JPH07208470A - Synchronized dynamo-electric machine with magnetic bearing and controlling device therefor and method thereof - Google Patents

Synchronized dynamo-electric machine with magnetic bearing and controlling device therefor and method thereof

Info

Publication number
JPH07208470A
JPH07208470A JP2194794A JP2194794A JPH07208470A JP H07208470 A JPH07208470 A JP H07208470A JP 2194794 A JP2194794 A JP 2194794A JP 2194794 A JP2194794 A JP 2194794A JP H07208470 A JPH07208470 A JP H07208470A
Authority
JP
Japan
Prior art keywords
rotor
magnetic bearing
electric motor
stator
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2194794A
Other languages
Japanese (ja)
Other versions
JP3694794B2 (en
Inventor
Kiyoshi Ishida
精 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP02194794A priority Critical patent/JP3694794B2/en
Publication of JPH07208470A publication Critical patent/JPH07208470A/en
Application granted granted Critical
Publication of JP3694794B2 publication Critical patent/JP3694794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To simplify the whole structure of system including a controller and improve reliability by making an axial gap type synchronized motor on a rotary shaft function as a motor, and providing a bearing function for non-contact support in up and down directions. CONSTITUTION:At the center of a rotor 31 a cylindrical magnetic bearing rotator 41 made of iron core of hollow strong magnetic body is fixed. Around the circuference thereof a cylindrical magnetic bearing stator 42 made of a plurality of magnetic members having a magnetic bearing wire 45 wound around the iron core through a radial air gap is fixed to a frame 5. In the vicinity of the stator 42 a displacement sensor 43 is set to detect the position of a rotary shaft 1 to a frame 5, that is, an air gap between the rotror 41 and the stator 42. A radial magnetic bearing 4 is composed of the rotor 41, stator 42 and the sensor 43 to enable control of levitation in two directions orthogonal to the shaft 1 and coss each other to be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転子に永久磁石を備
えた同期電動機を磁気軸受により非接触支持する回転電
機と制御装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary electric machine and a control device and method for supporting a synchronous motor having a permanent magnet on a rotor by magnetic bearings in a non-contact manner.

【0002】[0002]

【従来の技術】回転電機は高速化し長寿命化するに加え
て信頼性を高めて高性能化される傾向にある。その傾向
に応えられる要素技術として、非接触支持する磁気軸受
が注目されている。従来、制御形の磁気軸受は、回転軸
を支持するため回転軸以外の5自由度を拘束する5軸制
御の軸受が用いられることが多いが、各制御軸毎に変位
センサと浮上制御器と電流増幅器を必要とするため、軸
受の制御装置は複雑で高価なものであった。そこで、永
久磁石の反発力を利用する反発形の軸受を併用したり、
制御形軸受の制御軸と直交方向に受動的な支持力がある
ことを利用して制御軸数を低減し1軸や3軸制御の軸受
としたり、ラジアル軸受と電動機を同じ鉄心上に形成し
て2つの機能を兼用する軸受などが開発されてきた。ま
た、永久磁石を等極ピッチで配置した回転子と、固定子
の励磁磁極数を永久磁石の極数より2つ多いか2つ少な
くし、回転子と固定子間に働く磁気反発力によって浮上
力と同時に回転力を得る磁気軸受がある(例えば、特開
平4ー160222号公報)。
2. Description of the Related Art Rotating electric machines tend to be improved in performance by increasing reliability in addition to increasing speed and life. Magnetic element bearings that are supported in a non-contact manner are drawing attention as an elemental technology that can respond to this tendency. Conventionally, a control type magnetic bearing often uses a five-axis control bearing that constrains five degrees of freedom other than the rotation shaft to support the rotation shaft. However, a displacement sensor and a levitation controller are provided for each control shaft. Because of the need for current amplifiers, the bearing controls were complex and expensive. Therefore, in combination with a repulsive bearing that utilizes the repulsive force of the permanent magnet,
Utilizing the passive bearing force of the control type bearing in the direction orthogonal to the control axis, the number of control axes is reduced to form a single-axis or three-axis control bearing, or the radial bearing and the electric motor are formed on the same iron core. Bearings that have dual functions have been developed. In addition, the number of exciting magnetic poles of the rotor and the rotor in which permanent magnets are arranged at an equal pole pitch is two or two less than the number of permanent magnet poles, and the magnetic repulsive force acting between the rotor and the stator levitates the surface. There is a magnetic bearing that obtains a rotational force at the same time as a force (for example, Japanese Patent Laid-Open No. 4-160222).

【0003】[0003]

【発明が解決しようとする課題】ところが、前者のよう
な方式では、軸受とは別に駆動用のモータを必要とする
ためそれぞれの固定子、回転子を備えており寸法を小さ
くすることができず全体構造がさほど簡単なものとなっ
ていなかった。また、後者のような方式では、電動機兼
用軸受が磁気吸引力を利用するものであったため、回転
駆動機能と浮上機能を兼ね備えた制御装置を必要とする
ため、回転子と固定子間の回転方向の位相ズレと浮上力
及び回転力の関係が特殊な関数となるため回転制御と浮
上制御の何れにも非線形な関数を制御ループに含み補償
が容易でないという欠点があり、制御装置が複雑とな
り、やはり簡単なものとはなっていなかった。そこで、
本発明はかかる課題に対し、回転電機の構成と制御装置
を簡単化し、実用性を向上することを目的とする。
However, in the former method, a motor for driving is required in addition to the bearing, and therefore each stator and rotor are provided, and the size cannot be reduced. The whole structure was not so simple. Also, in the latter method, since the bearing that also serves as the electric motor uses magnetic attraction, a control device that has both a rotation drive function and a levitation function is required. Since there is a special function in the relationship between the phase shift and the levitation force and the rotational force, there is a drawback that the control loop contains a non-linear function in both the rotation control and the levitation control, and it is not easy to compensate. After all, it was not easy. Therefore,
An object of the present invention is to simplify the configuration of the rotating electric machine and the control device to improve the practicality.

