JPH07211518A - Production of voltage non-linear resistor - Google Patents

Production of voltage non-linear resistor

Info

Publication number
JPH07211518A
JPH07211518A JP6003943A JP394394A JPH07211518A JP H07211518 A JPH07211518 A JP H07211518A JP 6003943 A JP6003943 A JP 6003943A JP 394394 A JP394394 A JP 394394A JP H07211518 A JPH07211518 A JP H07211518A
Authority
JP
Japan
Prior art keywords
tin
voltage
voltage non
solution
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6003943A
Other languages
Japanese (ja)
Inventor
Tadashi Onomi
忠 小野美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6003943A priority Critical patent/JPH07211518A/en
Publication of JPH07211518A publication Critical patent/JPH07211518A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a voltage non-linear resistor which has an excellent voltage non-linearlity and suppressed variance by containing a zinc oxide as an essential composition and at least Bi, Co, Mn, and Ti as a subcomposition and adding a specific amount of Sn dissolving in a solution. CONSTITUTION:This method is used to produce a voltage non-linear resistor by using a zinc oxide as an essential composition, containing as a subcomposition at least Bi, Co, Mn, and Ti in terms of Bi2O3, Co2O3, MnO2, and TiO2 respectively, that is, 0.100-2.000mol% Bi2O3, 0.100-2.000mol% Co2O3, 0.100-2.000mol% MnO2, 0.000-2.000mol% TiO2, and adding 0.001-0.100mol% Sn dissolving in a solution. In this method, as a dissolved Sn in a solution, one or two kinds or more of tin chloride are dissolved in a pure water to make a solution. Thus, tin is uniformly dispersed, suppressing the variance of voltage non-linearlity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化亜鉛を主成分とする
電圧非直線性抵抗器の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a voltage non-linear resistor containing zinc oxide as a main component.

【0002】[0002]

【従来の技術】酸化亜鉛を主成分とする電圧非直線性抵
抗器は、電圧非直線性に優れ、大きなサージ電流耐量を
有し広く、利用されている。
2. Description of the Related Art Voltage non-linear resistors having zinc oxide as a main component are widely used because they have excellent voltage non-linearity, large surge current withstand capability.

【0003】その製造方法は、主成分の酸化亜鉛に副成
分としてビスマス、コバルト、マンガン、チタンなどを
混合し、造粒・成形・焼成を経て製造される。
The manufacturing method is such that zinc oxide as a main component is mixed with bismuth, cobalt, manganese, titanium and the like as auxiliary components, and the mixture is granulated, molded and fired.

【0004】前記副成分により任意にバリスタ電圧を得
ることができ、一般的に50V以下の低電圧用にはチタ
ンが用いられることが多い。しかし、チタンを用いると
電圧非直線性が悪くなるという問題がある。一方、電圧
非直線性を向上させる添加物としてスズが知られてい
る。
A varistor voltage can be arbitrarily obtained by the subcomponents, and in general, titanium is often used for a low voltage of 50 V or less. However, when titanium is used, there is a problem that the voltage non-linearity deteriorates. On the other hand, tin is known as an additive for improving the voltage nonlinearity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、電圧非
直線性を向上させるためにスズを含有する場合、含有量
が多いと焼成過程においてビスマスと反応することによ
りスズとビスマス化合物を形成し、異常粒成長を引き起
こし易くなり、バリスタ電圧のばらつきの原因となる。
また、含有量が少ない場合にはバリスタ電圧のばらつき
は小さくなるがスズの分散が不均一になり電圧非直線性
のばらつきが大きくなり、また電圧非直線性を向上させ
る効果も小さいという課題を有していた。
However, in the case where tin is contained in order to improve the voltage non-linearity, if the content of tin is large, it reacts with bismuth in the firing process to form tin and a bismuth compound, resulting in abnormal grains. Growth is likely to occur, which causes variations in varistor voltage.
In addition, when the content is small, there is a problem that the dispersion of varistor voltage becomes small, but the dispersion of tin becomes non-uniform, the dispersion of voltage nonlinearity becomes large, and the effect of improving voltage nonlinearity is small. Was.

