JPH07211945A - P-type thermoelectric material and alloy therefor - Google Patents

P-type thermoelectric material and alloy therefor

Info

Publication number
JPH07211945A
JPH07211945A JP6002531A JP253194A JPH07211945A JP H07211945 A JPH07211945 A JP H07211945A JP 6002531 A JP6002531 A JP 6002531A JP 253194 A JP253194 A JP 253194A JP H07211945 A JPH07211945 A JP H07211945A
Authority
JP
Japan
Prior art keywords
type thermoelectric
alloy
thermoelectric material
solid solution
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6002531A
Other languages
Japanese (ja)
Other versions
JP3528222B2 (en
Inventor
Hitoshi Tauchi
内 比登志 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP00253194A priority Critical patent/JP3528222B2/en
Publication of JPH07211945A publication Critical patent/JPH07211945A/en
Application granted granted Critical
Publication of JP3528222B2 publication Critical patent/JP3528222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a P-type thermoelectric material having a high compressive strength and high performance index. CONSTITUTION:A P-type thermoelectric material is manufactured by sintering the power of an alloy obtained by adding 0.005-0.2wt.% Ag to a solid solution alloy composed basically of a bismuth-tellurium compound (Bi2Te3) and antimony-tellurium compound (Sb2Te3) or bismuth-selenium compound (Bi2Se3) as a dopant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この出願の発明は、熱電冷却素子
や熱電発電素子の構成部材として利用されるP型熱電材
料用合金およびP型熱電材料に関する。特に、ビスマス
・テルル化合物(Bi2 Te3 )とアンチモン・テルル
化合物(Sb2 Te3 )またはビスマス・セレン化合物
(Bi2 Se3 )とを基本組成物とする固溶合金にドー
パントたる銀(Ag)を0.005〜0.2wt%添加し
て成るP型熱電材料用合金と、この合金の粉末を焼結成
形して成るP型熱電材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The invention of the present application relates to a P-type thermoelectric material alloy and a P-type thermoelectric material used as constituent members of thermoelectric cooling elements and thermoelectric power generating elements. In particular, silver (Ag) as a dopant in a solid solution alloy containing a bismuth tellurium compound (Bi 2 Te 3 ) and an antimony tellurium compound (Sb 2 Te 3 ) or a bismuth selenium compound (Bi 2 Se 3 ) as a basic composition. ) 0.005 to 0.2 wt% is added to the alloy for P-type thermoelectric materials, and the P-type thermoelectric material formed by sintering the powder of this alloy.

【0002】[0002]

【従来の技術】(Bi2 Te3 )と(Sb2 Te3 )ま
たは(Bi2 Se3 )とを基本組成物とする固溶合金で
あるP型熱電材料用合金と、このP型熱電材料用合金の
粉末を焼結して成るP型熱電材料は公知であり、例えば
文献「熱電半導体とその応用」(上村欣一,西田勲夫の
共同著作、昭和63年12月20日、日刊工業新聞社発
行)に記載されている。
2. Description of the Related Art An alloy for a P-type thermoelectric material which is a solid solution alloy having (Bi 2 Te 3 ) and (Sb 2 Te 3 ) or (Bi 2 Se 3 ) as a basic composition, and this P-type thermoelectric material P-type thermoelectric materials formed by sintering powder of alloy for use are well known, for example, "Thermoelectric semiconductor and its application" (Joint work of Kinichi Uemura and Isao Nishida, December 20, 1988, Nikkan Kogyo Shimbun). Issued by the company).

【0003】前記P型熱電材料用合金の組成は、一般的
には、(Bi2 Te3 1 (Sb2Te3 X (ここ
に、X =0.5〜4である)、(Bi2 Te3 Y (B
2 Se3 1 (ここに、Y =5〜20である)であ
り、代表例としては(Bi2 Te3 1 (Sb2
3 3 、(Bi2 Te3 9 (Bi2 Se3 1 が挙
げられる。
The composition of the alloy for P-type thermoelectric materials is generally (Bi 2 Te 3 ) 1 (Sb 2 Te 3 ) x (where X = 0.5 to 4), (Bi 2 Te 3 ) Y (B
i 2 Se 3 ) 1 (where Y = 5 to 20), and as a typical example, (Bi 2 Te 3 ) 1 (Sb 2 T
e 3) 3, include (Bi 2 Te 3) 9 ( Bi 2 Se 3) 1.