【0004】[0004]

【課題を解決するための手段】上記課題を実現するた
め、本発明の同期回転電機を、等極ピッチで相隣れる磁
石の極性を交互に入替え配置した複数の永久磁石よりな
る電動機の回転子と、この回転子とエアギャップを介し
て対向する、固定子鉄心に巻線を巻回した電動機の固定
子とよりなる永久磁石形同期電動機と、この永久磁石形
同期電動機の回転軸を非接触支持する磁気軸受よりなる
磁気軸受を用いた同期回転電機において、前記永久磁石
形同期電動機が、上部円板の下側・周方向に固着された
永久磁石よりなる電動機の回転子と、この回転子の下側
にエアギャップを介して対向する、固定子鉄心に巻線を
巻回した電動機の固定子と、前記電動機の回転子の回転
位置を検出する回転センサで構成されるアキシャルギャ
ップ・縦形・同期電動機であり、前記磁気軸受が、前記
回転軸に設けた磁性体の鉄心よりなる磁気軸受の回転子
と、この磁気軸受の回転子とエアギャップを介して対向
する、鉄心に巻線を巻回した磁気軸受の固定子と、前記
磁気軸受の回転子とこの磁気軸受の固定子間のエアギャ
ップを検出する変位センサで構成されるラジアル磁気軸
受で同期回転電機を構成する。また、その制御装置は、
永久磁石形同期電動機の回転子の回転位置を検出する回
転センサと、その出力信号から、前記電動機の回転子の
回転速度に比例する信号を得るF/Vコンバータと、外
部から与える速度指令とこのF/Vコンバータの出力信
号を比較する比較器と、この比較器の出力信号を受けて
電動機の固定子の励磁磁極位置の位相を制御する速度制
御器と、この速度制御器の信号を受け出力信号の大きさ
を制限するリミッターと、このリミッターの出力信号を
受けてA/D変換するA/Dコンバータと、前記回転セ
ンサの信号からこのA/Dコンバータの信号を減算する
減算器と、この減算器の出力信号を受けてあらかじめ記
憶された信号を出力するROMと、このROMの出力信
号を受けてD/A変換するD/Aコンバータと、このD
/Aコンバータの信号を受けて電流増幅する増幅器とで
構成する。さらに、その制御方法は、前記ラジアル磁気
軸受が、変位センサの信号を受けて磁気軸受の固定子に
電流を供給する軸受制御装置により、磁気軸受の回転子
を磁気軸受の固定子の径方向中央に浮上するよう制御す
ると同時に、前記の磁気軸受を用いた同期回転電機を前
記の磁気軸受を用いた同期回転電機の制御装置により、
前記電動機の回転子の磁極位置と前記電動機の固定子の
励磁磁極の位置をずらして、前記電動機の回転子のアキ
シャル方向の浮上と回転を制御する。
In order to achieve the above object, the rotor of an electric motor according to the present invention comprises a plurality of permanent magnets in which the polarities of adjacent magnets are alternately exchanged at an equal pole pitch. And a permanent magnet type synchronous motor comprising a stator of an electric motor in which windings are wound around a stator iron core, which faces the rotor via an air gap, and a rotating shaft of the permanent magnet type synchronous motor does not come into contact with each other. In a synchronous rotating electric machine using a magnetic bearing composed of supporting magnetic bearings, the permanent magnet type synchronous motor has a rotor of the electric motor composed of permanent magnets fixed to the lower side and the circumferential direction of the upper disc, and the rotor. Axial gap, vertical type, which is composed of a stator of an electric motor in which a winding is wound around a stator core, which faces the lower side of the electric motor through an air gap, and a rotation sensor for detecting the rotational position of the rotor of the electric motor. Synchronous power A magnetic bearing having a magnetic core provided on the rotary shaft, and a rotor of the magnetic bearing that faces the rotor of the magnetic bearing via an air gap. A synchronous rotating electric machine is constituted by the stator of the magnetic bearing, the rotor of the magnetic bearing, and the radial magnetic bearing configured by a displacement sensor for detecting an air gap between the stator of the magnetic bearing. Also, the control device is
A rotation sensor for detecting the rotation position of the rotor of the permanent magnet type synchronous motor, an F / V converter for obtaining a signal proportional to the rotation speed of the rotor of the motor from its output signal, and a speed command given from the outside. A comparator for comparing the output signal of the F / V converter, a speed controller for receiving the output signal of the comparator and controlling the phase of the magnetic pole position of the excitation pole of the stator of the motor, and a signal for outputting the speed controller A limiter for limiting the magnitude of the signal, an A / D converter for A / D converting the output signal of the limiter, a subtractor for subtracting the signal of the A / D converter from the signal of the rotation sensor, A ROM that receives the output signal of the subtractor and outputs a prestored signal; a D / A converter that receives the output signal of this ROM and performs D / A conversion;
And an amplifier that receives a signal from the A / A converter and amplifies the current. Further, the control method is such that the radial magnetic bearing receives a signal from a displacement sensor and supplies a current to the stator of the magnetic bearing, and causes the rotor of the magnetic bearing to move in the radial center of the stator of the magnetic bearing. At the same time controlling to levitate to the synchronous rotary electric machine using the magnetic bearing, by the control device of the synchronous rotary electric machine using the magnetic bearing,
The position of the magnetic pole of the rotor of the electric motor and the position of the exciting magnetic pole of the stator of the electric motor are shifted to control the levitation and rotation of the rotor of the electric motor in the axial direction.

【0005】[0005]

【作用】上記手段により、上部円板部の同期電動機兼用
軸受が反発力を利用しているため浮上のための制御をす
ることなく、回転のみの制御をすれば非接触浮上して回
転することができ、また、制御形のラジアル軸受により
高い支持剛性で径方向の支持ができるため、全体として
構成が簡素化された信頼性の高い回転電機を構成するこ
とができるのである。
By the above means, the synchronous motor bearing of the upper disk portion uses repulsive force, so that the control is performed only for rotation without controlling the levitation, so that the bearing rotates without contact. In addition, since the control type radial bearing can support the radial direction with high support rigidity, it is possible to configure a highly reliable rotating electric machine having a simplified configuration as a whole.

【0006】[0006]