【0006】本発明は上記従来の課題を解決するもの
で、電圧非直線性に優れ、ばらつきの小さい電圧非直線
性抵抗器の製造方法を提供することを目的とするもので
ある。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a voltage non-linear resistor having excellent voltage non-linearity and small variations.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の電圧非直線性抵抗器の製造方法は、酸化亜鉛
を主成分とし、副成分として少なくともビスマス、コバ
ルト、マンガン、チタンを含有させ、更に溶液化したス
ズを0.001〜0.100モル%添加するものであ
る。
In order to achieve this object, a method of manufacturing a voltage non-linear resistor according to the present invention comprises zinc oxide as a main component and at least bismuth, cobalt, manganese and titanium as auxiliary components. Then, 0.001 to 0.100 mol% of tin in solution is added.

【0008】[0008]

【作用】これにより、スズが溶液状態で添加されるため
に均一に分散され、電圧非直線性のばらつきが小さくな
り、また添加量も少なくすることができるためバリスタ
電圧のばらつきも小さくなるものである。
As a result, tin is uniformly dispersed because it is added in the form of a solution, the variation in voltage nonlinearity is reduced, and the addition amount can be reduced, so that the variation in varistor voltage is also reduced. is there.

【0009】[0009]

【実施例】以下、本発明の実施例について詳細に説明す
る。
EXAMPLES Examples of the present invention will be described in detail below.

【0010】主成分の酸化亜鉛(ZnO)、酸化ビスマ
ス(Bi23)、酸化コバルト(Co23)、酸化マン
ガン(MnO2)、酸化チタン(TiO2)を(表1)に
示す組成比で秤量を行った。一方、硝酸スズを純水に溶
解させスズ溶液を作成した。前記秤量された原料に(表
1)に示す組成比でスズ溶液を添加した。この原料に、
固形分比率が60重量%となるように純水を加え、有機
バインダとしてPVA(ポリビニルアルコール)を固形
分比率0.5重量%加え、全量をジルコニア玉石ととも
にボールミルに入れ、24時間混合しスラリーを得た。
このスラリーをスプレドライヤで造粒した。
The main components of zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese oxide (MnO 2 ) and titanium oxide (TiO 2 ) are shown in Table 1. The composition ratio was weighed. On the other hand, tin nitrate was dissolved in pure water to prepare a tin solution. A tin solution was added to the weighed raw materials in the composition ratio shown in (Table 1). In this raw material,
Pure water was added to a solid content ratio of 60% by weight, PVA (polyvinyl alcohol) as an organic binder was added in a solid content ratio of 0.5% by weight, and the whole amount was put in a ball mill together with zirconia boulders and mixed for 24 hours to form a slurry. Obtained.
This slurry was granulated with a spray dryer.

【0011】この造粒粉を直径2mm、厚み2mmの円盤に
加圧成形し、成形体を得た。この成形体をアルミナ磁器
製さやに入れ、大気中において1300℃で3時間焼成
を行い、焼結体を得た。この焼結体の両端面に銀ペース
トをスクリーン印刷し、600℃で焼き付けて銀電極を
設けた。この電極部にリード線を半田付けにより取り付
け後、熱硬化性樹脂により外装を塗装した。また、従来
例としてスズを酸化スズ(SnO2)で用いたものも同
様の方法により作成した。
This granulated powder was pressure-molded into a disk having a diameter of 2 mm and a thickness of 2 mm to obtain a molded body. This molded body was put into an alumina porcelain pod and fired in the atmosphere at 1300 ° C. for 3 hours to obtain a sintered body. A silver paste was screen-printed on both end faces of this sintered body and baked at 600 ° C. to provide a silver electrode. After attaching a lead wire to this electrode portion by soldering, the exterior was coated with a thermosetting resin. In addition, as a conventional example, tin oxide (SnO 2 ) was used in the same manner.

【0012】以上の手順により作成された試料につい
て、それぞれ各20個のバリスタ電圧(V1mA/mm)
を測定し、電圧非直線係数(α)を算出し、(表1)に
For each of the samples prepared by the above procedure, 20 varistor voltages (V1 mA / mm) each
And calculate the voltage non-linearity coefficient (α).

【0013】[0013]

【外1】 [Outer 1]

【0014】を示した。バリスタ電圧は、1mAの電流
を流した時の素子厚み1mm当たりの電圧値を示す。電圧
非直線係数は、1mA、100μAの各電流を流した時
の電圧値から、下記式より算出した。
Is shown. The varistor voltage indicates a voltage value per 1 mm of element thickness when a current of 1 mA is applied. The voltage non-linearity coefficient was calculated by the following formula from the voltage value when each current of 1 mA and 100 μA was passed.

【0015】 α=(logI1−logI2)/(logV1−logV2) 但し、I1,I2;測定電流 V1,V2;I1,I2における電圧値 試料番号1よりビスマスが0モル%の場合、非常にバリ
スタ電圧が高く、電圧非直線性が低下する。試料番号5
より2モル%を越えると電圧非直線性が低下する。試料
番号6,9,10,13よりコバルト及びマンガンは0
モル%でも、逆に2モル%を越えても電圧非直線性が低
下する。試料番号17よりチタンが2モル%を越えると
バリスタ電圧が高くなり電圧非直線性も低下する。試料
番号18,19よりスズ溶液が0.001モル%より少
ないと電圧非直線性が低下し、試料番号22よりスズ溶
液が0.2モル%を越えるとバリスタ電圧のばらつきが
大きくなる。一方、試料番号23〜26より従来の粉体
でスズを添加した場合には、添加量が少ないと電圧非直
線係数のばらつきが大きくなる。
Α = (logI 1 −logI 2 ) / (logV 1 −logV 2 ) However, I 1 , I 2 ; measured currents V 1 , V 2 ; voltage values at I 1 , I 2 Bismuth from sample number 1 When it is 0 mol%, the varistor voltage is very high and the voltage nonlinearity is lowered. Sample number 5
If it exceeds 2 mol%, the voltage non-linearity decreases. Cobalt and manganese are 0 from sample numbers 6, 9, 10, and 13
The voltage non-linearity deteriorates even when the content is mol% or conversely exceeds 2 mol%. When titanium exceeds 2 mol% as compared with Sample No. 17, the varistor voltage becomes high and the voltage nonlinearity also deteriorates. When the tin solution is less than 0.001 mol% than the sample Nos. 18 and 19, the voltage non-linearity is lowered, and when the tin solution exceeds 0.2 mol% from the sample No. 22, the varistor voltage varies greatly. On the other hand, in the case where tin is added as the conventional powder from sample numbers 23 to 26, the variation in the voltage nonlinear coefficient becomes large when the addition amount is small.

【0016】[0016]

【表1】 [Table 1]

【0017】また、図1、図2に示すようにスズを溶液
化して添加した場合には微量でも電圧非直線性が向上
し、その電圧非直線係数のばらつき(σ)も小さいこと
がわかる。
Further, as shown in FIGS. 1 and 2, when tin is added as a solution, the voltage nonlinearity is improved even with a small amount, and the variation (σ) of the voltage nonlinear coefficient is small.

【0018】なお、本実施例では硝酸スズを純水に溶か
しスズ溶液を作成したが、塩化スズ、硫酸スズの各種ス
ズ化合物を用いても同様の効果が得られる。
Although tin nitrate was dissolved in pure water to prepare a tin solution in this embodiment, the same effect can be obtained by using various tin compounds such as tin chloride and tin sulfate.

【0019】また、諸特性を更に向上させる添加物、例
えばCr,Ni,Sb,Al,Bなどを加えても本発明
の効果に変わりはない。
The effect of the present invention remains unchanged even if additives such as Cr, Ni, Sb, Al and B are added to further improve various characteristics.

【0020】[0020]

【発明の効果】以上のように本発明によれば、酸化亜鉛
を主成分とし、副成分として少なくともビスマス、コバ
ルト、マンガン、チタンを含有させ、更に溶液化したス
ズを0.001〜0.100モル%添加することによ
り、スズが均一に分散されることとなり、電圧非直線性
に優れ、ばらつきの小さい電圧非直線性抵抗器を容易に
提供することができる。
As described above, according to the present invention, the main component is zinc oxide, and at least bismuth, cobalt, manganese, and titanium are contained as secondary components, and 0.001 to 0.100 of tin is dissolved. By adding mol%, tin is uniformly dispersed, and it is possible to easily provide a voltage nonlinear resistor having excellent voltage nonlinearity and small variations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と従来例の電圧非直線係数(α)を示す
FIG. 1 is a diagram showing a voltage non-linearity coefficient (α) of the present invention and a conventional example.

