づいてポジ型フオトレジス
ト被膜を形成すると、工業ラインで大きな問題となるレ
ジスト被膜上に生じた水滴跡に起因するプリント配線基
板の欠陥を完全に解決することができるという効果があ
る。
Thus, when the positive photoresist film is formed based on the method of the present invention, it is possible to completely solve the defect of the printed wiring board caused by the trace of water droplets on the resist film, which is a big problem in the industrial line. There is an effect.

また、本発明の方法により形成されるレジスト被膜の露
光部は、アルカリ水溶液等の現像液で短時間で現像する
ことができ、未露光部は耐エッチング性に優れ、且つ強
アルカリ等の剥離剤により短時間で容易に溶解除去する
ことができる。
Further, the exposed portion of the resist film formed by the method of the present invention can be developed in a short time with a developing solution such as an alkaline aqueous solution, and the unexposed portion has excellent etching resistance and a stripping agent such as a strong alkali. Thus, it can be easily dissolved and removed in a short time.

[実施例] 次に、本発明を実施例に基づいてさらに具体的に説明す
る。なお、実施例中「部」及び「%」はそれぞれ「重量
部」及び「重量%」を表す。
EXAMPLES Next, the present invention will be described more specifically based on examples. In the examples, "parts" and "%" represent "parts by weight" and "% by weight", respectively.

電着塗装浴の製造例1 4つ口フラスコにジエチレングリコールジメチルエーテ
ル290部を入れ、撹拌しながら110℃に昇温した後、n−
ブチルメタアクリレート202部、アクリル酸24部、m−
イソプロペニル−α,α−ジメチルベンジルイソシアネ
ート92部及びアゾビスブチロバレロニトリル20部の混合
溶液を3時間かけて滴下し、1時間保った後、メチルイ
ソブチルケトン14部及びアゾビスブチロバレロニトリル
3部の混合溶液を1時間かけて滴下し、さらに2時間保
った。その後、50℃に温度を下げ下記の水酸基含有オル
トキノンジアジド化合物142部及びジブチルチンジアセ
テート4.6部を添加し、3時間保った後、赤外(IR)ス
ペクトルの250cm-1付近のイソシアネート基の吸収が無
くなったのを確認し、ポジ型感光性樹脂(酸価40.7;粘
度E;分子量7,000)を得た(粘度はガードナー25℃によ
る。以下同様)。次いでこの感光性樹脂溶液にトリエチ
ルアミン33部を加えて十分に中和した後、固形分が10%
になるように脱イオン水を加えて電着塗装浴(pH.8.0)
とした。
Production Example 1 of electrodeposition coating bath 290 parts of diethylene glycol dimethyl ether was placed in a four-necked flask, heated to 110 ° C. with stirring, and then n-
Butylmethacrylate 202 parts, acrylic acid 24 parts, m-
A mixed solution of 92 parts of isopropenyl-α, α-dimethylbenzylisocyanate and 20 parts of azobisbutyrovaleronitrile was added dropwise over 3 hours, and after maintaining for 1 hour, 14 parts of methyl isobutyl ketone and azobisbutyrovaleronitrile were added. 3 parts of the mixed solution was added dropwise over 1 hour and kept for 2 hours. After that, the temperature was lowered to 50 ° C., 142 parts of the following hydroxyl group-containing orthoquinonediazide compound and 4.6 parts of dibutyltin diacetate were added, and the mixture was kept for 3 hours, the absorption of isocyanate group around 250 cm −1 in infrared (IR) spectrum was After disappearance was confirmed, a positive photosensitive resin (acid value 40.7; viscosity E; molecular weight 7,000) was obtained (viscosity was measured at Gardner 25 ° C., and so on). Next, 33 parts of triethylamine was added to the photosensitive resin solution to fully neutralize it, and then the solid content was 10%.
Deionized water is added so that it becomes
And

水酸基含有オルトキノンジアジド化合物の製造 4つ口フラスコにオルトナフトキノンジアジドスルホン
酸クロライド269部及びジオキサン1345部を入れ、室温
で撹拌しながらN−メチルエタノールアミン150部を1
時間で滴下した。滴下終了後、約3時間撹拌を継続し、
IRスペクトルの3300cm-1付近のアミノ基の吸収が無くな
るのを確認した後、反応を終了した。
Production of hydroxyl-containing orthoquinonediazide compound A 4-necked flask was charged with 269 parts of orthonaphthoquinonediazide sulfonic acid chloride and 1345 parts of dioxane, and 1 part of 150 parts of N-methylethanolamine was stirred at room temperature.
Dropped over time. After the dropping, continue stirring for about 3 hours,
After confirming that absorption of amino group around 3300 cm -1 in IR spectrum disappeared, the reaction was terminated.