【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は、実施例の磁気軸受を用いたアキシャルギャ
ップ・縦形・同期回転電機の断面図である。図1におい
て、1は垂直に設けられた回転軸であり上端に円板状の
上部円板2が固着されている。上部円板2の下側外周に
は外縁22が形成されて段差が設けられている。外縁2
2の内径側には、周方向に着磁された永久磁石33を極
性を交互に入替え、等極ピッチで配置した円板状の電動
機の回転子31があり、電動機の回転子31の外周と外
縁22の内周、電動機の回転子31の上面と上部円板2
の下側面が密着して接着等によって上部円板2に固着さ
れている。電動機の回転子31の下側には、軸方向のエ
アギャップを介し、鉄心に電動機の巻線44が巻回され
た円板状の電動機の固定子32がフレーム5に固定され
ている。電動機の回転子31と電動機の固定子32でア
キシャルギャップ・縦形・同期電動機3を構成してい
る。電動機の回転子31の中心部には、中空の強磁性体
よりなる鉄心からなる円筒状の磁気軸受の回転子41が
固着してあり、その外周にはラジアル方向のエアギャッ
プを介して鉄心に磁気軸受の巻線45を巻回した複数の
電磁石からなる円筒状の磁気軸受の固定子42がフレー
ム5に固定してある。磁気軸受の固定子42の近傍に
は、変位センサ43を設け、フレーム5に対する回転軸
1の位置すなわち磁気軸受の回転子41と磁気軸受の固
定子42間のエアギャップを検出する。磁気軸受の回転
子41と磁気軸受の固定子42と変位センサ43とでラ
ジアル磁気軸受4を構成し、回転軸1と直交し且つ互い
に直交する2方向の浮上制御を可能にしてある。6はフ
レーム5に固定され回転軸1の回転位置を検出する回転
センサである。この回転センサ6によって、電動機の回
転子31の回転信号Nf が検出される。回転信号N
f は、電動機の固定子32に対する電動機の回転子31
の回転位置として、1回転に1パルスの回転基準信号N
s と1回転に多数パルスの回転位置信号Np に対応する
2つの2進信号として得られる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of an axial gap / vertical / synchronous rotary electric machine using the magnetic bearing of the embodiment. In FIG. 1, reference numeral 1 denotes a vertical rotation shaft having a disc-shaped upper disc 2 fixed to the upper end thereof. An outer edge 22 is formed on the lower outer periphery of the upper disc 2 to provide a step. Outer edge 2
On the inner diameter side of 2, there is a disc-shaped electric motor rotor 31 in which permanent magnets 33 magnetized in the circumferential direction are alternately exchanged in polarity and arranged at an equal pole pitch. Inner periphery of outer edge 22, upper surface of rotor 31 of electric motor and upper disc 2
The lower side surface of the upper part is closely attached and fixed to the upper disc 2 by adhesion or the like. Below the rotor 31 of the electric motor, a disc-shaped electric motor stator 32, in which an electric motor winding 44 is wound around an iron core, is fixed to the frame 5 via an air gap in the axial direction. The rotor 31 of the electric motor and the stator 32 of the electric motor constitute the axial gap / vertical / synchronous electric motor 3. A rotor 41 of a cylindrical magnetic bearing made of an iron core made of a hollow ferromagnetic material is fixed to the center of a rotor 31 of the electric motor, and the rotor 41 is attached to the outer periphery of the rotor 41 via an air gap in the radial direction. A cylindrical magnetic bearing stator 42 composed of a plurality of electromagnets around which a magnetic bearing winding 45 is wound is fixed to the frame 5. A displacement sensor 43 is provided near the stator 42 of the magnetic bearing to detect the position of the rotary shaft 1 with respect to the frame 5, that is, the air gap between the rotor 41 of the magnetic bearing and the stator 42 of the magnetic bearing. The rotor 41 of the magnetic bearing, the stator 42 of the magnetic bearing, and the displacement sensor 43 constitute the radial magnetic bearing 4, and the levitation control in two directions orthogonal to the rotary shaft 1 and orthogonal to each other is possible. A rotation sensor 6 is fixed to the frame 5 and detects a rotation position of the rotation shaft 1. This rotation sensor 6, the rotation signal N f of the rotor 31 of the electric motor is detected. Rotation signal N
f is the rotor 31 of the motor with respect to the stator 32 of the motor
The rotation reference signal N is one pulse per rotation as the rotation position of
It is obtained as two binary signals corresponding to the rotational position signal N p of a large number of pulses for s and one rotation.

【0007】ラジアル軸受4の制御装置は、回転軸1と
直交し且つ互いに直交する2方向のそれぞれにおいて、
変位センサ43の信号と浮上位置指令とを比較器で比較
し、その偏差にもとずいて浮上制御器が働き、回転子4
1の両側に対向して設けられた2つの電磁石に電流を供
給する公知のものである。図2は、アキシャルギャップ
・縦形・同期電動機3の制御装置を示す構成図である。
ωs はインバータ等、外部の制御装置から与えられる速
度指令である。71は信号Nf をF/V変換して回転速
度に比例する直流信号ωf を出力するF/Vコンバー
タ、72は速度指令ωs とF/Vコンバータ71の信号
ωf を比較する比較器、73は比較器72の信号をPI
D補償器などで位相補償する速度制御器である。74は
出力リミッタであり、速度制御器73の信号を受けて、
その値が一定値以上のときは、あらかじめ設定してある
上限値を出力する。なお、この上限値は、図3(b)に
示した回転子の磁極が2極の場合は、回転子31の回転
基準位置の方向xr と固定子32の励磁磁極の方向xs
の角度φが45゜位となる値がよい。回転子の磁極がn
極の場合はその角度φが90°/n位となる値がよい。
75はリミッター74の信号をデジタルに変換するA/
Dコンバータ、70は回転軸1の回転位置を示すNf
2進信号からA/Dコンバータ75の信号を減算する減
算器である。76は、減算器70の信号をアドレスと
し、該当するアドレスに励磁された固定子32の磁極が
左側にスムーズに回転するよう、前もって計算された指
令値を記憶したデータを出力するROMである。77
1、772はROM76の信号を受けアナログ信号に変
換するD/Aコンバータ、781、782はD/Aコン
バータ771、772の信号を受けて電力を増幅する増
幅器、791、792は電動機の固定子32に巻回され
た電動機の巻線44の内各磁極の固定子コイルである。
The control device for the radial bearing 4 is arranged in each of two directions orthogonal to the rotary shaft 1 and orthogonal to each other.
The signal of the displacement sensor 43 and the flying position command are compared by a comparator, and the flying controller operates based on the deviation, and the rotor 4
It is a well-known one that supplies current to two electromagnets provided on both sides of 1. FIG. 2 is a configuration diagram showing a control device of the axial gap / vertical / synchronous motor 3.
ω s is a speed command given from an external control device such as an inverter. Reference numeral 71 denotes an F / V converter that performs F / V conversion of the signal N f and outputs a DC signal ω f proportional to the rotation speed, and 72 is a comparator that compares the speed command ω s and the signal ω f of the F / V converter 71. , 73 outputs the signal from the comparator 72 to PI
This is a speed controller that performs phase compensation with a D compensator or the like. 74 is an output limiter, which receives a signal from the speed controller 73,
When the value is a certain value or more, the preset upper limit value is output. It should be noted that the upper limit value is the direction x r of the rotation reference position of the rotor 31 and the direction x s of the exciting magnetic pole of the stator 32 when the magnetic poles of the rotor shown in FIG.
It is preferable that the angle φ is about 45 °. The magnetic pole of the rotor is n
In the case of a pole, it is preferable that the angle φ be 90 ° / n.
A / A 75 converts the limiter 74 signal to digital
A D converter, 70 is a subtracter for subtracting the signal of the A / D converter 75 from the N f binary signal indicating the rotational position of the rotary shaft 1. Reference numeral 76 is a ROM which outputs the data in which the command value calculated in advance is stored so that the signal of the subtractor 70 is used as an address and the magnetic pole of the stator 32 excited at the corresponding address rotates smoothly to the left. 77
Reference numerals 1 and 772 denote D / A converters that receive signals from the ROM 76 and convert the signals into analog signals. Reference numerals 781 and 782 denote amplifiers that receive signals from the D / A converters 771 and 772 to amplify power. 791 and 792 denote stators 32 of the electric motor. It is a stator coil of each magnetic pole in the winding 44 of the electric motor wound around.

