JPH0719627A - Heat exchanger for non-azeotrope refrigerant - Google Patents

Heat exchanger for non-azeotrope refrigerant

Info

Publication number
JPH0719627A
JPH0719627A JP16126293A JP16126293A JPH0719627A JP H0719627 A JPH0719627 A JP H0719627A JP 16126293 A JP16126293 A JP 16126293A JP 16126293 A JP16126293 A JP 16126293A JP H0719627 A JPH0719627 A JP H0719627A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
tube
pipe
azeotropic mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16126293A
Other languages
Japanese (ja)
Inventor
Shigeji Taira
繁治 平良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP16126293A priority Critical patent/JPH0719627A/en
Publication of JPH0719627A publication Critical patent/JPH0719627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve heat exchanging performance and an operating coefficient by preventing the frost formation of a heat exchanger for non-azeotropic refrigerant. CONSTITUTION:Expansion valves 2a, 2b for reducing channel sectional areas are provided in an intermediate part 4 of a piping so that a distribution of evaporating temperature of refrigerant directed from a refrigerant inlet toward a refrigerant outlet is substantially uniform or lowered toward the outlet side along the piping through which non-azeotropic refrigerant flows of a heat exchanger 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒としてフロンR2
2に替えて非共沸の混合冷媒を用いる熱交換器に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to Freon R2 as a refrigerant.
The present invention relates to a heat exchanger using a non-azeotropic mixed refrigerant instead of 2.

【0002】[0002]

【従来の技術】従来、フロンR22(CHClF2)を冷媒
に用い、冷暖房運転と除湿運転が可能な空気調和装置と
して、例えば図5に示すようなものが知られている。こ
の空気調和装置は、圧縮機31,四路切換弁32,室外熱
交換器33,膨張弁34および室内熱交換器35を順次
管路36a〜36fで接続している。室内熱交換器35
は、除湿運転を可能にすべく第1,第2の熱交換器35
a,35bに分割され、両熱交換器35a,35bの間に、キ
ャピラリチューブ38と開閉弁39を互いに並列接続し
てなるドライ時減圧機構37を介設するとともに、電磁
弁41を介設したバイパス管路40により、圧縮機31
の吐出口側の管路36aと、膨張弁34と第1室内熱交
換器35aの間の管路36dとを接続している。上記開閉
弁39は、詳細は図示しないが、弁室内に摺動自在に嵌
装した弁体を、低温,高温冷媒に接して夫々収縮,伸長す
る形状記憶ばねにより、弁座に向けて付勢してなり、冷
暖房運転の際に開成し、除湿運転の際に閉成する。
2. Description of the Related Art Conventionally, an air conditioner as shown in FIG. 5, for example, is known as an air conditioner which uses Freon R22 (CHClF 2 ) as a refrigerant and is capable of cooling and heating operation and dehumidifying operation. In this air conditioner, a compressor 31, a four-way switching valve 32, an outdoor heat exchanger 33, an expansion valve 34 and an indoor heat exchanger 35 are sequentially connected by pipelines 36a to 36f. Indoor heat exchanger 35
Is the first and second heat exchangers 35 to enable the dehumidifying operation.
It is divided into a and 35b, and a dry decompression mechanism 37 in which a capillary tube 38 and an on-off valve 39 are connected in parallel to each other is provided between both heat exchangers 35a and 35b, and an electromagnetic valve 41 is provided. Bypass line 40 allows compressor 31
The discharge passage side pipe 36a is connected to the pipe 36d between the expansion valve 34 and the first indoor heat exchanger 35a. Although not shown in detail, the on-off valve 39 urges a valve body slidably fitted in a valve chamber toward a valve seat by a shape memory spring that contracts and expands in contact with a low temperature refrigerant and a high temperature refrigerant, respectively. It opens during air-conditioning operation and closes during dehumidification operation.

【0003】上記空気調和装置において、冷房運転を行
なうには、電磁弁41を閉じ、膨張弁34を所定開度に
して、圧縮機31から吐出された冷媒を、図5の実線矢
印の如く循環させ、室外熱交換器33で凝縮させた後、
室内熱交換器35で蒸発させる。このとき、第1,第2
の室内熱交換器35a,35bの間の開閉弁39は、実線
矢印の如く流入する低温冷媒により開成し、両熱交換器
35a,35bが、共に蒸発器として働いて、室内を冷房
する。逆に、暖房運転を行なうには、四路切換弁32を
切り換えて吐出冷媒を、図5の破線矢印のように循環さ
せる。すると、開閉弁39は、破線矢印に如く流入する
高温冷媒で形状記憶ばねが伸長するが、弁体の上下流間
の圧力差とバイアスばねの力により開成し、両熱交換器
35a,35bが、共に凝縮器として働いて、室内を暖房
する。
In the above air conditioner, in order to perform the cooling operation, the electromagnetic valve 41 is closed, the expansion valve 34 is opened to a predetermined opening, and the refrigerant discharged from the compressor 31 is circulated as indicated by the solid arrow in FIG. And after condensing with the outdoor heat exchanger 33,
It is evaporated in the indoor heat exchanger 35. At this time, the first and second
The on-off valve 39 between the indoor heat exchangers 35a, 35b is opened by the low temperature refrigerant flowing in as indicated by the solid line arrow, and both heat exchangers 35a, 35b work as an evaporator to cool the room. On the contrary, in order to perform the heating operation, the four-way switching valve 32 is switched to circulate the discharged refrigerant as shown by the broken line arrow in FIG. Then, in the on-off valve 39, the shape memory spring expands due to the high-temperature refrigerant flowing in as indicated by the broken line arrow, but the shape difference spring is opened by the pressure difference between the upstream and downstream of the valve body and the force of the bias spring, and the two heat exchangers 35a and 35b are opened. , Work together as a condenser to heat the room.