次にこの溶液を脱イオン水中に入れ、反応中発生した塩
酸をトラップした4級アミンを除去した。次いで酢酸イ
ソブチルで生成物を抽出した後、溶媒を留去し、減圧乾
燥器に入れ乾燥し、水酸基含有オルトキノンジアジド化
合物を得た。
Next, this solution was put into deionized water to remove the quaternary amine that trapped hydrochloric acid generated during the reaction. Next, the product was extracted with isobutyl acetate, the solvent was distilled off, and the product was placed in a vacuum dryer and dried to obtain a hydroxyl group-containing orthoquinonediazide compound.

電着塗装浴の製造例2 4つ口フラスコにジエチレングリコールジメチルエーテ
ル290部を入れ、撹拌しながら60℃に昇温した後、n−
ブチルアクリレート185部、アクリル酸41部、下記の不
飽和化合物233部及びアゾビスメトキシジメチルバレロ
ニトリル28部の混合溶液を3時間かけて滴下し、1時間
保った後、ジエチレングリコールジメチルエーテル15部
及びアゾビスメトキシジメチルバレロニトリル3部の混
合溶液を1時間かけて滴下し、さらに2時間保ちポジ型
感光性樹脂(酸価69.6;粘度N;分子量7,000)を得た。
Production Example 2 of Electrodeposition Coating Bath 290 parts of diethylene glycol dimethyl ether was placed in a four-necked flask, heated to 60 ° C. with stirring, and then n-
A mixed solution of 185 parts of butyl acrylate, 41 parts of acrylic acid, 233 parts of the following unsaturated compound and 28 parts of azobismethoxydimethylvaleronitrile was added dropwise over 3 hours, and after maintaining for 1 hour, 15 parts of diethylene glycol dimethyl ether and azobis were added. A mixed solution of 3 parts of methoxydimethylvaleronitrile was added dropwise over 1 hour and kept for 2 hours to obtain a positive photosensitive resin (acid value 69.6; viscosity N; molecular weight 7,000).

次いでこの感光性樹脂溶液にトリエチルアミン57部を加
えて、十分に中和した後、固形分が10%になるように脱
イオン水を加えて電着塗装浴(pH.8.2)とした。
Then, 57 parts of triethylamine was added to this photosensitive resin solution to sufficiently neutralize it, and then deionized water was added so that the solid content became 10% to obtain an electrodeposition coating bath (pH 8.2).

不飽和化合物の製造 4つ口フラスコにメチルイソブチルケトン1535部及び水
酸基含有オルトキノンジアジド化合物307部を入れ、50
℃に昇温した後、m−イソプロペニル−α,α−ジメチ
ルベンジルイソシアネート201部を2時間かけて滴下
し、そのまま8時間保ち不飽和化合物を得た。
Manufacture of Unsaturated Compound A 4-necked flask was charged with 1535 parts of methyl isobutyl ketone and 307 parts of orthoquinonediazide compound containing a hydroxyl group,
After the temperature was raised to 0 ° C., 201 parts of m-isopropenyl-α, α-dimethylbenzylisocyanate was added dropwise over 2 hours and kept as such for 8 hours to obtain an unsaturated compound.

電着塗装浴の製造例3 4つ口フラスコにエチレングリコールモノブチルエーテ
ル450部を仕込み、撹拌しながら110℃に昇温した後、メ
チルメタアクリレート350部、スチレン50部、エチルメ
タアクリレート53部、アクリル酸47部及びt−ブチルパ
ーオキシオクトエート30部の混合液を3時間かけて滴下
し、1時間110℃に保った後、t−ブチルパーオキシオ
クトエート3部及びエチレングリコールモノブチルエー
テル50部の混合液を1時間かけて滴下し、さらに2時間
110℃に保って高酸価アクリル樹脂溶液(樹脂酸価73;粘
度U;分子量7,500)を得た。
Production Example 3 of electrodeposition coating bath 3 A 4-neck flask was charged with 450 parts of ethylene glycol monobutyl ether and heated to 110 ° C. with stirring, then 350 parts of methyl methacrylate, 50 parts of styrene, 53 parts of ethyl methacrylate, acrylic A mixed solution of 47 parts of acid and 30 parts of t-butyl peroxyoctoate was added dropwise over 3 hours and kept at 110 ° C. for 1 hour. Then, 3 parts of t-butyl peroxyoctoate and 50 parts of ethylene glycol monobutyl ether were added. Add the mixture dropwise over 1 hour and then for another 2 hours
The temperature was maintained at 110 ° C. to obtain a high acid value acrylic resin solution (resin acid value 73; viscosity U; molecular weight 7,500).