【0008】以下に動作を説明する。速度指令ωs がゼ
ロの時の動作を図3(a)を用いて説明する。図3
(a)は図1のアキシャルギャップ・縦形・同期電動機
3のみを軸方向から見た図であり、電動機の回転子31
の永久磁石が持つ磁極をN,Sと表し、電動機の固定子
32が作る磁極を(N),(S)と表している。XS
固定側の基準の方向を示しており、xr は電動機の回転
子31の回転基準位置の方向、xsは電動機の固定子3
2の励磁極の方向を示している。電動機の回転子31の
回転基準位置方向xr は回転センサ6が検出する1回転
に1パルスの回転基準位置に対応する位置であり、xr
の方向に磁極N、その反対方向磁極Sが着磁されてい
る。電動機の固定子32の励磁の方向xs は電動機の固
定子32に巻回された固定子コイル791、792に電
流が供給されて生じる磁極の方向を示しており、xs
方向に(N)、その反対方向に(S)が生じる。図3
(a)では、xr とxs が同じ方向を向いているが、こ
の状態で、アキシャルギャップ・縦形・同期電動機3の
制御装置を示す構成図は次のようになる。回転信号Nf
のうち、回転基準信号NS はパルスがないのでF/Vコ
ンバータ71の出力信号ωf はゼロであり、速度指令ω
s もゼロである。回転信号Nf のうち、回転位置信号N
p は2進データであって、固定側の基準方向XS に対す
る回転子の方向xr の角度θr に対応しており、例え
ば、1回転を128分割してあれば、θr が、Xs に対
して、ほぼ40゜のときは、128×40/360=1
4という値にしてある。回転基準信号NS はパルスがな
いのでF/Vコンバータ71の出力信号ωf はゼロであ
り、速度指令ωs もゼロであるので、A/Dコンバータ
75の出力がゼロとなり、減算器70の出力はNf の回
転位置信号Np がそのまま出力され14という2進デー
タがROM76に送られる。ROM76は、減算器70
の信号を記憶素子のアドレスとして入力し、そのアドレ
スの記憶データを指令値として出力する。ROM76の
回転基準信号NS と回転位置信号Np に対応する2つの
出力は、D/Aコンバータ771、772に入力されて
D/A変換され、アナログ信号に変換される。そして、
D/Aコンバータ771、772の信号が増幅器78
1、782で電力増幅され電動機の固定子32の固定子
コイル791、792に電流が供給される。こうして励
磁された電動機の固定子32の磁極は、ROM76の入
力データが14という値であったので固定側のXS から
14×360/128=ほぼ40゜の方向に(N)極
を、その反対方向に(S)極が生じる。このようにし
て、固定子磁極と回転子磁極の回転方向位置がほぼ同じ
となるので、電動機の回転子31は回転力を受けず、磁
気反発力と回転軸1全体にかかる重力とによる釣合い位
置で非接触浮上するのである。
The operation will be described below. The operation when the speed command ω s is zero will be described with reference to FIG. Figure 3
(A) is a view of only the axial gap / vertical / synchronous motor 3 of FIG. 1 as viewed from the axial direction, and shows a rotor 31 of the motor.
The magnetic poles possessed by the permanent magnet are represented by N and S, and the magnetic poles formed by the stator 32 of the electric motor are represented by (N) and (S). X S indicates the reference direction on the fixed side, x r is the direction of the rotation reference position of the rotor 31 of the electric motor, and x s is the stator 3 of the electric motor.
The direction of the excitation magnetic pole of 2 is shown. The rotation reference position direction x r of the rotor 31 of the electric motor is a position corresponding to the rotation reference position of one pulse per one rotation detected by the rotation sensor 6, and x r
The magnetic pole N is magnetized in the direction of and the magnetic pole S in the opposite direction is magnetized. Direction x s of the excitation of the stator 32 of the motor indicates the direction of the magnetic pole current to the stator coils 791 and 792 which is wound stator 32 wound motor occurs is supplied, in the direction of x s (N ), And (S) occurs in the opposite direction. Figure 3
In (a), x r and x s face the same direction, but in this state, the configuration diagram showing the control device of the axial gap vertical type synchronous motor 3 is as follows. Rotation signal N f
Among them, since the rotation reference signal N S has no pulse, the output signal ω f of the F / V converter 71 is zero, and the speed command ω
s is also zero. Of the rotation signal N f , the rotation position signal N
p is binary data and corresponds to the angle θ r of the rotor direction x r with respect to the fixed side reference direction X S. For example, if one rotation is divided into 128, θ r is X. relative s, when approximately 40 °, 128 × 40/360 = 1
It has a value of 4. Since the rotation reference signal N S has no pulse, the output signal ω f of the F / V converter 71 is zero, and the speed command ω s is also zero, so that the output of the A / D converter 75 becomes zero and the subtractor 70 outputs As the output, the rotational position signal N p of N f is output as it is, and binary data of 14 is sent to the ROM 76. The ROM 76 is a subtractor 70
Is input as the address of the storage element, and the storage data at that address is output as the command value. Two outputs of the ROM 76 corresponding to the rotation reference signal N S and the rotation position signal N p are input to D / A converters 771 and 772, D / A converted, and converted into analog signals. And
The signals of the D / A converters 771 and 772 are amplifiers 78.
The electric power is amplified by 1, 782 and current is supplied to the stator coils 791, 792 of the stator 32 of the electric motor. The magnetic pole of the stator 32 of the electric motor excited in this way has a value of 14 as the input data of the ROM 76, so the (N) pole is in the direction of 14 × 360/128 = approximately 40 ° from X S on the fixed side. The (S) pole is generated in the opposite direction. In this way, the positions of the stator magnetic poles and the rotor magnetic poles in the rotational direction are substantially the same, so that the rotor 31 of the electric motor does not receive the rotational force, and the balance position due to the magnetic repulsive force and the gravity applied to the entire rotary shaft 1 is used. Therefore, it is contactlessly levitated.