【0004】一方、除湿運転の際は、膨張弁34を全閉
にし、電磁弁41を開いてバイパス管路40を経て圧縮
機31からの高温の冷媒ガスを、図5の一点鎖線矢印の
如く第1室内熱交換器35aに直接圧送する。すると、
開閉弁39は、高温冷媒による形状記憶ばねの伸長と弁
体の上下流間の圧力差によって閉成する。これにより、
冷媒は、総てキャピラリチューブ38を流れてここで膨
張,減圧されるので、上流側の第1室内熱交換器35aが
凝縮器として、下流側の第2室内熱交換器35bが蒸発
器として夫々働く。そして、図示しない室内ファンで循
環せしめられる室内空気は、まず第2熱交換器35bを
通って冷却されて除湿され、次いで第1熱交換器35a
を通って室温程度まで加熱されて除湿空気となる。
On the other hand, during the dehumidifying operation, the expansion valve 34 is fully closed, the electromagnetic valve 41 is opened, and the high temperature refrigerant gas from the compressor 31 is passed through the bypass pipe 40, as shown by the one-dot chain line arrow in FIG. The pressure is directly fed to the first indoor heat exchanger 35a. Then,
The on-off valve 39 is closed by the expansion of the shape memory spring by the high temperature refrigerant and the pressure difference between the upstream and downstream of the valve element. This allows
Since all the refrigerant flows through the capillary tube 38 and is expanded and depressurized here, the upstream first indoor heat exchanger 35a serves as a condenser and the downstream second indoor heat exchanger 35b serves as an evaporator. work. The indoor air circulated by an indoor fan (not shown) is first cooled through the second heat exchanger 35b to be dehumidified, and then the first heat exchanger 35a.
It is heated up to about room temperature and becomes dehumidified air.

【0005】[0005]

【発明が解決しようとする課題】図6は、上述の暖房運
転時における蒸発器となる室外熱交換器33の冷媒配管
に沿った冷媒R22の温度および圧力損失の分布を、白
丸を連ねた直線L1,L2で夫々示している。図中の直線
1から判るように、単一組成の冷媒R22の蒸発温度
は、上記冷媒配管の入口から出口に向かって低下し、圧
力損失も図中の直線L2の如く出口に向かって僅に低下
する。また、冷媒配管の外部に沿って流れる吸込空気の
温度は、図中の直線L3の如く配管出口に向かって低下
する。ところで、最近、フロンR22等の冷媒は、オゾ
ン層を破壊することから大きな環境問題を生じており、
これに替わる有力な冷媒として、例えばR32/R13
4aの2種、あるいはR32/R134a/R125の3
種の冷媒を混合した非共沸の混合冷媒が注目されてい
る。
FIG. 6 shows the distribution of the temperature and pressure loss of the refrigerant R22 along the refrigerant pipe of the outdoor heat exchanger 33 serving as the evaporator during the heating operation described above, which is a straight line with white circles. L 1 and L 2 are shown respectively. As can be seen from the straight line L 1 in the figure, the evaporation temperature of the single composition refrigerant R22 decreases from the inlet to the outlet of the refrigerant pipe, and the pressure loss also moves toward the outlet as the straight line L 2 in the figure. Slightly lower. Further, the temperature of the suction air flowing along the outside of the refrigerant pipe decreases toward the pipe outlet as indicated by a straight line L 3 in the figure. By the way, recently, refrigerants such as Freon R22 have caused a great environmental problem because they destroy the ozone layer.
As a powerful alternative to this, for example, R32 / R13
2 of 4a or 3 of R32 / R134a / R125
Non-azeotropic mixed refrigerants in which different kinds of refrigerants are mixed have attracted attention.

【0006】ところが、これらの非共沸混合冷媒は、組
成冷媒が任意の混合比で混じり合う全率可溶混合物で、
組成を横軸,温度を縦軸にとった平衡状態図が、上側の
気相線と下側の液相線とでレンズ状を呈するものであ
り、単一組成のR22とは物性が著しく異なる。そのた
め、上記非共沸混合冷媒をそのまま図5の空気調和装置
に用いると、暖房運転時における室外熱交換器33での
冷媒の蒸発温度は、JISで規定される暖房条件(外気
乾球温度7℃,外気湿球温度6℃、室温20℃)下でも、
図6の黒丸を連ねた直線L1'で示すように、冷媒配管の
入口側で低くて図中のハッチングで示す着霜域に入り、
出口に向かって上昇する。なお、上記非共沸混合冷媒の
圧力損失は、図中の直線L2'の如く、物性値の差により
直線L2で示すR22に比して小さい。 従って、JI
Sの暖房条件下でも室外熱交換器33の入口側で凍結,
着霜が生じるばかりでなく、出口に向かうほど空気温度
3と冷媒の蒸発温度L1'との温度差が取れない、つま
り対数平均温度差が小さくなるため、蒸発熱交換性能が
低下し、圧縮機31がインバータ式の場合には、動作係
数が低下するという問題がある。
However, these non-azeotropic mixed refrigerants are all-soluble mixtures in which the composition refrigerants are mixed at an arbitrary mixing ratio,
The equilibrium diagram with composition on the horizontal axis and temperature on the vertical axis shows a lens shape between the upper vapor phase line and the lower liquidus line, and the physical properties are significantly different from R22 of a single composition. . Therefore, when the above non-azeotropic mixed refrigerant is used as it is in the air conditioner of FIG. 5, the evaporation temperature of the refrigerant in the outdoor heat exchanger 33 during the heating operation is the heating condition (the outside air dry bulb temperature 7 ℃, outside air wet bulb temperature 6 ℃, room temperature 20 ℃),
As shown by the straight line L 1 'that connects the black circles in FIG. 6, the temperature is low at the inlet side of the refrigerant pipe and enters the frosted region indicated by the hatching in the figure,
Ascend to the exit. The pressure loss of the non-azeotropic mixed refrigerant is smaller than that of R22 indicated by the straight line L 2 due to the difference in the physical properties, as indicated by the straight line L 2 ′ in the figure. Therefore, JI
Even under the heating condition of S, freezing at the inlet side of the outdoor heat exchanger 33,
Not only does frost form, but a temperature difference between the air temperature L 3 and the evaporation temperature L 1 ′ of the refrigerant cannot be taken toward the outlet, that is, the logarithmic average temperature difference is small, so the evaporation heat exchange performance is deteriorated, When the compressor 31 is an inverter type, there is a problem that the coefficient of operation is lowered.