【図2】同じく電圧非直線係数(α)のばらつきを示す
FIG. 2 is a diagram showing variations in the voltage nonlinear coefficient (α).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を主成分とし、副成分として少
なくともビスマス、コバルト、マンガン、チタンをそれ
ぞれBi23,Co23,MnO2,TiO2に換算し
て、 Bi23:0.100〜2.000モル% Co23:0.100〜2.000モル% MnO2:0.100〜2.000モル% TiO2:0.000〜2.000モル% を含有させ、更に溶液化したスズを0.001〜0.1
00モル%添加する電圧非直線性抵抗器の製造方法。
1. Zinc oxide as a main component, and at least bismuth, cobalt, manganese, and titanium as auxiliary components are converted into Bi 2 O 3 , Co 2 O 3 , MnO 2 , and TiO 2 , respectively, to obtain Bi 2 O 3 : 0.100 to 2.000 mol% Co 2 O 3: 0.100 to 2.000 mol% MnO 2: 0.100 to 2.000 mol% TiO 2: .000-2.000 is contained mol% , 0.001 to 0.1 of solution tin
A method for manufacturing a voltage non-linear resistor added with 00 mol%.
【請求項2】 溶液化したスズとして硝酸スズ、硫酸ス
ズ、塩化スズの1種類または2種類以上を純水に溶解さ
せ溶液化したものを用いる請求項1記載の電圧非直線性
抵抗器の製造方法。
2. The production of the voltage non-linear resistor according to claim 1, wherein one or more of tin nitrate, tin sulfate and tin chloride is dissolved in pure water to form a solution as tin in solution. Method.
JP6003943A 1994-01-19 1994-01-19 Production of voltage non-linear resistor Pending JPH07211518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003943A JPH07211518A (en) 1994-01-19 1994-01-19 Production of voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003943A JPH07211518A (en) 1994-01-19 1994-01-19 Production of voltage non-linear resistor

Publications (1)

Publication Number Publication Date
JPH07211518A true JPH07211518A (en) 1995-08-11

Family

ID=11571212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003943A Pending JPH07211518A (en) 1994-01-19 1994-01-19 Production of voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH07211518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083822A1 (en) * 2013-12-06 2015-06-11 日立金属株式会社 Sintered body for varistor, multilayer substrate using same, and production method for these

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083822A1 (en) * 2013-12-06 2015-06-11 日立金属株式会社 Sintered body for varistor, multilayer substrate using same, and production method for these
JPWO2015083822A1 (en) * 2013-12-06 2017-03-16 日立金属株式会社 Sintered body for varistor, multilayer substrate using the same, and manufacturing method thereof
US9741477B2 (en) 2013-12-06 2017-08-22 Hitachi Metals, Ltd. Sintered body for varistor, multilayer substrate using same, and production method for these

Similar Documents

Publication Publication Date Title
JPH07211518A (en) Production of voltage non-linear resistor
JP2751511B2 (en) Method of manufacturing voltage non-linear resistor
US5296169A (en) Method of producing varistor
JPH0249526B2 (en)
JPH05251213A (en) Voltage non-linearity resistor
JPH07211517A (en) Production of voltage non-linear resistor
JPH05234716A (en) Zinc oxide varistor
JPH04328801A (en) Composition for thermistor
JPH0352201A (en) Voltage nonlinear resistor
JP3089370B2 (en) Voltage non-linear resistance composition
JPH0574606A (en) Zinc oxide varistor for low voltage
JPH04369803A (en) Non-linear voltage resistor
JP3089371B2 (en) Voltage non-linear resistance composition
JP2990626B2 (en) Varistor manufacturing method
JPH0795482B2 (en) Varistor manufacturing method
JPH06251909A (en) Manufacture of zinc oxide varistor
JPH04175259A (en) Voltage-nonlinear resistance ceramic composition
JPH0732085B2 (en) Electrode material for voltage nonlinear resistors
JPS58194301A (en) Voltage non-linear resistor
JPH06314603A (en) Zinc oxide varistor and manufacture thereof
JPS62282410A (en) Manufacture of voltage nonlinear resistance element
JPH0684609A (en) Production of voltage nonlinear resistor ceramic
JPH059069A (en) Grain boundary oxidized voltage nonlinear resistant composition
JPH02248004A (en) Voltage dependent nonlinear resistor
JPH02248003A (en) Manufacture of voltage dependent nonlinear resistor for low voltage