【0009】次に速度指令ωS がゼロでない場合につい
て説明する。電動機の回転子31の回転速度がこの速度
指令より小さく、ある時点の電動機の回転子31の回転
位置を示すθr がXs にたいして、ほぼ40゜の位置に
あるとすると、回転位置信号Np は14という値であ
る。F/Vコンバータ71の入力信号Np はパルス列と
なっているが、F/V変換された出力信号ωf は速度指
令ωS より小さいため、比較器72の出力はプラスの信
号となる。この信号を受けた速度制御器73は、位相制
御して指令信号ωを出力する。その信号ωが上限値を越
えると、リミッター74が働いて、上限値を出力し、上
限値を越えてなければそのまま出力される。リミッター
74の信号を受けたA/Dコンバータ75は、信号をデ
ジタルに変換して出力する。この信号と、電動機の回転
子31の回転信号Nf のうちのθrに対応する回転位置
信号Np を受けた減算器70は後者の信号から前者の信
号を減算して出力する。速度制御器73の指令信号ωが
20゜に相当する信号であるとすると、A/Dコンバー
タ75の出力は20/360×128=7という値の2
進数であり、減算器70の出力信号は14ー7=7であ
る。この信号を受けたROM76は、これをアドレスと
して記憶してあるデータを出力し、D/Aコンバータ7
71、772と増幅器781、782を介して、固定子
コイル791、792に電流を供給する。これによって
生じる電動機の固定子32の磁極の方向xs は、図3
(b)に示すように、固定側のXs から7×360/1
28=ほぼ20゜の方向になり、その方向に磁極
(N)、その反対方向に磁極(S)が生じる。固定子磁
極と回転子磁極が、図3(b)のように、ずれるため電
動機の回転子31は磁気反発力と重力の働きによって上
向きの浮上力と同時に左向きの回転力を受け非接触浮上
したまま回転が加速される。電動機の回転子31の回転
速度が速度指令ωs より大きいときは、減算器70が受
ける2つの信号のうちA/Dコンバータ75から受ける
信号のほうが負になるため、減算器70の出力は回転子
31の回転位置に対応する値より大きな値となる。従っ
て電動機の固定子磁極と電動機の回転子磁極が図3
(b)と逆の関係になり、電動機の回転子31は右向き
の回転力をうけ回転が減速される。以上のようにして、
回転速度より速度指令のほうが大きいときは電動機の回
転子31が非接触浮上したまま加速され、回転速度より
速度指令のほうが小きいときは電動機の回転子31が非
接触浮上したまま減速され、この動作を繰り返すので、
電動機の回転子31は非接触浮上したまま速度指令ωs
に対応する回転速度で回転できるのである。アキシャル
ギャップ・縦形・同期電動機3により上向きの反発力で
上下方向を支持して回転力を生ぜしめているため、アキ
シャル軸受を特別に必要としていない。そこに生じる径
方向の不安定力はラジアル磁気軸受4が働いて所定位置
に浮上支持するため、磁気軸受の制御軸を2軸とするこ
とができる。
Next, a case where the speed command ω S is not zero will be described. Assuming that the rotation speed of the rotor 31 of the electric motor is smaller than this speed command and θ r indicating the rotational position of the rotor 31 of the electric motor at a certain point is at a position of about 40 ° with respect to X s , the rotational position signal N p Is a value of 14. The input signal N p of the F / V converter 71 is a pulse train, but the output signal ω f after F / V conversion is smaller than the speed command ω S , so the output of the comparator 72 is a positive signal. Upon receiving this signal, the speed controller 73 controls the phase and outputs the command signal ω. When the signal ω exceeds the upper limit value, the limiter 74 operates to output the upper limit value. If the signal ω does not exceed the upper limit value, the signal is output as it is. The A / D converter 75 receiving the signal from the limiter 74 converts the signal into a digital signal and outputs it. Upon receiving this signal and the rotational position signal N p corresponding to θ r of the rotational signal N f of the rotor 31 of the electric motor, the subtractor 70 subtracts the former signal from the latter signal and outputs it. Assuming that the command signal ω of the speed controller 73 is a signal corresponding to 20 °, the output of the A / D converter 75 is 20/360 × 128 = 7.
The output signal of the subtractor 70 is 14-7 = 7. Receiving this signal, the ROM 76 outputs the data stored as an address, and the D / A converter 7
Current is supplied to the stator coils 791 and 792 via 71 and 772 and amplifiers 781 and 782. The resulting magnetic pole direction x s of the stator 32 of the motor is
As shown in (b), from the fixed side X s , 7 × 360/1
28 = almost 20 °, a magnetic pole (N) is generated in that direction, and a magnetic pole (S) is generated in the opposite direction. Since the stator magnetic poles and the rotor magnetic poles are displaced as shown in FIG. 3B, the rotor 31 of the electric motor receives the upward floating force and the leftward rotating force by the action of the magnetic repulsive force and gravity, and floats in a non-contact manner. The rotation is accelerated as it is. When the rotation speed of the rotor 31 of the electric motor is higher than the speed command ω s , the signal received from the A / D converter 75 is the negative of the two signals received by the subtractor 70, so that the output of the subtractor 70 is rotated. The value is larger than the value corresponding to the rotation position of the child 31. Therefore, the stator poles of the motor and the rotor poles of the motor are shown in FIG.
In the opposite relationship to (b), the rotation of the rotor 31 of the electric motor is decelerated by the rightward rotational force. As described above,
When the speed command is larger than the rotation speed, the rotor 31 of the electric motor is accelerated while floating in the non-contact state. When the speed command is smaller than the rotation speed, the rotor 31 of the electric motor is decelerated while floating in the non-contact state. Because the operation is repeated,
The speed command ω s is maintained while the rotor 31 of the electric motor floats without contact.
It can rotate at a rotation speed corresponding to. Since the axial gap, the vertical type, and the synchronous motor 3 support the vertical direction by the upward repulsive force to generate the rotational force, no special axial bearing is required. The radial instability generated there is acted by the radial magnetic bearing 4 to levitate and support it at a predetermined position, so that the control shaft of the magnetic bearing can be two axes.