【0007】そこで、本発明の目的は、非共沸混合冷媒
の非等温性をうまく利用して、熱交換器の配管に沿う冷
媒蒸発温度の分布を略均一にすることによって、凍結,
着霜を回避し、熱交換性能と動作係数の向上を図ること
ができる非共沸混合冷媒用の熱交換器を提供することに
ある。
Therefore, an object of the present invention is to make good use of the non-isothermal property of the non-azeotropic mixed refrigerant to make the distribution of the refrigerant evaporation temperature along the pipe of the heat exchanger substantially uniform, thereby freezing,
It is an object of the present invention to provide a heat exchanger for a non-azeotropic mixed refrigerant capable of avoiding frost formation and improving the heat exchange performance and the coefficient of operation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非共沸混合冷媒用の熱交換器1は、図1に
例示するように、非共沸の混合冷媒が貫流する配管に沿
って、冷媒入口から冷媒出口に向かう冷媒の蒸発温度の
分布が、略均一または出口側に向かって低下するよう
に、上記配管の中間部4に、流路断面積が減少する狭窄
部2a,2b;3a,3b;5;7を設けたことを特徴とする。
In order to achieve the above object, a heat exchanger 1 for a non-azeotropic mixed refrigerant of the present invention has a pipe through which a non-azeotropic mixed refrigerant flows, as illustrated in FIG. The narrowed portion 2a in which the flow passage cross-sectional area decreases in the intermediate portion 4 of the pipe so that the distribution of the evaporation temperature of the refrigerant flowing from the refrigerant inlet to the refrigerant outlet along the pipe is substantially uniform or decreases toward the outlet side. , 2b; 3a, 3b; 5; 7 are provided.

【0009】上記狭窄部を、図1(A)に例示するよう
に、2分割された熱交換器の前部1aと後部1bを接続す
る配管4に介設された膨張弁2a,2bで構成してもよ
い。また、上記狭窄部を、図2(B),(C)に例示するよ
うに、上記熱交換器1の配管の中間部4に作り込まれた
キャピラリチューブ3a,3bまたはオリフィス5で構成
してもよい。さらに、上記狭窄部を、図3(A)に例示す
るように、冷媒入口側の所定径の第1チューブ6から複
数に分岐する第1チューブ6よりも細径の第2チューブ
7と、この第2チューブ7より細径で、各第2チューブ
7の先端から複数に分岐した後に冷媒出口側の所定径の
第4チューブ10に合流する第3チューブ8で構成し、
蒸発しつつ出口側に向かって流れる非共沸混合冷媒に対
する実質的な流路断面が、夫々上記第1チューブ6で
大,第2チューブ7で小,第3チューブ8で中になるよう
にすることもできる。
As shown in FIG. 1 (A), the narrowed portion is constituted by expansion valves 2a and 2b provided in a pipe 4 connecting a front portion 1a and a rear portion 1b of a heat exchanger divided into two parts. You may. In addition, as shown in FIGS. 2 (B) and 2 (C), the narrowed portion is constituted by the capillary tubes 3a, 3b or the orifice 5 built in the intermediate portion 4 of the pipe of the heat exchanger 1. Good. Further, as shown in FIG. 3 (A), the narrowed portion includes a second tube 7 having a diameter smaller than that of the first tube 6 branched from the first tube 6 having a predetermined diameter on the refrigerant inlet side, The third tube 8 has a smaller diameter than the second tubes 7 and is branched into a plurality of tips from the respective second tubes 7 and then joins with a fourth tube 10 having a predetermined diameter on the refrigerant outlet side.
The substantial flow passage cross sections for the non-azeotropic mixed refrigerant flowing toward the outlet side while evaporating are set such that the first tube 6 is large, the second tube 7 is small, and the third tube 8 is medium. You can also

【0010】[0010]

【作用】冷媒配管の中間部4に狭窄部2a,2b;3a,3b;
5;7を設けた熱交換器を室外熱交換器1とし、圧縮機
31から吐出した非共沸の混合冷媒ガスを、室内熱交換
器35で凝縮させ、膨張弁34を経て絞り膨張させて上
記室外熱交換器1にて蒸発させ、圧縮機31へ循環させ
る。絞り膨張後に室外熱交換器1の配管入口に達した冷
媒の状態は、上に凸な飽和限界線をもつこの冷媒のP-h
線図中で台形をなす冷凍サイクル線図上の左下隅に相当
する。しかし、蒸発器である室外熱交換器1には、中間
部4に流路断面積が減少する狭窄部2a,2b;3a,3b;
5;7があるので、上記左下隅からの蒸発過程は通常の
冷凍サイクル線図のように水平線とはならず、右下がり
の線となって、圧力は入口側で高く,出口側で低くな
る。従って、圧力に相当する冷媒の飽和温度も、入口側
で高く,出口側で低くなって、入口側は湿り気味の,出口
側は乾き気味の冷媒状態となる。その結果、上記狭窄部
2a,2b;3a,3b;5;7がなければ、JISの暖房条件
下でも配管入口側が着霜温度以下になり,出口側に向か
って上昇する冷媒温度の分布が、略均一または出口側に
向かって低下するようになって、室外熱交換器1の入口
側での凍結,着霜が防止され、熱交換性能と動作係数の
向上が図られる。
Function: Constrictions 2a, 2b; 3a, 3b;
The heat exchanger provided with 5 and 7 is used as the outdoor heat exchanger 1, the non-azeotropic mixed refrigerant gas discharged from the compressor 31 is condensed in the indoor heat exchanger 35, and expanded and expanded through the expansion valve 34. It is evaporated in the outdoor heat exchanger 1 and circulated to the compressor 31. The state of the refrigerant that has reached the pipe inlet of the outdoor heat exchanger 1 after the expansion by expansion is Ph of this refrigerant having an upwardly convex saturation limit line.
It corresponds to the lower left corner of the trapezoidal refrigeration cycle diagram. However, in the outdoor heat exchanger 1 which is an evaporator, the narrowed portions 2a, 2b; 3a, 3b;
Since there are 5 and 7, the evaporation process from the lower left corner does not become a horizontal line like the normal refrigeration cycle diagram, but becomes a line descending to the right, the pressure is high on the inlet side and low on the outlet side. . Therefore, the saturation temperature of the refrigerant, which corresponds to the pressure, is also high on the inlet side and low on the outlet side, so that the inlet side is in a wet state and the outlet side is in a dry state. As a result, if the narrowed portions 2a, 2b; 3a, 3b; 5; 7 are not present, the distribution of the refrigerant temperature that is below the frosting temperature on the pipe inlet side and rises toward the outlet side even under the JIS heating condition is By becoming substantially uniform or decreasing toward the outlet side, freezing and frost formation at the inlet side of the outdoor heat exchanger 1 are prevented, and the heat exchange performance and the coefficient of operation are improved.