【0004】前記P型熱電材料は、近年まで前記P型熱
電材料用合金の溶製材で成形されていた。この溶製材
は、Bi,Te,Sb,Seの各粉末を所定比率で調製
して成る混合粉末を石英管やパイレックスガラス管等の
容器内に真空密封し、加熱により溶融させて良く攪拌し
た後、一方向性凝固を行うことで得られていた。かかる
P型熱電材料は、高い性能指数Zを有する反面、へき開
性のために圧縮強度が低く((Bi2 Te3 1 (Sb
2 Te3 3 のものでは圧縮強度が1.2kg/c
2 )、また一方向性凝固に長時間が必要で生産性が低
いと言う問題がある。
Until recently, the P-type thermoelectric material was formed by ingot casting of the alloy for the P-type thermoelectric material. This ingot is vacuum-sealed into a container such as a quartz tube or a Pyrex glass tube, which is prepared by mixing powders of Bi, Te, Sb, and Se at a predetermined ratio, is melted by heating, and is well stirred. , Was obtained by performing unidirectional coagulation. Although such a P-type thermoelectric material has a high figure of merit Z, it has a low compressive strength ((Bi 2 Te 3 ) 1 (Sb
2 Te 3 ) 3 has a compressive strength of 1.2 kg / c
m 2 ) and unidirectional solidification requires a long time, resulting in low productivity.

【0005】そこで、最近では、Bi,Te,Sbまた
はSeの各粉末を所定比率で調整して成る混合粉末を石
英管やパイレックスガラス管等の容器内に真空密封し、
加熱により溶融させて良く攪拌し冷却して得たP型熱電
材料用合金(一方向性凝固をさせてないもの)の粉末を
焼結成形して成り、性能指数Zは溶製材ものよりも低い
が、圧縮強度および生産性は溶製材に比べて格段に高い
P型熱電材料の実用化が推進されている。
Therefore, recently, a mixed powder prepared by adjusting each powder of Bi, Te, Sb or Se at a predetermined ratio is vacuum-sealed in a container such as a quartz tube or a Pyrex glass tube,
It is made by sintering powder of P-type alloy for thermoelectric material (which is not unidirectionally solidified) obtained by melting by heating, stirring well and cooling, and the figure of merit Z is lower than that of ingot material. However, the practical use of P-type thermoelectric materials has been promoted, which are significantly higher in compressive strength and productivity than ingots.

【0006】今日実用化されている(Bi2 Te3 )と
(Sb2 Te3 )または(Bi2 Se3 )とを基本組成
物とする固溶合金であるP型熱電材料用合金の粉末を焼
結成形して成るP型熱電材料の性能指数Zは高くても
2.2〜2.3である。
A powder of an alloy for a P-type thermoelectric material, which is a solid solution alloy containing (Bi 2 Te 3 ) and (Sb 2 Te 3 ) or (Bi 2 Se 3 ) as a basic composition, which has been put into practical use today is prepared. The performance index Z of the P-type thermoelectric material formed by sintering is 2.2 to 2.3 at the highest.

【0007】[0007]

【発明が解決しようとする課題】この出願の発明は、
(Bi2 Te3 )と(Sb2 Te3 )または(Bi2
3 )とを基本組成物とする固溶合金であるP型熱電材
料用合金の粉末を焼結成形して成るP型熱電材料であっ
て、性能指数Zが従来品よりも高いP型熱電材料を得る
ことを目的とする。
SUMMARY OF THE INVENTION The invention of this application is
(Bi 2 Te 3 ) and (Sb 2 Te 3 ) or (Bi 2 S
e 3 ) is a P-type thermoelectric material formed by sintering a powder of an alloy for P-type thermoelectric material, which is a solid solution alloy having a basic composition, and having a higher figure of merit Z than the conventional product. The purpose is to obtain the material.

【0008】また、この出願の発明は、かかるP型熱電
材料の焼結成形の粉末材料となるP型熱電材料用合金を
得ることを目的とする。
Another object of the invention of this application is to obtain an alloy for a P-type thermoelectric material which is a powder material for sintering and molding the P-type thermoelectric material.