【0010】なお、以上述べた実施例では、回転センサ
は、基準パルスと回転位置を示すデータが得られるもの
を用いたが、極検出用のホール・センサ等の付属装置を
伴うものであってもよく、図2で説明した機能が得られ
るものであれば、形式を問わない。また、回転センサ6
の信号のうち、回転基準信号Ns は、説明上1回転に1
パルスとしたが、回転速度信号を得るに必要であるた
め、回転位置信号Np の最下位ビットの信号を用いれば
省略することができる。さらに、回転位置信号Np の分
割数は、1回転を128分割したものを用いたが、分割
数は用途に応じて決めることができ、分割数を大きくし
たほうがリップルの少ないスムーズな速度制御ができ
る。また、電動機の固定子32の巻線を2個とし、電動
機の回転子31の永久磁石の極数に合わせて周方向に2
個の磁極が生じるようにしているが、電動機の回転子3
1の磁極に合わせてあれば2個に限るものではない。
In the embodiment described above, the rotation sensor used is one that can obtain the reference pulse and the data indicating the rotation position, but it is accompanied by an auxiliary device such as a hall sensor for pole detection. The format is not limited as long as the function described in FIG. 2 can be obtained. In addition, the rotation sensor 6
The rotation reference signal N s of the signals of
Although the pulse is used, it is necessary to obtain the rotation speed signal, and thus it can be omitted if the signal of the least significant bit of the rotation position signal N p is used. Further, although the number of divisions of the rotational position signal N p is obtained by dividing one rotation into 128, the number of divisions can be determined according to the application, and the larger the number of divisions, the smoother the speed control with less ripples. it can. In addition, the number of windings of the stator 32 of the electric motor is two, and the number of windings is two in the circumferential direction according to the number of poles of the permanent magnet of the rotor 31 of the electric motor.
Although the magnetic poles are generated individually, the rotor 3 of the electric motor
The number of magnetic poles is not limited to two as long as it matches one magnetic pole.

【0011】図1に示したものは、上部にアキシャルギ
ャップ形同期電動機を配置し、その内側下部にラジアル
磁気軸受を配置したものであったが、アキシャルギャッ
プ・縦形・同期電動機が固定子の上側の内側に回転子を
配置されたものであれば図1の配置に限るものではな
い。その一例を図4に断面図として示す。この例は、ラ
ジアル磁気軸受をアキシャルギャップ・縦形・同期電動
機より上側に配置したものである。固定台52の中心に
固定軸51を直立して設け、固定台52の上面に電動機
の固定子32を設けてある。電動機の固定子32の側部
には回転センサ6を設けてある。固定軸51の外周には
磁気軸受の固定子42を固定してある。磁気軸受の固定
子42の側部には変位センサ43を設けてある。電動機
の固定子32と、軸方向のエアギャップを介し対向し
て、電動機の回転子31を配置してある。磁気軸受の固
定子42と、ラジアル方向のエアギャップを介し対向し
て、磁気軸受の回転子41を配置してある。電動機の回
転子31と磁気軸受の回転子41は磁性体よりなる回転
円環21に固定してある。このようなに構成することに
より全体を偏平なものとすることができる。このほか、
ラジアル磁気軸受をアキシャルギャップ・縦形・同期電
動機のすぐ上側に配置したり、外周側に配置したりする
ことができることも、言うまでもないことである。ま
た、回転軸1は、中空のものであっても、中実であって
も構わない。同様に固定側も、中空であっても、中実で
あっても構わない。
In the structure shown in FIG. 1, the axial gap type synchronous motor is arranged in the upper part, and the radial magnetic bearing is arranged in the inner lower part thereof. However, the axial gap type, the vertical type, and the synchronous motor are arranged above the stator. The arrangement is not limited to the arrangement shown in FIG. 1 as long as the rotor is arranged inside. An example thereof is shown in FIG. 4 as a sectional view. In this example, the radial magnetic bearing is arranged above the axial gap, vertical type, and synchronous motor. A fixed shaft 51 is provided upright at the center of the fixed table 52, and a stator 32 of the electric motor is provided on the upper surface of the fixed table 52. A rotation sensor 6 is provided on the side of the stator 32 of the electric motor. The stator 42 of the magnetic bearing is fixed to the outer periphery of the fixed shaft 51. A displacement sensor 43 is provided on the side of the stator 42 of the magnetic bearing. The rotor 31 of the electric motor is arranged so as to face the stator 32 of the electric motor via an air gap in the axial direction. A rotor 41 of the magnetic bearing is arranged so as to face the stator 42 of the magnetic bearing via an air gap in the radial direction. The rotor 31 of the electric motor and the rotor 41 of the magnetic bearing are fixed to the rotary ring 21 made of a magnetic material. With such a configuration, the whole can be made flat. other than this,
It goes without saying that the radial magnetic bearing can be arranged immediately above the axial gap / vertical type / synchronous motor or on the outer peripheral side. Further, the rotary shaft 1 may be hollow or solid. Similarly, the fixed side may be hollow or solid.

【0012】[0012]

【発明の効果】以上述べたように、本発明によれば、回
転軸に設けたアキシャルギャップ形同期電動機が電動機
として機能するとともに上下方向に非接触支持する軸受
の機能も備えているため、回転軸に設けたラジアル軸受
によって回転軸が回転可能に非接触支持される。こうし
て、全体として、1つのラジアル軸受(軸受の制御軸は
2軸)と1つの電動機で回転電機を構成することができ
るのである。したがって、回転電機の全長を短くするこ
とができて危険速度を高め回転上限を大幅に高める効果
があり、制御装置を含めた全体装置が簡易化されて信頼
性が向上する効果がある。
As described above, according to the present invention, the axial gap type synchronous motor provided on the rotating shaft functions as an electric motor and also has a function of a bearing for supporting in a non-contact manner in the vertical direction. The rotary shaft is rotatably supported by a radial bearing provided on the shaft in a non-contact manner. Thus, as a whole, the rotary electric machine can be configured with one radial bearing (the control shaft of the bearing is two shafts) and one electric motor. Therefore, there is an effect that the total length of the rotating electric machine can be shortened, the dangerous speed is increased, and the upper limit of the rotation is significantly increased, and the entire device including the control device is simplified and the reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す回転電機の断面図FIG. 1 is a sectional view of a rotating electric machine showing an embodiment of the present invention.

【図2】本発明の実施例を示す制御装置の構成図FIG. 2 is a configuration diagram of a control device showing an embodiment of the present invention.

【図3】回転電機の動作を説明する図FIG. 3 is a diagram for explaining the operation of the rotating electric machine.