【0011】上記狭窄部を、2分割された熱交換器の前
部1aと後部1bを接続する配管4に介設した膨張弁2a,
2bで構成すれば、使用する非共沸混合冷媒の種類に応
じて膨張弁2a,2bの開度を最適に調整でき、汎用性に
優れる。上記狭窄部を、熱交換器1の配管の中間部4に
作り込まれたキャピラリチューブ3a,3bまたはオリフ
ィス5で構成すれば、汎用性には劣るが、熱交換器のコ
ンパクト化を図ることができる。また、上記狭窄部を、
種々の径,本数の第1〜第4チューブ6〜10を組み合
わせて構成すれば、コンパクト化を図りつつ、種々の非
共沸混合冷媒に適合させることができる。
An expansion valve 2a, in which the narrowed portion is provided in a pipe 4 connecting the front portion 1a and the rear portion 1b of the heat exchanger divided into two parts.
If it is constituted by 2b, the opening degree of the expansion valves 2a, 2b can be optimally adjusted according to the type of the non-azeotropic mixed refrigerant used, and it is excellent in versatility. If the narrowed portion is composed of the capillary tubes 3a, 3b or the orifice 5 formed in the intermediate portion 4 of the pipe of the heat exchanger 1, the versatility is poor, but the heat exchanger can be made compact. it can. In addition, the narrowed portion,
If the first to fourth tubes 6 to 10 having various diameters and numbers are combined and configured, it can be made compact and can be adapted to various non-azeotropic mixed refrigerants.

【0012】[0012]

【実施例】以下、本発明を図示の実施例により詳細に説
明する。図1(A)は、本発明の非共沸混合冷媒用の熱交
換器を室外熱交換器として用いた空気調和装置の一例を
示す冷媒回路図である。この空気調和装置は、図5で述
べた冷媒回路の室内熱交換器のドライ時減圧機構37を
省略して単一の室内熱交換器35とし、電磁弁41を介
設したバイパス管路40を省略する一方、図5の室外熱
交換器33を前部1aと後部1bに分割し、両者1a,1b
の間に流路断面積が減少する狭窄部としての1対の膨張
弁2a,2bを並列に設けて室外熱交換器1を構成してい
る。その他の部材は、図5で述べたものと同じであり、
同じ部材に同一番号を付して説明を省略する。図1(B)
は、上記室外熱交換器の他の実施例を示しており、この
実施例では、室外熱交換器1の前部1aと後部1bの間
に、狭窄部として1対のキャピラリチューブ3a,3bを
並列に設けている。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 (A) is a refrigerant circuit diagram showing an example of an air conditioner using the heat exchanger for non-azeotropic mixed refrigerant of the present invention as an outdoor heat exchanger. In this air conditioner, the dry-time depressurization mechanism 37 of the indoor heat exchanger of the refrigerant circuit described in FIG. 5 is omitted to form a single indoor heat exchanger 35, and the bypass pipe 40 having the solenoid valve 41 is provided. While omitting, the outdoor heat exchanger 33 of FIG. 5 is divided into a front part 1a and a rear part 1b, and
The outdoor heat exchanger 1 is configured by arranging a pair of expansion valves 2a and 2b, which are narrowed portions in which the cross-sectional area of the flow passage decreases, in parallel. The other members are the same as those described in FIG. 5,
The same members are designated by the same reference numerals and the description thereof is omitted. Figure 1 (B)
Shows another embodiment of the outdoor heat exchanger, and in this embodiment, a pair of capillary tubes 3a, 3b are provided as a narrowed portion between the front portion 1a and the rear portion 1b of the outdoor heat exchanger 1. They are provided in parallel.

【0013】上記キャピラリチューブ3a,3bは、図2
(C)に示すような形状を有し、図1(A)の膨張弁2a,
2bと異なり、室外熱交換器1を2分割することなく、
図2(A)に示す冷媒配管の中間部4に埋め込んで設けら
れる。また、この中間部4に、狭窄部としてキャピラリ
チューブ3a,3bに代えて図2(B)に示すようなオリフ
ィス5を設けることもできる。
The capillary tubes 3a and 3b are shown in FIG.
The expansion valve 2a of FIG. 1 (A) has a shape as shown in FIG.
Unlike 2b, without dividing the outdoor heat exchanger 1 into two
It is provided by being embedded in the intermediate portion 4 of the refrigerant pipe shown in FIG. Further, the intermediate portion 4 may be provided with an orifice 5 as shown in FIG. 2B instead of the capillary tubes 3a and 3b as a narrowed portion.