【0009】[0009]

【課題を解決するための手段】この出願の発明者は、
(Bi2 Te3 )と(Sb2 Te3 )または(Bi2
3 )とを基本組成物とする固溶合金であるP型熱電材
料用合金の粉末を焼結成形して成るP型熱電材料の性能
指数Zを向上させるべく研究を重ねた様々な実験から、
固溶合金にドーパントを添加してないP型熱電材料用合
金の粉末を焼結成形してP型熱電材料を得る場合、製造
工程の雰囲気中の酸素量の多少により性能指数Zが影響
される(酸素量が多くなることで性能指数が低くなる)
ことを知見し、製造工程の雰囲気中の酸素量の影響を受
けにくい性質を与えることで性能指数Zの向上を試み、
この出願の発明を完成させたものである。
The inventor of this application is
(Bi 2 Te 3 ) and (Sb 2 Te 3 ) or (Bi 2 S
From various experiments that have been repeated to improve the performance index Z of the P-type thermoelectric material formed by sintering the powder of the alloy for P-type thermoelectric material, which is a solid solution alloy having e 3 ) as a basic composition. ,
When a powder of an alloy for a P-type thermoelectric material in which a dopant is not added to a solid solution alloy is sinter-molded to obtain a P-type thermoelectric material, the figure of merit Z is affected by the amount of oxygen in the atmosphere of the manufacturing process. (The figure of merit decreases as the amount of oxygen increases)
Based on this, we tried to improve the figure of merit Z by giving a property that is less susceptible to the amount of oxygen in the atmosphere of the manufacturing process,
The invention of this application has been completed.

【0010】この出願の請求項1の発明は、(Bi2
3 )と(Sb2 Te3 )または(Bi2 Se3 )とを
基本組成物とする固溶合金にドーパントたるAgを0.
005〜0.2wt%添加して成る合金の粉末を焼結して
成ることを特徴とするP型熱電材料である。
The invention of claim 1 of this application is (Bi 2 T
e 3 ) and (Sb 2 Te 3 ) or (Bi 2 Se 3 ) as a basic composition in a solid solution alloy with Ag as a dopant of 0.
It is a P-type thermoelectric material characterized by being formed by sintering an alloy powder formed by adding 005 to 0.2 wt%.

【0011】この出願の請求項2の発明は、(Bi2
3 )と(Sb2 Te3 )または(Bi2 Se3 )とを
基本組成物とする固溶合金にドーパントたるAgを0.
005〜0.2wt%添加して成るP型熱電材料用合金で
ある。
The invention of claim 2 of this application is (Bi 2 T
e 3 ) and (Sb 2 Te 3 ) or (Bi 2 Se 3 ) as a basic composition in a solid solution alloy with Ag as a dopant of 0.
It is an alloy for P-type thermoelectric materials formed by adding 005 to 0.2 wt%.

【0012】上記各発明において、Agの添加量0.0
05〜0.2wt%は(Bi2 Te31 (Sb2
3 X (ここに、X =0.5〜4である)、(Bi2
Te3 Y (Bi2 Se3 1 (ここに、Y =5〜20
である)なる固溶合金を対象とした値であり、(Bi2
Te3 1 (Sb2 Te3 X (ここに、X ≒3であ
る)、(Bi2 Te3 Y (Bi2 Se3 1 (ここ
に、Y ≒9である)の場合には0.008〜0.16wt
%が好ましい。
In each of the above inventions, the addition amount of Ag is 0.0
05-0.2 wt% is (Bi 2 Te 3 ) 1 (Sb 2 T
e 3 ) X (where X = 0.5 to 4), (Bi 2
Te 3 ) Y (Bi 2 Se 3 ) 1 (where Y = 5 to 20)
In a) a value intended for solid solution alloy comprising, (Bi 2
Te 3 ) 1 (Sb 2 Te 3 ) X (where X ≈ 3), (Bi 2 Te 3 ) Y (Bi 2 Se 3 ) 1 (where Y ≈ 9) 0.008-0.16wt
% Is preferred.

【0013】[0013]

【作用】この出願の発明に係るP型熱電材料は、性能指
数Zが従来品よりも高い値を有する。
The P-type thermoelectric material according to the invention of this application has a figure of merit Z higher than that of the conventional product.

【0014】例えば、(Bi2 Te3 1 (Sb2 Te
3 3 の固溶合金、(Bi2 Te31 (Bi2
3 0.1 の固溶合金にAgを0.008〜0.16wt
%添加したP型熱電材料用合金(一方向性凝固はさせて
ない)を従来と同様にして作成し、これを従来と同様に
して粉末にし焼結成形したP型熱電材料は性能指数Zが
2.8〜3.1と言う高い値を示した。
For example, (Bi 2 Te 3 ) 1 (Sb 2 Te
3 ) 3 solid solution alloy, (Bi 2 Te 3 ) 1 (Bi 2 S
0.008~0.16wt the Ag to e 3) 0.1 solid solution alloy
% P-type thermoelectric material alloy (not unidirectionally solidified) was prepared in the same manner as the conventional one, and the P-type thermoelectric material powdered and sintered in the same manner as the conventional one has a performance index Z of A high value of 2.8 to 3.1 was exhibited.

【0015】そして、Agを添加しなかった場合には、
合金作成時の真空度を10-6Torrから10-2Torrへ変更
することで性能指数Zが2.3〜1.9から1.3〜
1.1へ低下したのに対し、Agを添加した場合には合
金作成時の真空度を10-6Torrから10-2Torrへ変更し
ても性能指数Zは3.1〜2.9から3.0〜2.8へ
低下するのに止まった。
And, when Ag is not added,
By changing the degree of vacuum during alloy production from 10 -6 Torr to 10 -2 Torr, the figure of merit Z is 2.3-1.9 to 1.3-
However, when Ag was added, the figure of merit Z was 3.1 to 2.9 even if the degree of vacuum during alloy formation was changed from 10 -6 Torr to 10 -2 Torr. It stopped to drop to 3.0-2.8.

【0016】この出願の発明に係るP型熱電材料用合金
は、一方向性凝固をさせない状態でも性能指数Zが2.
4程度であるので、一方向性凝固をさせることにより性
能指数Zは焼結成形したP型熱電材料の性能指数値を越
えた高さとなり、P型熱電材料用の溶製材としても利用
できる。
The P-type thermoelectric material alloy according to the invention of this application has a figure of merit Z of 2. even when it is not unidirectionally solidified.
Since it is about 4, the figure of merit Z becomes a height exceeding the figure of merit value of the P-type thermoelectric material formed by sintering by unidirectional solidification, and the figure of merit can also be used as an ingot material for the P-type thermoelectric material.

【0017】[0017]

【実施例】この出願の発明に係るP型熱電材料およびP
型熱電材料用合金の実施例を以下に説明する。
EXAMPLES P-type thermoelectric material and P according to the invention of this application
Examples of alloys for die-type thermoelectric materials will be described below.

【0018】(実施例1〜6および比較例1,2)実施
例1〜6および比較例1,2は、(Bi2 Te3 )と
(Sb2 Te3 )とを基本組成物とする固溶合金である
P型熱電材料用合金(一方向性凝固はさせてない)と、
その粉末を焼結成形したP型熱電材料である。
(Examples 1 to 6 and Comparative Examples 1 and 2) Examples 1 to 6 and Comparative Examples 1 and 2 are solid compositions containing (Bi 2 Te 3 ) and (Sb 2 Te 3 ) as basic compositions. An alloy for a P-type thermoelectric material that is a molten alloy (not unidirectionally solidified),
It is a P-type thermoelectric material obtained by sintering the powder.

【0019】次の表1に記載したように、実施例1にお
いては、Bi,Te,Sbの粉末を表1に記載した基本
組成の固溶合金を得る配合割合に配合するとともにAg
粉末を0.008wt%添加して良く混合した混合粉末を
作り、この混合粉末を10-2Torrの真空状態下で石英管
内に封入し、700℃に加熱して混合粉末を溶融させ均
質化した後、冷却・固化させ、石英管を破壊して固化し
たP型熱電材料用合金を得た。
As shown in Table 1 below, in Example 1, the powders of Bi, Te, and Sb were blended at the blending ratio to obtain the solid solution alloy having the basic composition shown in Table 1 and Ag.
0.008 wt% of the powder was added and well mixed to prepare a mixed powder, which was enclosed in a quartz tube under a vacuum of 10 -2 Torr and heated to 700 ° C to melt and homogenize the mixed powder. Then, it was cooled and solidified, and the quartz tube was broken to obtain a solidified alloy for P-type thermoelectric material.

【0020】そして、かかる合金を粉砕し分級して粒径
が100μm以下の粉末を得、この粉末を焼結成形して
P型熱電材料を得た。焼結は、500kg/cm2 の圧
力にて350℃で1時間行い、その後、200℃で5時
間後処理を行った。
Then, the alloy was pulverized and classified to obtain a powder having a particle size of 100 μm or less, and the powder was sintered and molded to obtain a P-type thermoelectric material. Sintering was performed at 350 ° C. for 1 hour at a pressure of 500 kg / cm 2 , and then post-treatment was performed at 200 ° C. for 5 hours.

【0021】かかるP型熱電材料の導電率σ、熱電率
α、および熱伝導率κを測定し、これらから性能指数Z
(Z=α2 ・σ/κ)を求めた。導電率σは交流四端子
法により測定し、熱電率αは焼結体の両端に40℃の温
度差をつけてそこに発生する起電圧をデジタルメーター
で測定し、また熱伝導率κはレーザーフラッシュ法によ
り測定した。
The electrical conductivity σ, thermoelectric constant α, and thermal conductivity κ of the P-type thermoelectric material were measured, and the figure of merit Z was obtained from these.
(Z = α 2 · σ / κ) was determined. The electrical conductivity σ is measured by the AC four-terminal method, the thermoelectric constant α is measured by a digital meter with the electromotive voltage generated at a temperature difference of 40 ° C. at both ends of the sintered body, and the thermal conductivity κ is measured by a laser. It was measured by the flash method.

【0022】そして、オートグラフにより圧縮強度を求
めた。
Then, the compression strength was determined by an autograph.

【0023】実施例2〜6は、固溶合金の基本組成、A
g添加量、合金作成時の真空度を表1に記載したように
したことだけが実施例1と異なる。
In Examples 2 to 6, the basic composition of the solid solution alloy, A
It differs from Example 1 only in that the addition amount of g and the degree of vacuum at the time of alloy preparation are as described in Table 1.

【0024】比較例1は、Agを添加しないことだけが
実施例1,2,4と異なり、比較例2はAgを添加しな
いことだけが実施例3と異なる。
Comparative Example 1 is different from Examples 1, 2 and 4 only in that Ag is not added, and Comparative Example 2 is different from Example 3 in that Ag is not added.

【0025】[0025]

【表1】 [Table 1]

【0026】この表1に記載されているように、比較例
1,2のP型熱電材料の性能指数が1.3〜2.3であ
るのに対して、実施例1〜6のP型熱電材料の性能指数
は2.5〜3.1と格段に向上している。
As shown in Table 1, the P-type thermoelectric materials of Comparative Examples 1 and 2 have a performance index of 1.3 to 2.3, while the P-type thermoelectric materials of Examples 1 to 6 have a performance index of 1.3 to 2.3. The figure of merit of the thermoelectric material is significantly improved to 2.5 to 3.1.

【0027】(実施例7〜12および比較例3,4)実
施例7〜12および比較例3,4は、(Bi2 Te3
と(Bi2 Se3 )とを基本組成物とする固溶合金であ
るP型熱電材料用合金(一方向性凝固はさせてない)
と、その粉末を焼結成形したP型熱電材料である。
(Examples 7 to 12 and Comparative Examples 3 and 4) Examples 7 to 12 and Comparative Examples 3 and 4 are (Bi 2 Te 3 )
And (Bi 2 Se 3 ) as a solid solution alloy for P-type thermoelectric materials (not unidirectionally solidified)
And a P-type thermoelectric material obtained by sintering the powder.

【0028】次の表2に記載したように、実施例7にお
いては、Bi,Te,Seの粉末を表2に記載した基本
組成の固溶合金を得る配合割合に配合するとともにAg
粉末を0.008wt%添加して良く混合した混合粉末を
作り、この混合粉末を10-2Torrの真空状態下で石英管
内に封入し、700°Cに加熱して混合粉末を溶融させ
均質化した後、冷却・固化させ、石英管を破壊して固化
したP型熱電材料用合金を得た。
As shown in Table 2 below, in Example 7, the powders of Bi, Te, and Se were blended at the blending ratio to obtain the solid solution alloy having the basic composition shown in Table 2 and Ag.
Add 0.008wt% of powder to make a well-mixed powder, enclose this mixed powder in a quartz tube under vacuum of 10 -2 Torr, and heat to 700 ° C to melt and homogenize the mixed powder. After that, it was cooled and solidified, and the quartz tube was destroyed to obtain a solidified alloy for P-type thermoelectric material.

【0029】そして、かかる合金を粉砕し分級して粒径
が100μm以下の粉末を得、この粉末を実施例1〜6
と同じ条件で焼結成形してP型熱電材料を得た。
Then, the alloy is pulverized and classified to obtain a powder having a particle size of 100 μm or less.
Sinter molding was performed under the same conditions as above to obtain a P-type thermoelectric material.

【0030】かかるP型熱電材料の導電率σ、熱電率
α、および熱伝導率κを測定し、これらから性能指数Z
(Z=α2 ・σ/κ)を実施例1〜6と同様にして求め
た。
The electrical conductivity σ, thermoelectric constant α, and thermal conductivity κ of the P-type thermoelectric material are measured, and the figure of merit Z is obtained from these.
(Z = α 2 · σ / κ) was obtained in the same manner as in Examples 1 to 6.

【0031】実施例8〜12は、固溶合金の基本組成、
Ag添加量、合金作成時の真空度を表2に記載したよう
にしたことだけが実施例1と異なる。比較例3は、Ag
を添加しないことだけが実施例7,8,10と異なり、
比較例4はAgを添加しないことだけが実施例9と異な
る。
Examples 8 to 12 are the basic composition of the solid solution alloy,
It differs from Example 1 only in that the amount of Ag added and the degree of vacuum at the time of alloy preparation were as described in Table 2. Comparative Example 3 is Ag
Differs from Examples 7, 8 and 10 only in that
Comparative Example 4 differs from Example 9 only in that Ag is not added.

【0032】[0032]

【表2】 [Table 2]

【0033】この表2に記載されているように、比較例
3,4のP型熱電材料の性能指数が1.1〜1.9であ
るのに対して、実施例7〜12のP型熱電材料の性能指
数は2.5〜3.0と格段に向上している。
As shown in Table 2, the performance indexes of the P-type thermoelectric materials of Comparative Examples 3 and 4 are 1.1 to 1.9, whereas the P-type thermoelectric materials of Examples 7 to 12 are P-type. The figure of merit of the thermoelectric material is significantly improved to 2.5 to 3.0.

【0034】[0034]

【発明の効果】以上詳細に説明したように、この出願の
発明に係るP型熱電材料は、性能指数値が高く、圧縮強
度が大きく、且つ、製造コストが低い(一方向性凝固を
必要とせず、高い真空度を達成できる高価設備が不要と
なるため)。従って、熱電冷却素子や熱電発電素子の実
用化を促進できる。また、この出願の発明に係るP型熱
電材料用合金は、更に、一方向性凝固を行わせて高い性
能指数を有する溶製材としても利用でき、高い圧縮強度
を必要としない高性能のP型熱電材料を提供することが
できる。
As described in detail above, the P-type thermoelectric material according to the invention of this application has a high figure of merit value, a high compressive strength, and a low manufacturing cost (need to require unidirectional solidification). No need for expensive equipment that can achieve a high degree of vacuum). Therefore, the practical application of the thermoelectric cooling element and the thermoelectric power generating element can be promoted. Further, the alloy for P-type thermoelectric material according to the invention of this application can be used as a melting material having a high figure of merit by performing unidirectional solidification, and is a high-performance P-type alloy that does not require high compressive strength. A thermoelectric material can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ビスマス・テルル化合物(Bi2
3 )とアンチモン・テルル化合物(Sb2 Te3 )ま
たはビスマス・セレン化合物(Bi2 Se3 )とを基本
組成物とする固溶合金にドーパントたる銀(Ag)を
0.005〜0.2wt%添加して成るP型熱電材料用合
金粉末を焼結成形して成ることを特徴とするP型熱電材
料。
1. A bismuth tellurium compound (Bi 2 T
e 3 ) and antimony tellurium compound (Sb 2 Te 3 ) or bismuth selenium compound (Bi 2 Se 3 ) as a basic composition in a solid solution alloy with 0.005 to 0.2 wt% of silver (Ag) as a dopant. % Of P-type thermoelectric material alloy powder for sinter molding.
【請求項2】 ビスマス・テルル化合物(Bi2
3 )とアンチモン・テルル化合物(Sb2 Te3 )ま
たはビスマス・セレン化合物(Bi2 Se3 )とを基本
組成物とする固溶合金にドーパントたる銀(Ag)を
0.005〜0.2wt%添加して成るP型熱電材料用合
金。
2. A bismuth tellurium compound (Bi 2 T
e 3 ) and antimony tellurium compound (Sb 2 Te 3 ) or bismuth selenium compound (Bi 2 Se 3 ) as a basic composition in a solid solution alloy with 0.005 to 0.2 wt% of silver (Ag) as a dopant. % Alloy for P-type thermoelectric materials.
JP00253194A 1994-01-14 1994-01-14 P-type thermoelectric material and alloy for P-type thermoelectric material Expired - Lifetime JP3528222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00253194A JP3528222B2 (en) 1994-01-14 1994-01-14 P-type thermoelectric material and alloy for P-type thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00253194A JP3528222B2 (en) 1994-01-14 1994-01-14 P-type thermoelectric material and alloy for P-type thermoelectric material

Publications (2)

Publication Number Publication Date
JPH07211945A true JPH07211945A (en) 1995-08-11
JP3528222B2 JP3528222B2 (en) 2004-05-17

Family

ID=11531973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00253194A Expired - Lifetime JP3528222B2 (en) 1994-01-14 1994-01-14 P-type thermoelectric material and alloy for P-type thermoelectric material

Country Status (1)

Country Link
JP (1) JP3528222B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021606A1 (en) * 2000-09-08 2002-03-14 Korea Institute Of Science And Technology The method manufacturing p-type bismuth telluride thermoelectric materials for the enhancement of the yield of high quality ingot
JP2010118632A (en) * 2008-11-13 2010-05-27 Korea Electrotechnology Research Inst Thermoelectric material for lower and medium temperature
JP2013157362A (en) * 2012-01-26 2013-08-15 Toyota Motor Corp Thermoelectric semiconductor
JP2016009857A (en) * 2014-06-24 2016-01-18 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute Te-BASED THERMOELECTRIC MATERIAL HAVING COMPLEX CRYSTAL STRUCTURE FORMED BY ADDITION OF INTERSTITIAL DOPANT
CN113773083B (en) * 2021-09-13 2022-10-04 哈尔滨工业大学 Bismuth telluride-based material with high strength and high thermoelectric property and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021606A1 (en) * 2000-09-08 2002-03-14 Korea Institute Of Science And Technology The method manufacturing p-type bismuth telluride thermoelectric materials for the enhancement of the yield of high quality ingot
JP2010118632A (en) * 2008-11-13 2010-05-27 Korea Electrotechnology Research Inst Thermoelectric material for lower and medium temperature
JP2013157362A (en) * 2012-01-26 2013-08-15 Toyota Motor Corp Thermoelectric semiconductor
JP2016009857A (en) * 2014-06-24 2016-01-18 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute Te-BASED THERMOELECTRIC MATERIAL HAVING COMPLEX CRYSTAL STRUCTURE FORMED BY ADDITION OF INTERSTITIAL DOPANT
CN113773083B (en) * 2021-09-13 2022-10-04 哈尔滨工业大学 Bismuth telluride-based material with high strength and high thermoelectric property and preparation method thereof

Also Published As

Publication number Publication date
JP3528222B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US5108515A (en) Thermoelectric material and process for production thereof
US6440768B1 (en) Thermoelectric semiconductor material and method of manufacturing the same
US5246504A (en) Thermoelectric material
JP4976566B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
JP2847123B2 (en) Manufacturing method of thermoelectric material
KR101417968B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
JP2000106460A (en) Thermoelectric semiconductor material and manufacture thereof
JP3528222B2 (en) P-type thermoelectric material and alloy for P-type thermoelectric material
US3238134A (en) Method for producing single-phase mixed crystals
JPS61139637A (en) Target for sputter and its manufacture
KR101264311B1 (en) fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
JPH07273374A (en) Bi2 te3 group thermoelectric material composition having p-ntransition-preventive property
CN110627502B (en) Low-temperature p-type composite thermoelectric material and preparation method thereof
KR101417965B1 (en) GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP6082617B2 (en) Thermoelectric conversion material and method for producing the same
WO2019163807A1 (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
JP6727626B2 (en) Chalcogen compound, method for producing the same, and thermoelectric device including the same
JP2000049392A (en) Manufacture of thermoelectric semiconductor material
JPH10102160A (en) Production of cobalt triantimonide type composite material
KR101531011B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
JP6799341B2 (en) Thermoelectric materials, their manufacturing methods and thermoelectric power generation modules using them
JPH0341780A (en) Manufacture of thermoelectric material
JP3543650B2 (en) Method for producing thermoelectric material and method for producing thermoelectric module
JP3109905B2 (en) Method for producing material for electronic cooling element

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term