【図4】本発明の他の実施例を示す回転電機の断面図FIG. 4 is a sectional view of a rotating electric machine showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 回転軸 2 上部円板 21 回転円環 22 外縁 3 アキシャルギャップ・縦形・同期電動機 31 電動機の回転子 32 電動機の固定子 33 永久磁石 4 ラジアル磁気軸受 41 磁気軸受の回転子 42 磁気軸受の固定子 43 変位センサ 44 電動機の巻線 45 磁気軸受の巻線 5 フレーム 51 固定軸 52 固定台 6 回転センサ 70 減算器 71 F/Vコンバータ 72 比較器 73 速度制御器 74 リミッター 75 A/Dコンバータ 76 ROM 771、772 D/Aコンバータ 781、782 増幅器 791、792 固定子コイル DESCRIPTION OF SYMBOLS 1 rotating shaft 2 upper disc 21 rotating ring 22 outer edge 3 axial gap / vertical / synchronous motor 31 electric motor rotor 32 electric motor stator 33 permanent magnet 4 radial magnetic bearing 41 magnetic bearing rotor 42 magnetic bearing stator 43 Displacement sensor 44 Motor winding 45 Magnetic bearing winding 5 Frame 51 Fixed shaft 52 Fixed base 6 Rotation sensor 70 Subtractor 71 F / V converter 72 Comparator 73 Speed controller 74 Limiter 75 A / D converter 76 ROM 771 , 772 D / A converter 781, 782 Amplifier 791, 792 Stator coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 等極ピッチで相隣れる磁石の極性を交互
に入替え配置した複数の永久磁石よりなる電動機の回転
子と、この回転子とエアギャップを介して対向する、固
定子鉄心に巻線を巻回した電動機の固定子とよりなる永
久磁石形同期電動機と、この永久磁石形同期電動機の回
転軸を非接触支持する磁気軸受よりなる磁気軸受を用い
た同期回転電機において、 前記永久磁石形同期電動機が、上部円板の下側・周方向
に固着された永久磁石よりなる電動機の回転子と、この
回転子の下側にエアギャップを介して対向する、固定子
鉄心に巻線を巻回した電動機の固定子と、前記電動機の
回転子の回転位置を検出する回転センサで構成されるア
キシャルギャップ・縦形・同期電動機であり、 前記磁気軸受が、前記回転軸に設けた磁性体の鉄心より
なる磁気軸受の回転子と、この磁気軸受の回転子とエア
ギャップを介して対向する、鉄心に巻線を巻回した磁気
軸受の固定子と、前記磁気軸受の回転子とこの磁気軸受
の固定子間のエアギャップを検出する変位センサで構成
されるラジアル磁気軸受であることを特徴とする磁気軸
受を用いた同期回転電機。
1. A rotor of an electric motor comprising a plurality of permanent magnets in which the polarities of adjacent magnets are alternately exchanged at an equal pole pitch, and a stator iron core facing the rotor via an air gap. In a synchronous rotating electric machine using a permanent magnet type synchronous motor consisting of a stator of an electric motor wound with a wire and a magnetic bearing consisting of a magnetic bearing for supporting a rotating shaft of the permanent magnet type synchronous motor in a non-contact manner, the permanent magnet A synchronous motor is a rotor of an electric motor consisting of permanent magnets fixed to the lower side of the upper disk in the circumferential direction, and a winding on the stator core facing the lower side of this rotor via an air gap. A stator of a wound electric motor, and an axial gap vertical type synchronous electric motor composed of a rotation sensor for detecting the rotational position of the rotor of the electric motor, wherein the magnetic bearing is a magnetic body provided on the rotating shaft. From the iron core A rotor of a magnetic bearing, a stator of a magnetic bearing having a winding wound around an iron core, which faces the rotor of the magnetic bearing via an air gap, a rotor of the magnetic bearing and a fixing of the magnetic bearing. A synchronous rotating electric machine using a magnetic bearing, which is a radial magnetic bearing composed of a displacement sensor for detecting an air gap between the children.
【請求項2】 永久磁石形同期電動機の回転子の回転位
置を検出する回転センサと、その出力信号から、前記電
動機の回転子の回転速度に比例する信号を得るF/Vコ
ンバータと、外部から与える速度指令とこのF/Vコン
バータの出力信号を比較する比較器と、この比較器の出
力信号を受けて電動機の固定子の励磁磁極位置の位相を
制御する速度制御器と、この速度制御器の信号を受け出
力信号の大きさを制限するリミッターと、このリミッタ
ーの出力信号を受けてA/D変換するA/Dコンバータ
と、前記回転センサの信号からこのA/Dコンバータの
信号を減算する減算器と、この減算器の出力信号を受け
てあらかじめ記憶された信号を出力するROMと、この
ROMの出力信号を受けてD/A変換するD/Aコンバ
ータと、このD/Aコンバータの信号を受けて電流増幅
する増幅器とで構成したことを特徴とする磁気軸受を用
いた同期回転電機の制御装置。
2. A rotation sensor for detecting a rotation position of a rotor of a permanent magnet type synchronous motor, an F / V converter for obtaining a signal proportional to a rotation speed of the rotor of the motor from an output signal thereof, and an external sensor. A comparator for comparing the given speed command with the output signal of this F / V converter, a speed controller for receiving the output signal of this comparator and controlling the phase of the exciting magnetic pole position of the stator of the electric motor, and this speed controller To limit the magnitude of the output signal, an A / D converter that receives the output signal of the limiter and A / D converts it, and subtracts the signal of the A / D converter from the signal of the rotation sensor. A subtractor, a ROM for receiving an output signal of the subtractor and outputting a signal stored in advance, a D / A converter for receiving an output signal of the ROM and performing D / A conversion, and the D / A A control device for a synchronous rotating electric machine using a magnetic bearing, which is configured by an amplifier that receives a signal from a converter and amplifies a current.
【請求項3】 前記ラジアル磁気軸受が、変位センサの
信号を受けて磁気軸受の固定子に電流を供給する軸受制
御装置により、磁気軸受の回転子を磁気軸受の固定子の
径方向中央に浮上するよう制御すると同時に、請求項1
記載の磁気軸受を用いた同期回転電機を請求項2記載の
磁気軸受を用いた同期回転電機の制御装置により、前記
電動機の回転子の磁極位置と前記電動機の固定子の励磁
磁極の位置をずらして、前記電動機の回転子のアキシャ
ル方向の浮上と回転を制御することを特徴とする磁気軸
受を用いた同期回転電機の制御方法。
3. The radial magnetic bearing floats the rotor of the magnetic bearing to the radial center of the stator of the magnetic bearing by a bearing control device that receives a signal from a displacement sensor and supplies an electric current to the stator of the magnetic bearing. At the same time as controlling to
A synchronous rotary electric machine using the magnetic bearing according to claim 2, wherein the magnetic pole position of the rotor of the electric motor and the position of the exciting magnetic pole of the stator of the electric motor are shifted by the control device for the synchronous rotary electric machine using the magnetic bearing of claim 2. And controlling the floating and rotation of the rotor of the electric motor in the axial direction.
【請求項4】 前記電動機の固定子の励磁磁極を、外部
から与える速度指令に応じて、前記電動機の回転子の磁
極位置と周方向にずれた位置に励磁し、前記電動機の回
転子を回転する請求項3記載の磁気軸受を用いた同期回
転電機の制御方法。
4. An exciting magnetic pole of a stator of the electric motor is excited at a position circumferentially displaced from a magnetic pole position of the rotor of the electric motor in response to a speed command given from the outside to rotate the rotor of the electric motor. A method of controlling a synchronous rotating electric machine using the magnetic bearing according to claim 3.
【請求項5】 前記電動機の回転子の回転位置に対応す
る位置にある電動機の固定子の磁極を励磁し、前記電動
機の回転子と前記電動機の固定子間に働く磁気反発力で
前記電動機の回転子を浮上する請求項3または4記載の
磁気軸受を用いた同期回転電機の制御方法。
5. A magnetic pole of a stator of an electric motor located at a position corresponding to a rotational position of a rotor of the electric motor is excited, and a magnetic repulsive force acting between the rotor of the electric motor and the stator of the electric motor causes a magnetic repulsion of the electric motor. A method of controlling a synchronous rotating electric machine using a magnetic bearing according to claim 3, wherein the rotor is levitated.
JP02194794A 1994-01-21 1994-01-21 Synchronous rotating electrical machine using magnetic bearing and control device and method thereof Expired - Fee Related JP3694794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02194794A JP3694794B2 (en) 1994-01-21 1994-01-21 Synchronous rotating electrical machine using magnetic bearing and control device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02194794A JP3694794B2 (en) 1994-01-21 1994-01-21 Synchronous rotating electrical machine using magnetic bearing and control device and method thereof