【0014】図3(A)は、狭窄部の他の実施例を示して
おり、この実施例では、室外熱交換器1の冷媒配管の入
口側を直径9.5mmの1本の第1チューブ6、中間部を2
本に分岐する直径8.0mmの第2チューブ7、ヘッダー9
の手前を直径7mmの4本の第3チューブ8、出口側を直
径9.5mmの1本の第4チューブ10で夫々構成して、入
口から矢印の如く液成分に富んだ状態で流入し、蒸発し
つつ出口側に向かう非共沸混合冷媒に対して、実質的な
流路断面積が、夫々第1チューブ6で大,第2チューブ
7で小,第3チューブ8で中となるようにしている。そ
して、第4チューブ10からは、ガス成分に富んだ非共
沸混合冷媒が矢印の如く流出する。図3(B)は、上記実
施例の変形例を示しており、この変形例では、室外熱交
換器1の外部を矢印Aの如く流れる外気に対して、冷媒
を矢印Bの如く前面から背面に2列に循環させ、前面を
2本の直径7mmのチューブで、背面を1本の直径9.5mm
のチューブで夫々構成している。また、図3(C)の変形
例では、矢印Aの如く流れる外気に対して、冷媒を矢印
Bの如く同様に前面から背面に2列に循環させ、かつ前
面,背面をともに下段と上段に分けて、各種直径のチュ
ーブを組み合わせて、実質的な流路断面積が、夫々前面
下段で大,前面と背面の上段で小,背面下段で中になるよ
うにしている。
FIG. 3A shows another embodiment of the narrowed portion. In this embodiment, the inlet side of the refrigerant pipe of the outdoor heat exchanger 1 has one first tube 6 having a diameter of 9.5 mm. , Middle part 2
A second tube 7 with a diameter of 8.0 mm that branches into a book, a header 9
Is composed of four third tubes 8 with a diameter of 7 mm and one fourth tube 10 with a diameter of 9.5 mm on the outlet side, and flows in from the inlet in a state rich in liquid components as shown by the arrow and evaporates. For the non-azeotropic mixed refrigerant flowing toward the outlet side, the substantial flow passage cross-sectional areas are set to be large in the first tube 6, small in the second tube 7 and medium in the third tube 8, respectively. There is. Then, the non-azeotropic mixed refrigerant rich in gas components flows out from the fourth tube 10 as indicated by an arrow. FIG. 3 (B) shows a modified example of the above embodiment. In this modified example, with respect to the outside air flowing outside the outdoor heat exchanger 1 as indicated by arrow A, the refrigerant is changed from the front to the back as indicated by arrow B. 2 tubes with a diameter of 7 mm on the front side and a diameter of 9.5 mm on the back side.
Each is made up of tubes. Further, in the modified example of FIG. 3C, with respect to the outside air flowing as indicated by arrow A, the refrigerant is similarly circulated in two rows from the front surface to the back surface as shown by arrow B, and the front surface and the back surface are both in the lower and upper stages. Separately, tubes of various diameters are combined so that the substantial flow passage cross-sectional area is large in the front lower stage, small in the front and rear upper stages, and medium in the rear lower stage.

【0015】上記各実施例の狭窄部2a,2b;3a,3b;
5;7を有する室外熱交換器1に、フロンR22に代わ
って貫流する非共沸の混合冷媒は、R32/R134a
の2種、またはR32/R134a/R125の3種の
冷媒を混合したものであり、上記いずれの狭窄部の寸法
および形状も、その狭窄部をもつ冷媒配管に上記混合冷
媒を流したとき、この冷媒配管に沿って冷媒入口から冷
媒出口に向かう上記混合冷媒の蒸発温度の分布が、略均
一または出口側に向かって低下するように設計されてい
る(図4の直線L1参照)。また、膨張弁2a,2b(図1
(A)参照)は、分離した前部1aと後部1bを継なぐ配管
の中間部4に介設された流路断面積が可変の狭窄部であ
り、非共沸混合冷媒の種類に合わせてその開度を調整で
きるが、残りのキャピラリチューブ3a,3b(図2(C)参
照)、オリフィス5(図2(B)参照)および組合せ配管(図
3(A)参照)は、一体の熱交換器1の配管の中間部4に
埋め込まれた流路断面積が固定の狭窄部であり、使用で
きる非共沸混合冷媒の種類が限定される。
The narrowed portions 2a, 2b; 3a, 3b;
The non-azeotropic mixed refrigerant that flows through the outdoor heat exchanger 1 having 5 and 7 instead of the fluorocarbon R22 is R32 / R134a.
2 or R32 / R134a / R125 three kinds of refrigerants are mixed, and the size and shape of any of the above constrictions are the same when the above mixed refrigerant is flown into the refrigerant pipe having the constriction. The distribution of the evaporation temperature of the mixed refrigerant flowing from the refrigerant inlet to the refrigerant outlet along the refrigerant pipe is designed to be substantially uniform or to decrease toward the outlet side (see the straight line L1 in FIG. 4). Further, the expansion valves 2a and 2b (see FIG.
(Refer to (A)) is a constriction part having a variable flow passage cross-sectional area, which is provided in an intermediate part 4 of a pipe connecting the separated front part 1a and rear part 1b. Although its opening can be adjusted, the remaining capillary tubes 3a and 3b (see FIG. 2C), the orifice 5 (see FIG. 2B) and the combination pipe (see FIG. 3A) are integrated into one unit. The flow passage cross-sectional area embedded in the intermediate portion 4 of the pipe of the exchanger 1 is a narrowed portion having a fixed flow passage area, and the types of non-azeotropic mixed refrigerant that can be used are limited.

【0016】上記構成の非共沸混合冷媒用の熱交換器
は、次のように作用する。狭窄部として膨張弁2a,2b
をもつ室外熱交換器1を用いた図1(A)に示す空気調和
装置において、膨張弁2a,2bの開度を使用する非共沸
混合冷媒に合わせて調整した後、図中の破線矢印で示す
ように、圧縮機31から吐出した非共沸混合冷媒のガス
を、室内熱交換器35で凝縮させ、膨張弁34を経て絞
り膨張させて室外熱交換器1に送って蒸発させ、圧縮機
31へ循環させて暖房運転を行なう。膨張弁34での絞
り(等エンタルピ)膨張の後に室外熱交換器1aの配管入
口に達した冷媒の状態は、上に凸な飽和限界線をもつこ
の冷媒のP-h線図上で台形をなす冷凍サイクル線図上の
左下隅に相当する。しかし、蒸発器である室外熱交換器
1には、中間部4に流路断面積が減少する膨張弁2a,2
bがあるので、上記左下隅から右横へ向かう蒸発過程
は、通常の冷凍サイクル線図のように水平線とはなら
ず、右下がりの線となって、冷媒の蒸気圧は入口側で高
く,出口側で低くなる。従って、蒸気圧に相当する冷媒
の飽和温度も、入口側で高く,出口側で低くなって、入
口側は湿り気味,出口側は乾き気味の冷媒状態となる。
The heat exchanger for a non-azeotropic mixed refrigerant having the above-described structure operates as follows. Expansion valves 2a, 2b as constrictions
In the air conditioner shown in FIG. 1 (A) using the outdoor heat exchanger 1 having the following, after adjusting the opening degree of the expansion valves 2a, 2b according to the non-azeotropic mixed refrigerant to be used, the broken line arrow in the figure As shown by, the gas of the non-azeotropic mixed refrigerant discharged from the compressor 31 is condensed in the indoor heat exchanger 35, and is squeezed and expanded through the expansion valve 34 to be sent to the outdoor heat exchanger 1 to be evaporated and compressed. The heating operation is performed by circulating the air to the machine 31. The state of the refrigerant that has reached the pipe inlet of the outdoor heat exchanger 1a after the expansion (isoenthalpy) expansion in the expansion valve 34 is trapezoidal on the Ph diagram of this refrigerant having a convex saturation limit line. It corresponds to the lower left corner of the eggplant refrigeration cycle diagram. However, in the outdoor heat exchanger 1 which is an evaporator, the expansion valves 2a, 2
Since there is b, the evaporation process from the lower left corner to the right side does not become a horizontal line like a normal refrigeration cycle diagram, but becomes a line descending to the right, and the vapor pressure of the refrigerant is high on the inlet side, It becomes lower on the exit side. Therefore, the saturation temperature of the refrigerant corresponding to the vapor pressure is also high on the inlet side and low on the outlet side, so that the inlet side is in a moist state and the outlet side is in a slightly dry state.

【0017】その結果、膨張弁2a,2bがなければ、J
ISの暖房条件(外気乾球温度7℃,外気湿球温度6℃、
室温20℃)下でも配管入口側が、図4の直線L1'(図6
のL1')で示すように、ハッチング域の着霜温度以下に
なり、出口側に向かって上昇する冷媒温度の分布が、図
4の直線L1で示すように、略均一(水平)なって室外熱
交換器1の入口側での凍結,着霜が防止される。一方、
配管に沿う冷媒の圧力損失の分布は、図4の直線L2で
示すように、直線L2'で示す膨張弁2a,2bがない場合
よりも小さくなる。また、冷媒の温度分布L1が略均一
になるので、冷媒温度L1と空気温度L3との温度差,つ
まり対数平均温度差が、配管出口に向かってさほど減少
しないから、蒸発熱交換性能が向上し、インバータ式の
圧縮機31の動作係数も上昇する。このように、代替の
ための非共沸混合冷媒は、従来の単一組成の冷媒R22
に比べて、蒸発による圧力損失への影響が小さい反面、
物性による温度への影響が大きいので、この非等温性を
冷媒配管の中間部4に狭窄部を設けることによって利用
して、対数平均温度差を大きくとるように改善している
のである。さらに、キャピラリチューブ3a,3b(図2
(C)参照)、オリフィス5(図2(B)参照)および組合せ
配管(図3参照)からなる固定形の狭窄部の場合は、可変
形の膨張弁2a,2bに比して、使用冷媒が限定されると
いう不利はあるものの、一体の熱交換器1内に埋め込ん
でコンパクト化を図れるという利点がある。
As a result, if there is no expansion valve 2a, 2b, J
IS heating conditions (outside air dry bulb temperature 7 ° C, outside air wet bulb temperature 6 ° C,
Even at room temperature of 20 ° C., the pipe inlet side is straight line L 1 ′ in FIG.
As shown by L 1 '), the distribution of the refrigerant temperature that becomes lower than the frosting temperature in the hatching area and rises toward the outlet side becomes substantially uniform (horizontal) as shown by the straight line L1 in FIG. Freezing and frost formation on the inlet side of the outdoor heat exchanger 1 are prevented. on the other hand,
The distribution of the pressure loss of the refrigerant along the pipe is smaller than that without the expansion valves 2a and 2b indicated by the straight line L 2 ′, as indicated by the straight line L2 in FIG. Further, since the temperature distribution L1 of the coolant is substantially uniform, the temperature difference between the refrigerant temperature L1 and air temperature L 3, i.e. the logarithmic mean temperature difference, do not decrease much towards the pipe outlet, improve evaporative heat exchange performance However, the operating coefficient of the inverter type compressor 31 also increases. As described above, the alternative non-azeotropic mixed refrigerant is the conventional single composition refrigerant R22.
Compared with, the effect of evaporation on pressure loss is small, but
Since the physical properties have a great influence on the temperature, this non-isothermal property is utilized by providing a narrowed portion in the intermediate portion 4 of the refrigerant pipe to improve the logarithmic average temperature difference. Further, the capillary tubes 3a and 3b (see FIG.
(See (C)), orifice 5 (see FIG. 2 (B)) and combination pipe (see FIG. 3), in the case of a fixed constriction part, compared to the variable expansion valves 2a, 2b, the refrigerant used However, there is an advantage that it can be embedded in the integrated heat exchanger 1 to achieve compactness.

【0018】なお、組合せ配管による狭窄部は、図3
(A)に示す実施例の配管直径や本数に限られず、非共沸
混合冷媒の配管に沿う温度分布を略均一にするように別
の直径および本数の配管を用いて構成でき、これによっ
て種々の非共沸混合冷媒に適合させることができる。ま
た、上記狭窄部による冷媒の蒸発温度分布は、図4の直
線L1の如く略均一(水平)でなくて、ハッチングの着霜
域に入らない限りで配管出口に向かって低下(右下がり)
するものでもよい。さらに、上記実施例では、暖房運転
における室外熱交換器の凍結,着霜防止について説明し
たが、本発明の狭窄部をもつ熱交換器を冷房運転におけ
る室内熱交換器に用いることもでき、この場合も、上述
と同じく着霜の防止,熱交換性能および動作係数の向上
を図ることができる。
The narrowed portion formed by the combined piping is shown in FIG.
The pipe diameter and the number of pipes of the embodiment shown in (A) are not limited, and pipes of different diameters and numbers can be used so as to make the temperature distribution along the pipe of the non-azeotropic mixed refrigerant substantially uniform. The non-azeotropic mixed refrigerant can be adapted. Further, the evaporation temperature distribution of the refrigerant due to the narrowed portion is not substantially uniform (horizontal) as shown by the straight line L1 in FIG. 4, and decreases toward the pipe outlet (downward right) unless it enters the hatched frosted region.
You can do it. Further, in the above embodiment, the freezing of the outdoor heat exchanger in the heating operation, the prevention of frost formation was explained, but the heat exchanger having the constriction portion of the present invention can also be used for the indoor heat exchanger in the cooling operation, Also in this case, it is possible to prevent frost formation, improve heat exchange performance, and improve the coefficient of operation as in the case described above.

【0019】[0019]

【発明の効果】以上の説明で明らかなように、本発明の
非共沸混合冷媒用の熱交換器は、非共沸混合冷媒が貫流
する配管に沿って、冷媒入口から冷媒出口に向かう冷媒
の蒸発温度の分布が、略均一または出口側に向かって低
下するように、上記配管の中間部に、流路断面積が減少
する狭窄部を設けているので、この狭窄部により非共沸
混合冷媒の非等温性を利用して、蒸発冷媒を入口側で湿
り気味,出口側で乾き気味に制御できて、熱交換器の入
口側での着霜が防止でき、対数平均温度差が大きくとれ
て、熱交換性能と動作係数を向上させることができる。
なお、上記狭窄部を、熱交換器の前部と後部を接続する
配管に介設した膨張弁で構成すれば、非共沸混合冷媒の
種類に応じて上記膨張弁の開度を調整することにより、
汎用性を向上させることができる。また、上記狭窄部
を、冷媒配管の中間部に作り込まれたキャピラリチュー
ブやオリフィスで構成すれば、熱交換器のコンパクト化
を図ることができる。さらに、上記狭窄部を、種々の
径,本数のチューブを組み合わせて構成すれば、コンパ
クト化を図りつつ、種々の非共沸混合冷媒に適合させる
ことができる。
As is apparent from the above description, the heat exchanger for a non-azeotropic mixed refrigerant of the present invention has a refrigerant flowing from the refrigerant inlet to the refrigerant outlet along the pipe through which the non-azeotropic mixed refrigerant flows. Since the distribution of the evaporation temperature of is almost uniform or decreases toward the outlet side, a constriction part with a reduced flow passage cross-sectional area is provided in the middle part of the pipe. By utilizing the non-isothermal nature of the refrigerant, the evaporated refrigerant can be controlled to be moist on the inlet side and dry on the outlet side, frost formation on the inlet side of the heat exchanger can be prevented, and a large logarithmic mean temperature difference can be obtained. Thus, the heat exchange performance and the coefficient of operation can be improved.
If the narrowed portion is formed by an expansion valve provided in a pipe connecting the front part and the rear part of the heat exchanger, the opening degree of the expansion valve can be adjusted according to the type of the non-azeotropic mixed refrigerant. Due to
The versatility can be improved. Further, if the narrowed portion is composed of a capillary tube or an orifice formed in the middle portion of the refrigerant pipe, the heat exchanger can be made compact. Furthermore, if the narrowed portion is constructed by combining tubes having various diameters and numbers, it is possible to make it compact and adapt it to various non-azeotropic mixed refrigerants.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の非共沸混合冷媒用の熱交換器を用い
た空気調和装置の一例を示す冷媒回路図および上記熱交
換器の他の実施例を示す図である。
FIG. 1 is a refrigerant circuit diagram showing an example of an air conditioner using a heat exchanger for a non-azeotropic mixed refrigerant of the present invention, and a diagram showing another embodiment of the heat exchanger.

【図2】 上記熱交換器の狭窄部を示す斜視図およびこ
の狭窄部の例を示す断面図である。
FIG. 2 is a perspective view showing a narrowed portion of the heat exchanger and a cross-sectional view showing an example of the narrowed portion.

【図3】 上記狭窄部の他の実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the narrowed portion.

【図4】 上記熱交換器の配管に沿う冷媒温度および圧
力損失の分布を示す図である。
FIG. 4 is a diagram showing distributions of refrigerant temperature and pressure loss along the pipe of the heat exchanger.

【図5】 冷媒R22を用いた従来の空気調和装置の冷
媒回路図である。
FIG. 5 is a refrigerant circuit diagram of a conventional air conditioner using a refrigerant R22.

【図6】 上記従来の空気調和装置の室外熱交換器の配
管に沿う冷媒温度および圧力損失の分布を示す図であ
る。
FIG. 6 is a view showing distributions of refrigerant temperature and pressure loss along the pipe of the outdoor heat exchanger of the conventional air conditioner.

【符号の説明】[Explanation of symbols]

1…室外熱交換器、1a…前部、1b…後部、2a,2b…
膨張弁、3a,3b…キャピラリチューブ、4…中間部、
5…オリフィス、7…第2チューブ。
1 ... Outdoor heat exchanger, 1a ... Front part, 1b ... Rear part, 2a, 2b ...
Expansion valve, 3a, 3b ... Capillary tube, 4 ... Intermediate part,
5 ... Orifice, 7 ... 2nd tube.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非共沸の混合冷媒が配管内を貫流する非
共沸混合冷媒用の熱交換器(1)において、 上記配管に沿って冷媒入口から冷媒出口に向かう冷媒の
蒸発温度の分布が、略均一または出口側に向かって低下
するように、上記配管の中間部(4)に、流路断面積が減
少する狭窄部(2a,2b;3a,3b;5;7)を設けたことを
特徴とする非共沸混合冷媒用の熱交換器。
1. In a heat exchanger (1) for a non-azeotropic mixed refrigerant in which a non-azeotropic mixed refrigerant flows through a pipe, the distribution of the evaporation temperature of the refrigerant from the refrigerant inlet to the refrigerant outlet along the pipe. However, a narrowed portion (2a, 2b; 3a, 3b; 5; 7) having a reduced flow passage cross-sectional area is provided in the intermediate portion (4) of the above-mentioned pipe so as to be substantially uniform or to decrease toward the outlet side. A heat exchanger for a non-azeotropic mixed refrigerant.
【請求項2】 上記狭窄部は、2分割された熱交換器の
前部(1a)と後部(1b)を接続する配管(4)に介設された
膨張弁(2a,2b)である請求項1に記載の非共沸混合冷
媒用の熱交換器。
2. The narrowed portion is an expansion valve (2a, 2b) interposed in a pipe (4) connecting a front portion (1a) and a rear portion (1b) of a heat exchanger divided into two parts. Item 2. A heat exchanger for a non-azeotropic mixed refrigerant according to Item 1.
【請求項3】 上記狭窄部は、上記熱交換器(1)の配管
の中間部(4)に作り込まれたキャピラリチューブ(3a,
3b)またはオリフィス(5)である請求項1に記載の非共
沸混合冷媒用の熱交換器。
3. The narrowed portion is a capillary tube (3a, 3a, 3a, 3b formed in the intermediate portion (4) of the pipe of the heat exchanger (1).
A heat exchanger for a non-azeotropic mixed refrigerant according to claim 1, which is 3b) or an orifice (5).
【請求項4】 上記狭窄部は、冷媒入口側の所定径の第
1チューブ(6)から複数に分岐する第1チューブ(6)よ
りも細径の第2チューブ(7)と、この第2チューブ(7)
より細径で、各第2チューブ(7)の先端から複数に分岐
した後に冷媒出口側の所定径の第4チューブ(10)に合
流する第3チューブ(8)からなり、蒸発しつつ出口側に
向かって流れる非共沸混合冷媒に対する実質的な流路断
面が、夫々上記第1チューブ(6)で大,第2チューブ
(7)で小,第3チューブ(8)で中になるようにした請求
項1に記載の非共沸冷媒用の熱交換器。
4. The narrowed portion includes a second tube (7) having a diameter smaller than that of the first tube (6) branched from the first tube (6) having a predetermined diameter on the refrigerant inlet side into a plurality of tubes. Tube (7)
It is composed of a third tube (8) having a smaller diameter, which branches into a plurality of branches from the tip of each second tube (7) and then joins with a fourth tube (10) of a predetermined diameter on the refrigerant outlet side. The flow passage cross sections for the non-azeotropic mixed refrigerant flowing toward the large tube are large in the first tube (6) and the second tube is large in the second tube.
The heat exchanger for a non-azeotropic refrigerant according to claim 1, wherein the heat exchanger (7) is small and the third tube (8) is centered.
JP16126293A 1993-06-30 1993-06-30 Heat exchanger for non-azeotrope refrigerant Pending JPH0719627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16126293A JPH0719627A (en) 1993-06-30 1993-06-30 Heat exchanger for non-azeotrope refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16126293A JPH0719627A (en) 1993-06-30 1993-06-30 Heat exchanger for non-azeotrope refrigerant

Publications (1)

Publication Number Publication Date
JPH0719627A true JPH0719627A (en) 1995-01-20

Family

ID=15731761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16126293A Pending JPH0719627A (en) 1993-06-30 1993-06-30 Heat exchanger for non-azeotrope refrigerant

Country Status (1)

Country Link
JP (1) JPH0719627A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339511A (en) * 1997-06-09 1998-12-22 Yoriyuki Oguri Heat pump system of air conditioner
JP2001050616A (en) * 1999-08-06 2001-02-23 Mitsubishi Electric Corp Refrigeration cycle device and air conditioner
WO2019124146A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle
CN111479896A (en) * 2017-12-18 2020-07-31 大金工业株式会社 Refrigeration cycle
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339511A (en) * 1997-06-09 1998-12-22 Yoriyuki Oguri Heat pump system of air conditioner
JP2001050616A (en) * 1999-08-06 2001-02-23 Mitsubishi Electric Corp Refrigeration cycle device and air conditioner
WO2019124146A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle
CN111479896A (en) * 2017-12-18 2020-07-31 大金工业株式会社 Refrigeration cycle
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
US8656729B2 (en) Air conditioning system with defrosting operation
KR100697087B1 (en) Air-Condition
JPH0719627A (en) Heat exchanger for non-azeotrope refrigerant
JP3410442B2 (en) Refrigerant distribution device for refrigeration cycle for heat pump
KR100697088B1 (en) Air-Condition
CN107238226B (en) Multi-split system and control method thereof
CN112161324B (en) Air conditioner
CN107076467A (en) Conditioner
JP2000274879A (en) Air conditioner
KR100426640B1 (en) Refrigeration cycle
JPH04332350A (en) Air conditioner and its operating method
JP4270555B2 (en) Reheat dehumidification type air conditioner
JP2000002494A (en) Plate type heat exchanger and refrigeration cycle system
JPS60219114A (en) Air conditioner for automobile
JP2010156513A (en) Air conditioning device
KR20100137050A (en) Refrigeration and air conditioning system
CN213178883U (en) Air conditioner
JP2019190760A (en) Air conditioner
KR100544873B1 (en) Multi-air conditioner for both cooling and heating which air cooling efficiency is improved
JPH0719665A (en) Air conditioner for vehicle
JP4608828B2 (en) Air conditioner, dehumidifier, and throttle mechanism
JPH06272978A (en) Air conditioner
CN219083269U (en) Air conditioner system
JPH09310931A (en) Air conditioner