次いでこの溶液1000部にベンジルアルコール50部及びト
リエチルアミン36部を加えて十分に中和した後、固形分
が10%になるように脱イオン水を加えて電着塗装浴(p
H.7.6)とした。
Next, 50 parts of benzyl alcohol and 36 parts of triethylamine were added to 1000 parts of this solution to sufficiently neutralize, and then deionized water was added so that the solid content became 10%, and the electrodeposition coating bath (p
H.7.6).

実施例1 製造例1で得た電着塗装浴にスルーホールのあるプリン
ト配線用銅張積層板(240×170×1.5mm)を陽極として
浸漬し浴温25℃で100Vの直流電流を3分間通電して電着
塗装した。得られた塗膜を水圧1.5kg/cm2のシヤワーで1
0秒間水洗し、50℃で5分間乾燥した後、塗膜を観察し
水滴跡部をマークした。
Example 1 A copper clad laminate for printed wiring (240 × 170 × 1.5 mm) having through holes was immersed as an anode in the electrodeposition coating bath obtained in Production Example 1 and the bath temperature was 25 ° C. and a direct current of 100 V was applied for 3 minutes. It was energized for electrodeposition coating. The resulting coating film 1 with a shower with a water pressure of 1.5 kg / cm 2.
After washing with water for 0 seconds and drying at 50 ° C. for 5 minutes, the coating film was observed and water droplet marks were marked.

かくして得られた銅張積層板を陽極として、25℃に調節
した製造例3で得た電着塗装浴に浸漬し、110Vの直流電
流を3分間通電して2回目の電着塗装を行ない、塗膜を
上記と同様にして水洗及び乾燥した。
The copper clad laminate thus obtained was used as an anode, immersed in the electrodeposition coating bath obtained in Production Example 3 adjusted to 25 ° C., a 110 V DC current was passed for 3 minutes to perform a second electrodeposition coating, The coating film was washed with water and dried in the same manner as above.

次いで、ポジフイルムを真空装置でこの電着塗面に密着
させ、3KWの超高圧水銀灯を用いて、両面とも150mJ/cm2
ずつ照射した。次に露光部を1%メタ硅酸ソーダ水溶液
で洗い出し現像を行ない、水洗後(塩化第2鉄溶液)で
銅箔をエッチング処理して除去し、次いで未露光部を苛
性ソーダで取り除いてプリント印刷回路板を得た。
Then, a positive film was adhered to this electrodeposition coated surface with a vacuum device, and 150 mJ / cm 2 was applied to both sides using a 3 KW ultra-high pressure mercury lamp.
Irradiate each. Next, the exposed area is washed out with a 1% aqueous solution of sodium metasilicate and developed, and after washing with water (ferric chloride solution) the copper foil is removed by etching, and then the unexposed area is removed with caustic soda to produce a printed circuit. I got a plate.

実施例2 製造例2の電着塗装浴を使用する以外、実施例1と同様
にして、銅張基板の1回目の電着塗装を行ない、水洗、
乾燥した。
Example 2 A copper clad substrate was subjected to a first electrodeposition coating in the same manner as in Example 1 except that the electrodeposition coating bath of Production Example 2 was used, followed by washing with water,
Dried.

次いで、同じ電着塗装浴を用いて130Vの電圧を用いる以
外実施例1と同様にして2回目の電着塗装を行ない、水
洗、乾燥した。かくして、得られた基板を用いて実施例
1と同様の露光工程以下の工程を行なってプリント印刷
回路板を得た。
Next, the second electrodeposition coating was performed in the same manner as in Example 1 except that the same electrodeposition coating bath was used and a voltage of 130 V was used, followed by washing with water and drying. Thus, using the obtained substrate, the following exposure process and the same processes as in Example 1 were performed to obtain a printed circuit board.

比較例1 実施例1において2回目の電着塗装を行なわない以外は
同様にしてプリント印刷回路板を得た。
Comparative Example 1 A printed circuit board was obtained in the same manner as in Example 1 except that the second electrodeposition coating was not performed.

比較例2 実施例2において2回目の電着塗装を行なわない以外は
同様にしてプリント印刷回路板を得た。
Comparative Example 2 A printed circuit board was obtained in the same manner as in Example 2 except that the second electrodeposition coating was not performed.

上記実施例及び比較例で得たプリント印刷回路板の性能
を後記表−1に示す。
The performance of the printed circuit boards obtained in the above Examples and Comparative Examples is shown in Table 1 below.

性能評価は、基板上に事前にマークした水滴跡部におけ
る画線の切れ、欠け等の発生する比率(水滴跡に起因す
る画線異常数/水滴跡数×100)によって行なった。各
例において印刷回路板各20枚を試験に供した。
The performance evaluation was performed by the ratio of occurrence of breakage or chipping of image lines at the water drop traces pre-marked on the substrate (number of image line abnormalities due to water drop traces / number of water drop traces × 100). In each example, 20 printed circuit boards were used for the test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩沢 直純 神奈川県平塚市東八幡4丁目17番1号 関 西ペイント株式会社内 (56)参考文献 特開 昭60−207139(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naozumi Iwasawa 4-17-1, Higashi-Hachiman, Hiratsuka-shi, Kanagawa Kansai Paint Co., Ltd. (56) Reference JP-A-60-207139 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】銅張積層板上にポジ型フオトレジスト被膜
を電着塗装によって形成し、さらにその被膜上に水溶性
または水分散性樹脂を主成分とする電着塗料組成物を電
着塗装することを特徴とするポジ型フオトレジストの形
成方法。
1. A positive photoresist film is formed on a copper-clad laminate by electrodeposition coating, and an electrodeposition coating composition containing a water-soluble or water-dispersible resin as a main component is further electrodeposited on the film. A method of forming a positive photoresist, which comprises:
JP18703188A 1988-03-28 1988-07-28 Method of forming positive photoresist Expired - Lifetime JPH0721637B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP18703188A JPH0721637B2 (en) 1988-07-28 1988-07-28 Method of forming positive photoresist
KR1019890003940A KR940008381B1 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
US07/329,636 US4898656A (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
AU31735/89A AU613463B2 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
EP19890105457 EP0335330B1 (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
CA 594851 CA1337864C (en) 1988-03-28 1989-03-28 Electrodeposition coating process of photoresist for printed circuit board
DE89105457T DE68907101T2 (en) 1988-03-28 1989-03-28 Electroplating process for photoresists on printed circuits.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18703188A JPH0721637B2 (en) 1988-07-28 1988-07-28 Method of forming positive photoresist

Publications (2)

Publication Number Publication Date
JPH0239050A JPH0239050A (en) 1990-02-08
JPH0721637B2 true JPH0721637B2 (en) 1995-03-08

Family

ID=16198979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18703188A Expired - Lifetime JPH0721637B2 (en) 1988-03-28 1988-07-28 Method of forming positive photoresist

Country Status (1)

Country Link
JP (1) JPH0721637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164102A (en) * 1992-11-25 1994-06-10 Nippon Paint Co Ltd Surface treatment method for electrodeposition type photosensitive resin coating

Also Published As

Publication number Publication date
JPH0239050A (en) 1990-02-08

Similar Documents

Publication Publication Date Title
US4410562A (en) Method for forming a cured resin coating having a desired pattern on the surface of a substrate
US4436806A (en) Method and apparatus for making printed circuit boards
JP2749646B2 (en) Positive photosensitive electrodeposition coating composition and method for producing circuit board using the same
KR940008381B1 (en) Electrodeposition coating process of photoresist for printed circuit board
TW201602188A (en) Resin insulation layer formation method, resin insulation layer and printed circuit board
KR20010033829A (en) Method of forming pattern
EP0425437A2 (en) Method for making metallic patterns
JPH0721637B2 (en) Method of forming positive photoresist
JPH04146687A (en) Manufacture of solder masked circuit board
US4259421A (en) Improving etch-resistance of casein-based photoresist pattern
US6194127B1 (en) Resistive sheet patterning process and product thereof
CA1333578C (en) Production of metallic patterns
GB2091493A (en) Method and Apparatus for Making Printed Circuit Boards
JP2721843B2 (en) Manufacturing method of printed wiring board
JP2865147B2 (en) Positive photosensitive electrodeposition coating composition
JPH05197156A (en) Method and apparatus for forming thin paint film which can be made to be optical picture on base material on which metal layer is provided
JP3583455B2 (en) Circuit board manufacturing method
JPS62262855A (en) Electrodeposition paint composition for photoresist of printed circuit
JPH0636466B2 (en) Positive image forming method
GB2117670A (en) Method for forming a cured resin coating having a desired pattern on the surface of a substrate
JP2000156556A (en) Method for forming resist layer on substrate having through hole part and production of printed wiring board
JPS636070A (en) Positive photosensitive electrodeposition coating
EP0599308B1 (en) Surface treatment method of electrodeposition type photosensitive resin layer
KR900001224B1 (en) Method for forming a cured resin coating having a desired pattern on the surface of a substrate
US5236810A (en) Process for preparing printed-circuit board