Publications (2)

Publication Number Publication Date
JPH07208470A true JPH07208470A (en) 1995-08-11
JP3694794B2 JP3694794B2 (en) 2005-09-14

Family

ID=12069260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02194794A Expired - Fee Related JP3694794B2 (en) 1994-01-21 1994-01-21 Synchronous rotating electrical machine using magnetic bearing and control device and method thereof

Country Status (1)

Country Link
JP (1) JP3694794B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095904A1 (en) * 2001-05-18 2002-11-28 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitation motor
JP2003339136A (en) * 2002-05-20 2003-11-28 Kumamoto Technology & Industry Foundation Annular type motor
WO2010122450A3 (en) * 2009-04-23 2010-12-16 Koninklijke Philips Electronics N.V. A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
JP2013147213A (en) * 2012-01-23 2013-08-01 Panasonic Corp Vehicle drive apparatus
CN107013410A (en) * 2017-06-07 2017-08-04 曲阜师范大学 A kind of vertical axis permanent magnet direct wind-driven generator and its control method
JP2019520783A (en) * 2016-07-01 2019-07-18 大連天億軟件有限公司 Magnetic levitation power system
WO2023226404A1 (en) * 2022-05-26 2023-11-30 珠海格力电器股份有限公司 Magnetic bearing and compressor
CN117489701A (en) * 2023-09-15 2024-02-02 淮阴工学院 Hybrid excitation asymmetric four-degree-of-freedom magnetic bearing and parameter design method thereof
CN117489701B (en) * 2023-09-15 2024-06-11 淮阴工学院 Hybrid excitation asymmetric four-degree-of-freedom magnetic bearing and parameter design method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933644B2 (en) 2001-05-18 2005-08-23 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitation motor
WO2002095904A1 (en) * 2001-05-18 2002-11-28 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitation motor
JP2003339136A (en) * 2002-05-20 2003-11-28 Kumamoto Technology & Industry Foundation Annular type motor
US8836190B2 (en) 2009-04-23 2014-09-16 Koninklijke Philips N.V. Magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
WO2010122450A3 (en) * 2009-04-23 2010-12-16 Koninklijke Philips Electronics N.V. A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
EP2275697A1 (en) * 2009-04-23 2011-01-19 Koninklijke Philips Electronics N.V. A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
KR20120006552A (en) * 2009-04-23 2012-01-18 코닌클리케 필립스 일렉트로닉스 엔.브이. A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
CN102414463A (en) * 2009-04-23 2012-04-11 皇家飞利浦电子股份有限公司 A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
JP2012524879A (en) * 2009-04-23 2012-10-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic bearing, rotating stage and reflection type electron beam lithography apparatus
JP2013147213A (en) * 2012-01-23 2013-08-01 Panasonic Corp Vehicle drive apparatus
JP2019520783A (en) * 2016-07-01 2019-07-18 大連天億軟件有限公司 Magnetic levitation power system
CN107013410A (en) * 2017-06-07 2017-08-04 曲阜师范大学 A kind of vertical axis permanent magnet direct wind-driven generator and its control method
CN107013410B (en) * 2017-06-07 2023-08-11 曲阜师范大学 Vertical axis permanent magnet direct-drive wind driven generator and control method thereof
WO2023226404A1 (en) * 2022-05-26 2023-11-30 珠海格力电器股份有限公司 Magnetic bearing and compressor
CN117489701A (en) * 2023-09-15 2024-02-02 淮阴工学院 Hybrid excitation asymmetric four-degree-of-freedom magnetic bearing and parameter design method thereof
CN117489701B (en) * 2023-09-15 2024-06-11 淮阴工学院 Hybrid excitation asymmetric four-degree-of-freedom magnetic bearing and parameter design method thereof

Also Published As

Publication number Publication date
JP3694794B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US5237229A (en) Magnetic bearing device with a rotating magnetic field
CA2233707A1 (en) Integrated magnetic levitation and rotation system
WO2002095904A1 (en) Magnetic levitation motor
JP3981901B2 (en) Rotating synchronous machine with thrust control
JP3678517B2 (en) Radial force generator, coiled rotating machine, and rotating device
JP3577558B2 (en) Flywheel equipment
JP3694794B2 (en) Synchronous rotating electrical machine using magnetic bearing and control device and method thereof
GB2134326A (en) Motor for a pump
JP3820479B2 (en) Flywheel equipment
JP2000184655A (en) Magnetically levitating motor
JP3350109B2 (en) Magnetic levitation motor
Okada et al. General solution of levitation control of a permanent magnet (PM)-type rotating motor
Ueno et al. Stability of a tilt-controlling axial gap self-bearing motor with single-stator
US6753631B2 (en) Magnetically levitated motor
JPH06141512A (en) Magnetic levitation motor
JPH10136622A (en) Homopolar reluctance motor
JP4081828B2 (en) Concentric multi-axis motor
JP3710547B2 (en) Disk type magnetic levitation rotating machine
JP2001041237A (en) Magnetic bearing device
JP2004132513A (en) Magnetic bearing device and magnetic levitation motor using the same
JPH06133493A (en) Magnetic levitation induction motor
Ueno et al. A novel design of a Lorentz-force-type small self-bearing motor
JPH0648326Y2 (en) Displacement / rotation speed detection device
JPH07184345A (en) Magnetic levitation motor device
JP2003314550A (en) Magnetic bearing unit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050601

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050614

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090708

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees