JP4270555B2 - Reheat dehumidification type air conditioner - Google Patents

Reheat dehumidification type air conditioner Download PDF

Info

Publication number
JP4270555B2
JP4270555B2 JP2004101803A JP2004101803A JP4270555B2 JP 4270555 B2 JP4270555 B2 JP 4270555B2 JP 2004101803 A JP2004101803 A JP 2004101803A JP 2004101803 A JP2004101803 A JP 2004101803A JP 4270555 B2 JP4270555 B2 JP 4270555B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
indoor
indoor heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004101803A
Other languages
Japanese (ja)
Other versions
JP2005283058A (en
Inventor
敦彦 横関
進 中山
賢治 松村
直樹 杉本
政輝 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004101803A priority Critical patent/JP4270555B2/en
Publication of JP2005283058A publication Critical patent/JP2005283058A/en
Application granted granted Critical
Publication of JP4270555B2 publication Critical patent/JP4270555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

再熱除湿機能を有する空気調和機に関する。   The present invention relates to an air conditioner having a reheat dehumidifying function.

2つの室内熱交換器のうち、一方を凝縮器、他方を蒸発器として用いる再熱除湿運転時に凝縮器での再熱量を多くするため、余剰冷媒を溜める液溜め手段を高圧側に設け、一方の室内熱交換器が液冷媒で満液になるのを防ぎ、冷房、暖房、再熱除湿運転のそれぞれ適正量の冷媒を循環させることが知られ、例えば特許文献1に記載されている。   In order to increase the amount of reheat in the condenser during reheat dehumidification operation using one of the two indoor heat exchangers as a condenser and the other as an evaporator, a liquid storage means for storing excess refrigerant is provided on the high pressure side. It is known that the indoor heat exchanger of this type is filled with liquid refrigerant, and an appropriate amount of refrigerant is circulated in each of the cooling, heating, and reheat dehumidifying operations.

特開2003−262429号公報JP 2003-262429 A

上記従来技術は、室外機1台に対し、室内機が1台のみ接続された空気調和機を想定しているため、室内機が複数台接続された多室型空気調和機のことが考慮されてなく、多室型空気調和機において、冷房、除湿運転を個別に行い、冷房運転、再熱除湿運転の性能を最大限に発生させるには充分でない。   Since the above prior art assumes an air conditioner in which only one indoor unit is connected to one outdoor unit, a multi-room air conditioner in which a plurality of indoor units are connected is considered. In a multi-room air conditioner, it is not sufficient to perform cooling and dehumidifying operations individually and to maximize the performance of the cooling operation and reheat dehumidifying operation.

また、特許文献1に記載のものをそのまま多室型空気調和機に適用するには、電磁弁、減圧装置、冷媒分配器などの部品点数が増加し、設置スペースの増大、低価格化などの点でも好ましくなかった。   Moreover, in order to apply the thing of patent document 1 as it is to a multi-chamber type air conditioner as it is, the number of parts, such as a solenoid valve, a pressure reduction device, a refrigerant distributor, increases, installation space increases, cost reduction, etc. It was not preferable also in terms.

本発明の目的は、多室型空気調和機においても、さらには再熱除湿運転を行う室内機と冷房運転を行う室内機とが混在した場合においても、冷房運転および再熱除湿運転の性能を落とすこと無く、安定した運転状態を実現することにある。   The object of the present invention is to improve the performance of the cooling operation and the reheat dehumidification operation even in the case of the multi-room air conditioner, and even when the indoor unit performing the reheat dehumidification operation and the indoor unit performing the cooling operation are mixed. It is to realize a stable operation state without dropping.

また、他の目的は再熱除湿運転時における再熱量を充分確保し、吹き出し温度低下を防ぐと共に、室内機の部品点数を抑え、省スペースで、低コストの再熱除湿可能な空気調和機を提供することにある。   Another purpose is to secure a sufficient amount of reheat during reheat dehumidification operation, prevent a drop in the temperature of the blowout air, reduce the number of parts in the indoor unit, save space, and reduce the cost of reheat dehumidification. It is to provide.

上記課題を解決するため本発明は、圧縮機、四方弁、室外熱交換器を有する室外機と、複数の室内機とを冷媒配管で接続して冷凍サイクルを構成する多室型空気調和機において、
前記室外機は、前記室外熱交換器で冷却された冷媒を更に過冷却するための過冷却器と、液側となる冷媒配管から前記過冷却器を通過して前記圧縮機の吸入配管に接続され過冷却器用減圧装置を有する過冷却バイパス回路とを備え、前記室内機は、第1の室内熱交換器、室内減圧装置、第2の室内熱交換器が順次配管接続され、前記第1の室内熱交換器をバイパスして前記室内減圧装置と前記第2の室内熱交換器に冷媒が流れる回路と、該回路を開閉させる開閉弁とを備え、冷房運転時は、前記過冷却バイパス回路を通じて前記過冷却器用減圧装置で減圧させた冷媒を前記過冷却器を通過させた後に前記圧縮機へ流すと共に、前記開閉弁を開放して、蒸発器となる前記第2の室内熱交換器に前記過冷却器で過冷却された冷媒を流し、再熱除湿運転時は、前記過冷却器用減圧装置を全閉状態にすると共に、前記開閉弁を閉鎖して、凝縮器となる前記第1の室内熱交換器と蒸発器となる前記第2の室内熱交換器に冷媒を流すことを特徴とする
In order to solve the above-described problems, the present invention provides a multi-room air conditioner that configures a refrigeration cycle by connecting an outdoor unit having a compressor, a four-way valve, an outdoor heat exchanger, and a plurality of indoor units with refrigerant piping. ,
The outdoor unit is connected to a supercooler for further supercooling the refrigerant cooled by the outdoor heat exchanger and a refrigerant pipe on the liquid side through the supercooler and connected to the suction pipe of the compressor is a subcooling bypass circuit having the super cooler decompressor, the indoor unit includes first indoor heat exchanger, the chamber pressure reducing device, the second indoor heat exchanger are sequentially pipe connection, said first And a circuit through which refrigerant flows to the indoor pressure reducing device and the second indoor heat exchanger, and an on-off valve for opening and closing the circuit, and during the cooling operation, the supercooling bypass circuit The refrigerant reduced in pressure by the supercooler decompression device is passed through the supercooler and then flowed to the compressor, and the on- off valve is opened to the second indoor heat exchanger serving as an evaporator. Flowing refrigerant that has been supercooled by the supercooler, reheat dehumidification Rolling time, the addition to the over-cooler decompressor fully closed, the closed-off valve, condenser become the first indoor heat exchanger as an evaporator and the second indoor heat exchanger It is characterized by flowing a refrigerant through the vessel.

また、上記のものにおいて、冷房運転時は、前記過冷却器を通った前記液側となる冷媒配管を流れる冷媒の一部を分岐させて前記過冷却バイパス回路を通じて前記圧縮機へ流すと共に、前記開閉弁を開放して、蒸発器となる前記第2の室内熱交換器に前記過冷却器で過冷却された冷媒を流し、前記第2の室内熱交換器に室内空気を送って室内空気を冷却し、
再熱除湿運転時は、前記過冷却器用減圧装置を全閉状態にすると共に、前記開閉弁を閉鎖して、凝縮器となる前記第1の室内熱交換器,蒸発器となる前記第2の室内熱交換器の順に冷媒を流し、前記第2の室内熱交換器,前記第1の室内熱交換器の順に室内空気を送り、前記第2の室内熱交換器により室内空気を冷却除湿して前記第1の室内熱交換器により加熱することが望ましい。
さらに、上記のものにおいて、前記冷媒配管を液配管,低圧ガス配管、及び高圧ガス配管とし、該液配管,低圧ガス配管、及び高圧ガス配管と前記室内機との間に接続配管切替え装置を備え、再熱除湿運転時は、前記高圧ガス配管から前記液配管に高圧ガス冷媒を混入させることが望ましい。
Further, in the above, during cooling operation, a part of the refrigerant flowing through the refrigerant pipe on the liquid side that has passed through the supercooler is branched to flow to the compressor through the supercooling bypass circuit, and The on-off valve is opened, the refrigerant supercooled by the supercooler is caused to flow through the second indoor heat exchanger serving as an evaporator, and the indoor air is sent to the second indoor heat exchanger. Cool,
During the reheat dehumidifying operation, the subcooler decompression device is fully closed, the on-off valve is closed, and the first indoor heat exchanger that serves as a condenser and the second that serves as an evaporator. The refrigerant flows in the order of the indoor heat exchanger, the indoor air is sent in the order of the second indoor heat exchanger and the first indoor heat exchanger, and the indoor air is cooled and dehumidified by the second indoor heat exchanger. It is desirable to heat with the first indoor heat exchanger .
Further, in the above, the refrigerant pipe is a liquid pipe, a low-pressure gas pipe, and a high-pressure gas pipe, and a connection pipe switching device is provided between the liquid pipe, the low-pressure gas pipe, and the high-pressure gas pipe and the indoor unit. In the reheat dehumidification operation, it is desirable to mix a high-pressure gas refrigerant from the high-pressure gas pipe into the liquid pipe .

さらに、上記のものにおいて、前記圧縮機の吐出配管から前記液側となる冷媒配管に接続される吐出ガスバイパス回路と、該吐出ガスバイパス回路を通流する冷媒の流量を制御する吐出ガスバイパス用減圧装置とを備えることが望ましい。 Further, in the above-described configuration, a discharge gas bypass circuit connected from the discharge pipe of the compressor to the refrigerant pipe on the liquid side, and a discharge gas bypass for controlling the flow rate of the refrigerant flowing through the discharge gas bypass circuit It is desirable to provide a decompression device.

また、上記のものにおいて、再熱除湿運転時には、前記圧縮機から吐出された冷媒を前記吐出ガスバイパス用減圧装置によって流量制御し、前記吐出ガスバイパス回路から前記液側となる冷媒配管を流れる冷媒に混入させることが望ましい。
更に、上記のものにおいて、暖房運転時には、前記過冷却器用減圧装置を全閉状態にすると共に、前記開閉弁を開放して、前記圧縮機で圧縮された冷媒をガス側となる冷媒配管から凝縮器となる前記第2の室内熱交換器に流すことが望ましい。
Further, in the above, during the reheat dehumidifying operation, the refrigerant discharged from the compressor is controlled in flow rate by the discharge gas bypass decompression device, and flows through the refrigerant pipe on the liquid side from the discharge gas bypass circuit. It is desirable to mix in.
Further, in the above-described configuration, during the heating operation, the decompressor for the supercooler is fully closed and the on-off valve is opened to condense the refrigerant compressed by the compressor from the refrigerant pipe on the gas side. It is desirable to flow through the second indoor heat exchanger that serves as a heat exchanger.

本発明によれば、室外機と、複数の室内機とを接続した多室型空気調和機において、室外機は、室外熱交換器で冷却された冷媒を更に過冷却するための過冷却器と、液側となる冷媒配管から過冷却器を通過して圧縮機の吸入配管に接続され過冷却器用減圧装置を有する過冷却バイパス回路とを備え、冷房運転時には、過冷却バイパス回路を通じて過冷却器用減圧装置で減圧させた冷媒を過冷却器を通過させた後に圧縮機へ流すように構成したので、冷房運転時は、過冷却器で冷媒を過冷却して室内機へ流すことができるから十分な冷房能力を得られると共に、複数の室内機側への冷媒循環量を低減できるから複数の室内機側を流れる冷媒の圧力損失を減らすことができ、冷房能力をより増加できる。
また、本発明は、室内機が、第1の室内熱交換器、室内減圧装置、第2の室内熱交換器が順次配管接続され、前記第1の室内熱交換器をバイパスして前記室内減圧装置と前記第2の室内熱交換器に冷媒が流れる回路と、該回路を開閉させる開閉弁とを備えているので、再熱除湿運転を行う室内機と冷房運転を行う室内機とが混在した場合においても、冷房運転および再熱除湿運転の性能を落とすこと無く、安定した運転状態を実現することが可能となる。
更に、圧縮機の吐出配管から液側となる冷媒配管に接続される吐出ガスバイパス回路と、吐出ガスバイパス回路を通流する冷媒の流量を制御する吐出ガスバイパス用減圧装置とを備え、再熱除湿運転時には、圧縮機から吐出された冷媒を吐出ガスバイパス用減圧装置によって流量制御し、吐出ガスバイパス回路から液側となる冷媒配管を流れる冷媒に混入させるように構成したものでは、再熱除湿運転時は、エンタルピの大きい高圧気液二相冷媒を室内機に送ることができるので、再熱量を更に大きくすることができる。
According to the present invention, in the multi-room air conditioner in which the outdoor unit and a plurality of indoor units are connected, the outdoor unit includes a supercooler for further supercooling the refrigerant cooled by the outdoor heat exchanger, A supercooling bypass circuit having a pressure reducing device for the supercooler that is connected to the suction pipe of the compressor through the supercooler from the refrigerant pipe on the liquid side, and for the supercooler through the supercooling bypass circuit during cooling operation Since the refrigerant depressurized by the decompression device is configured to flow to the compressor after passing through the supercooler, the refrigerant can be supercooled by the supercooler and flowed to the indoor unit during cooling operation. Therefore, the refrigerant circulation amount to the plurality of indoor units can be reduced, the pressure loss of the refrigerant flowing through the plurality of indoor units can be reduced, and the cooling capacity can be further increased .
Further, according to the present invention, the indoor unit includes a first indoor heat exchanger, an indoor pressure reducing device, and a second indoor heat exchanger that are sequentially connected by piping, bypassing the first indoor heat exchanger, and reducing the indoor pressure. Since the apparatus and the second indoor heat exchanger have a circuit through which the refrigerant flows and an on-off valve that opens and closes the circuit, the indoor unit that performs the reheat dehumidification operation and the indoor unit that performs the cooling operation coexist. Even in this case, it is possible to realize a stable operation state without reducing the performance of the cooling operation and the reheat dehumidifying operation.
Further, the apparatus includes a discharge gas bypass circuit connected to the refrigerant pipe on the liquid side from the discharge pipe of the compressor, and a decompression device for discharge gas bypass that controls the flow rate of the refrigerant flowing through the discharge gas bypass circuit. In the dehumidifying operation, the refrigerant discharged from the compressor is controlled in flow rate by the decompression device for discharge gas bypass, and mixed with the refrigerant flowing through the refrigerant pipe on the liquid side from the discharge gas bypass circuit. During operation, the high-pressure gas-liquid two-phase refrigerant having a large enthalpy can be sent to the indoor unit, so that the amount of reheat can be further increased.

最近の空気調和機は施工性の改善のために、室内機の小型化が強く求められており、限られた設置スペース内で熱交換器をできる限り大型化させる必要がある。そのため熱交換器以外の部品の設置スペースは限られている。このため、電磁弁、膨張弁等の部品点数はなるべく少ないほうが望ましい。   Recent air conditioners are strongly required to reduce the size of indoor units in order to improve workability, and it is necessary to enlarge the heat exchanger as much as possible within a limited installation space. Therefore, the installation space for parts other than the heat exchanger is limited. For this reason, it is desirable that the number of parts such as an electromagnetic valve and an expansion valve is as small as possible.

以下、図を参照して再熱除湿型空気調和機の実施例について説明する。
図1は空気調和機の構成を示す冷凍サイクル構成図であり、13は室外機、7は室内機、14、15は冷媒配管である。室外機13および室内機7は液側接続配管14、ガス側接続配管15によって接続され、冷媒を循環させて冷凍サイクルを構成している。室外機13において、1は圧縮機、2は四方弁、3は室外熱交換器、4は室外減圧装置、16はレシーバ、17は過冷却器であり、順次冷媒配管で接続され、例えばHFC冷媒であるフロンR410Aが封入されて、室外機のメイン冷媒回路を構成している。
Hereinafter, an embodiment of a reheat dehumidification type air conditioner will be described with reference to the drawings.
FIG. 1 is a refrigeration cycle configuration diagram showing the configuration of an air conditioner, in which 13 is an outdoor unit, 7 is an indoor unit, and 14 and 15 are refrigerant pipes. The outdoor unit 13 and the indoor unit 7 are connected by a liquid side connection pipe 14 and a gas side connection pipe 15, and constitute a refrigeration cycle by circulating a refrigerant. In the outdoor unit 13, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is an outdoor decompressor, 16 is a receiver, and 17 is a supercooler, which are sequentially connected by refrigerant piping, for example, HFC refrigerant Chlorofluorocarbon R410A is enclosed to constitute the main refrigerant circuit of the outdoor unit.

四方弁2に通電されないときは、圧縮機1の吐出配管と室外熱交換器3、圧縮機1の吸入配管とガス側接続配管15とが接続されて冷媒が流通し、冷房運転もしくは再熱除湿運転が行われる。また四方弁2に通電されたときは、圧縮機1の吐出配管とガス側接続配管15、圧縮機1の吸入配管と室外熱交換器3とが接続されて冷媒が流通し、暖房運転を行う。
12は室外送風機であり、室外熱交換器3へ室外空気を送風することにより室外熱交換器3での熱交換量を調整している。室外減圧装置4は例えば電子膨張弁として減圧量および冷媒循環量の調整を行っている。
When the four-way valve 2 is not energized, the discharge pipe of the compressor 1 and the outdoor heat exchanger 3, the suction pipe of the compressor 1 and the gas side connection pipe 15 are connected, the refrigerant flows, and the cooling operation or reheat dehumidification is performed. Driving is performed. When the four-way valve 2 is energized, the discharge pipe of the compressor 1 and the gas side connection pipe 15, the suction pipe of the compressor 1 and the outdoor heat exchanger 3 are connected, the refrigerant flows, and the heating operation is performed. .
An outdoor blower 12 adjusts the amount of heat exchange in the outdoor heat exchanger 3 by blowing outdoor air to the outdoor heat exchanger 3. The outdoor decompression device 4 adjusts the decompression amount and the refrigerant circulation amount as an electronic expansion valve, for example.

レシーバ16は余剰冷媒を貯溜することにより、回路内の冷媒量を調整し、過冷却器17と液接続配管14の途中から、過冷却器17を通過し、圧縮機1の吸入配管につながる過冷却バイパス回路19が構成される。そして、過冷却器17の入口側には過冷却器用減圧装置18にて過冷却バイパス回路19の冷媒流量が制御される。また、圧縮機1の吐出配管から過冷却バイパス回路19と液側接続配管14の間へと接続される吐出ガスバイパス回路21が設けられ、吐出ガスバイパス回路減圧装置20により、バイパスガスの冷媒循環量が調整される。   The receiver 16 stores excess refrigerant to adjust the amount of refrigerant in the circuit, and passes through the supercooler 17 from the middle of the subcooler 17 and the liquid connection pipe 14 and is connected to the suction pipe of the compressor 1. A cooling bypass circuit 19 is configured. And the refrigerant | coolant flow rate of the supercooling bypass circuit 19 is controlled by the decompression device 18 for supercoolers at the inlet side of the supercooler 17. Further, a discharge gas bypass circuit 21 connected from the discharge pipe of the compressor 1 to between the supercooling bypass circuit 19 and the liquid side connection pipe 14 is provided, and the refrigerant circulation of the bypass gas is performed by the discharge gas bypass circuit decompression device 20. The amount is adjusted.

室内機7において、8は第1の室内熱交換器、25は逆止弁、22は室内減圧装置、9は第2の室内熱交換器であり、再熱除湿運転時には順次これらを接続した冷媒配管を通して冷媒を流し、再熱除湿運転を行う。室内減圧装置22は例えば、電子膨張弁とし流量および減圧量を調整する。この際、11の室内送風機により送られた室内空気は第2の室内熱交換器9、第1の室内熱交換器8の順に送られて、第2の熱交換器9により空気は冷却・除湿された室内空気は、第1の室内熱交換器8で再熱されて、湿度を下げながら温度の低下が少ない再熱除湿運転を行う。これにより冷房運転時の過度な冷風感による体の冷え過ぎを防ぐと共に、じめじめ感を抑えたさわやかな空気調和を実現することができる。   In the indoor unit 7, 8 is a first indoor heat exchanger, 25 is a check valve, 22 is an indoor pressure reducing device, and 9 is a second indoor heat exchanger, and these are connected in order during the reheat dehumidifying operation. Refrigerant is passed through the pipe and reheat dehumidification operation is performed. The indoor decompression device 22 is an electronic expansion valve, for example, and adjusts the flow rate and the decompression amount. At this time, the indoor air sent by 11 indoor fans is sent in the order of the second indoor heat exchanger 9 and the first indoor heat exchanger 8, and the air is cooled and dehumidified by the second heat exchanger 9. The indoor air thus reheated by the first indoor heat exchanger 8 performs a reheat dehumidifying operation with a low temperature drop while reducing the humidity. As a result, it is possible to prevent the body from being too cold due to an excessive cold wind feeling during the cooling operation, and to realize a refreshing air conditioning with a suppressed feeling of bullying.

また、第1の室内熱交換器8と逆止弁25を迂回するバイパス回路が構成され、23の電磁弁により回路の流通が開閉制御される。電磁弁23を閉止して再熱除湿運転を行い、開放して第1の室内熱交換器8への冷媒流通を無くし、第2の室内熱交換器9のみに冷媒を流通する。そして電磁弁23を開いた状態で、冷房運転、又は暖房運転を行う。23の電磁弁は開放時に圧損の小さいものを用い、電磁弁を通過する圧損により、第1の室内熱交換器8に冷媒が流れ込んでしまい、冷房運転時には再熱され、暖房運転時には再冷却されて、ともに能力低下を招くので、電磁弁23は開放時に圧損の小さいものを用いる。   Further, a bypass circuit that bypasses the first indoor heat exchanger 8 and the check valve 25 is configured, and the flow of the circuit is controlled to be opened and closed by 23 electromagnetic valves. The electromagnetic valve 23 is closed and the reheat dehumidifying operation is performed, and the solenoid valve 23 is opened to eliminate the refrigerant flow to the first indoor heat exchanger 8, and the refrigerant flows only to the second indoor heat exchanger 9. Then, the cooling operation or the heating operation is performed with the electromagnetic valve 23 opened. The solenoid valve 23 has a small pressure loss when opened, and the refrigerant flows into the first indoor heat exchanger 8 due to the pressure loss passing through the solenoid valve. The refrigerant is reheated during the cooling operation and recooled during the heating operation. Since both of them cause a decrease in performance, a solenoid valve having a small pressure loss when opened is used.

冷房運転時には電磁弁23を通過する冷媒はかわき度の小さい気液二相冷媒か、液冷媒であるため、電磁弁23の圧損は比較的小さく、第1の室内熱交換器8に冷媒が流れ込む冷媒循環量はわずかであるが、暖房運転時には室内減圧装置22により減圧されたかわき度の比較的大きな二相冷媒が流れ込む場合があり、その場合の電磁弁23による圧損は冷房運転時に比べて大きくなる。そこで、暖房運転時の能力低下を防止するために、逆止弁25を設置して暖房運転時に第1の室内熱交換器8に流れ込む冷媒を閉止する。   During the cooling operation, the refrigerant passing through the electromagnetic valve 23 is a gas-liquid two-phase refrigerant having a low degree of cuteness or a liquid refrigerant. Therefore, the pressure loss of the electromagnetic valve 23 is relatively small, and the refrigerant flows into the first indoor heat exchanger 8. Although the refrigerant circulation amount is small, two-phase refrigerant having a relatively large degree of pumping may flow during heating operation, and the pressure loss due to the electromagnetic valve 23 in that case is larger than that during cooling operation. Become. Therefore, in order to prevent a decrease in capacity during the heating operation, a check valve 25 is installed to close the refrigerant flowing into the first indoor heat exchanger 8 during the heating operation.

次に図2を参照して室内機内の空気の流れについて説明を行う。図2は天井埋め込みカセット型室内機の室内機横断面図を示し、その他、天井吊り型や天井埋め込みダクトタイプ等の室内機であっても同様である。
室内機は上部および横の面を室内機本体外郭31で覆われており、下部は化粧パネル35で覆われている。内部には室内送風機11およびそれを回転させる室内送風機用電動機30が内蔵されている。室内送風機11の送風作用により、室内空気は矢印のように吸い込み口32から吸い込まれ、室内送風機11の円周方向に吹き出される。室内送風機11の周りには第2の室内熱交換器9、第1の室内熱交換器8の順に熱交換器が配置されている。再熱除湿運転時には第2の室内熱交換器9により空気が冷却・除湿され、次に第1の室内熱交換器8により再熱され、湿度は下がるが、温度はそれほど低下しない、つまり、かわいた空気となり、吹き出し口36から吹き出される。
冷房運転時、および暖房運転時には第2の室内熱交換器9のみに冷媒が流通されるので、冷房運転時には室内空気の冷却・除湿作用、暖房運転時には室内空気の加熱をおこない、吹き出し口36から吹き出す。
Next, the flow of air in the indoor unit will be described with reference to FIG. FIG. 2 is a cross-sectional view of an indoor unit of a ceiling embedded cassette type indoor unit, and the same applies to other indoor units such as a ceiling suspended type and a ceiling embedded duct type.
The indoor unit has an upper and lateral surfaces covered with an indoor unit main body shell 31 and a lower part covered with a decorative panel 35. Inside, an indoor blower 11 and an indoor blower electric motor 30 for rotating the indoor blower 11 are incorporated. Due to the air blowing action of the indoor blower 11, the room air is sucked from the suction port 32 as indicated by the arrow and blown out in the circumferential direction of the indoor blower 11. Around the indoor blower 11, a heat exchanger is arranged in the order of the second indoor heat exchanger 9 and the first indoor heat exchanger 8. During the reheat dehumidifying operation, the air is cooled and dehumidified by the second indoor heat exchanger 9, and then reheated by the first indoor heat exchanger 8, and the humidity is lowered, but the temperature is not lowered so much. Air is blown out from the outlet 36.
During the cooling operation and the heating operation, the refrigerant is circulated only to the second indoor heat exchanger 9, so that the cooling and dehumidifying action of the indoor air is performed during the cooling operation, and the indoor air is heated during the heating operation. Blow out.

次に図1、図2に示した空気調和機の動作を説明する。
冷房運転時、圧縮機1で低温低圧のガス冷媒は圧縮されて高温高圧のガス冷媒となり、四方弁2の通電がオフの状態である。冷媒は室外熱交換器3に導かれ室外送風機12の送風作用により、室外空気により冷却され凝縮し液冷媒となる。さらに、室外減圧装置4は開放され、液冷媒は通過しレシーバ16内に入る。つまり、レシーバ16内には余剰冷媒が貯溜され、冷媒回路内の冷媒量が調整される。
レシーバ16を出た飽和液冷媒は過冷却器17にて過冷却液となり、液側接続配管14を通じて室内機7へと送られる。一方、過冷却器17の出口にて過冷却液は分岐され、過冷却器用減圧装置18にて減圧され、低温低圧の気液二相冷媒となってメイン冷媒回路の冷媒を過冷却する。そして、過冷却器17の出口で分岐されたバイパス冷媒は過冷却器17にて蒸発して過冷却バイパス回路19を通じて圧縮機1に吸入される。過冷却器17に用いられる熱交換器の形態としては、例えば、プレート熱交換器や二重管熱交換器が望ましく、プレート熱交換器を用いた場合には省スペース性および熱交換量の面において優位となる。過冷却器17の過冷却作用により、室内機への冷媒循環量が低減され、低圧部分の圧力損失を減らすことができ、冷房能力は増加される。
Next, the operation of the air conditioner shown in FIGS. 1 and 2 will be described.
During the cooling operation, the low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 to become a high-temperature and high-pressure gas refrigerant, and the energization of the four-way valve 2 is off. The refrigerant is guided to the outdoor heat exchanger 3 and cooled by the outdoor air by the blowing action of the outdoor blower 12 to be condensed into a liquid refrigerant. Furthermore, the outdoor decompression device 4 is opened, and the liquid refrigerant passes through the receiver 16. That is, excess refrigerant is stored in the receiver 16, and the amount of refrigerant in the refrigerant circuit is adjusted.
The saturated liquid refrigerant exiting the receiver 16 becomes a supercooled liquid in the supercooler 17 and is sent to the indoor unit 7 through the liquid side connection pipe 14. On the other hand, the supercooled liquid branches off at the outlet of the supercooler 17 and is decompressed by the decompressor 18 for the supercooler to become a low-temperature and low-pressure gas-liquid two-phase refrigerant to supercool the refrigerant in the main refrigerant circuit. The bypass refrigerant branched at the outlet of the supercooler 17 evaporates in the supercooler 17 and is sucked into the compressor 1 through the supercooling bypass circuit 19. As a form of the heat exchanger used for the subcooler 17, for example, a plate heat exchanger or a double pipe heat exchanger is desirable, and when a plate heat exchanger is used, space saving and heat exchange amount are required. Is an advantage. Due to the supercooling action of the supercooler 17, the amount of refrigerant circulating to the indoor unit is reduced, the pressure loss in the low pressure portion can be reduced, and the cooling capacity is increased.

室内機7では電磁弁23が開放され、室内機7へ送られた冷媒は直接、室内減圧装置22へと流れるが、電磁弁23を通過する際の圧損により、わずかに第1の室内熱交換器8へ冷媒が流れる。このわずかな第1の室内熱交換器8への冷媒流れにより、第1の室内熱交換器8において放熱されるが、この際の冷媒のエンタルピ低下により、第2の室内熱交換器9に入る冷媒のエンタルピが低下するため、第2の室内熱交換器9での能力が増加し、トータルの冷房能力はほとんど低下しない。   In the indoor unit 7, the electromagnetic valve 23 is opened, and the refrigerant sent to the indoor unit 7 flows directly to the indoor pressure reducing device 22, but the first indoor heat exchange is slightly caused by pressure loss when passing through the electromagnetic valve 23. The refrigerant flows to the vessel 8. Due to the slight refrigerant flow to the first indoor heat exchanger 8, heat is radiated in the first indoor heat exchanger 8, but the refrigerant enters the second indoor heat exchanger 9 due to a decrease in refrigerant enthalpy. Since the enthalpy of the refrigerant decreases, the capacity of the second indoor heat exchanger 9 increases, and the total cooling capacity hardly decreases.

第1の室内熱交換器8を通過した少流量の冷媒は逆止弁25を通過して、電磁弁23を通過した冷媒と合流し、室内減圧装置22にて減圧される。ここで、低温低圧の気液二相冷媒となり第2の室内熱交換器9に流入し、室内送風機9による室内空気の送風作用により、室内空気を冷却・除湿して冷房作用を行う。冷媒は蒸発して高かわき度の低圧二相状態もしくは、ガス状態となり、ガス側接続配管15を通じて室外機へと送られる。その後、四方弁2を経て圧縮機1に吸入され、冷媒回路サイクル、冷凍サイクルを形成する。   The small amount of refrigerant that has passed through the first indoor heat exchanger 8 passes through the check valve 25, merges with the refrigerant that has passed through the electromagnetic valve 23, and is decompressed by the indoor decompressor 22. Here, it becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, flows into the second indoor heat exchanger 9, and cools and dehumidifies the room air by the air blowing action of the room air by the room blower 9 to perform the air cooling action. The refrigerant evaporates into a low pressure two-phase state or a gas state with a high degree of cuteness, and is sent to the outdoor unit through the gas side connection pipe 15. Thereafter, the refrigerant is sucked into the compressor 1 through the four-way valve 2 to form a refrigerant circuit cycle and a refrigeration cycle.

第1の室内熱交換器8へのバイパス冷媒の流通による影響を、図3に示した冷房運転時のモリエル線図にて説明を行う。
dで示される点は室内機入口の過冷却液冷媒であり、d’の点は第1の室内熱交換器8の出口冷媒状態を示す。第1の室内熱交換器8へとわずかに流れ込んだ冷媒により、第2の室内熱交換器9を通過し、冷却された空気が再熱され、冷房能力の低下が生じる。この際、冷媒の状態はdからd’へとエンタルピが低下している。そのため、室内減圧装置22の手前で合流した冷媒はeからe’点で示されるようにわずかにエンタルピが低下し、第2の室内熱交換器9に流れ込む冷媒のエンタルピがf’点となる。したがって、dからd’へと放熱を行った冷媒は、第2の室内熱交換器9の入口冷媒状態をfからf’へとエンタルピを減少させるため、第2の室内熱交換器9での能力増加に寄与する。そのため、トータルとしての冷房能力の低下は極僅かである。
The influence of the flow of the bypass refrigerant to the first indoor heat exchanger 8 will be described with reference to the Mollier diagram at the time of cooling operation shown in FIG.
The point indicated by d is the supercooled liquid refrigerant at the indoor unit inlet, and the point d ′ indicates the outlet refrigerant state of the first indoor heat exchanger 8. The refrigerant that has flowed slightly into the first indoor heat exchanger 8 passes through the second indoor heat exchanger 9, and the cooled air is reheated, resulting in a decrease in cooling capacity. At this time, the enthalpy of the state of the refrigerant decreases from d to d ′. Therefore, the enthalpy of the refrigerant joined before the indoor decompression device 22 slightly decreases as indicated by points e to e ′, and the enthalpy of the refrigerant flowing into the second indoor heat exchanger 9 becomes the point f ′. Therefore, the refrigerant that has dissipated heat from d to d ′ reduces the enthalpy of the inlet refrigerant state of the second indoor heat exchanger 9 from f to f ′, so that the refrigerant in the second indoor heat exchanger 9 Contributes to increased capacity. Therefore, the decrease in the cooling capacity as a whole is negligible.

次に暖房運転時の動作を説明する。
暖房運転時には四方弁2が通電ONとなり、圧縮機1にて圧縮された高温高圧のガス冷媒は四方弁2を通過して、ガス側接続配管15を介して室内機7へ導かれる。室内機では第2の室内熱交換器9にて室内空気と熱交換し、室内空気を加熱して暖房作用を行う。冷媒は凝縮して液冷媒となり、室内減圧装置22で若干減圧され、中間圧力の気液二相冷媒もしくは液冷媒となる。電磁弁23は開放され、冷媒は電磁弁23を通過する。そして、逆止弁25が無いときには、電磁弁23の圧損に応じて第1の室内熱交換器8に冷媒が流れ込むため、第2の室内熱交換器9により暖められた空気を再冷却し、暖房能力の損失が発生する。しかし、逆止弁25を設置することにより、第1の室内熱交換器8への冷媒の流れを防いで暖房能力の損失を防止できる。
Next, operation during heating operation will be described.
During heating operation, the four-way valve 2 is energized ON, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 passes through the four-way valve 2 and is guided to the indoor unit 7 through the gas side connection pipe 15. In the indoor unit, the second indoor heat exchanger 9 exchanges heat with room air, and heats the room air to perform a heating operation. The refrigerant condenses into a liquid refrigerant, and is slightly depressurized by the indoor decompression device 22 to become an intermediate-pressure gas-liquid two-phase refrigerant or liquid refrigerant. The electromagnetic valve 23 is opened, and the refrigerant passes through the electromagnetic valve 23. And when there is no check valve 25, since the refrigerant flows into the first indoor heat exchanger 8 according to the pressure loss of the electromagnetic valve 23, the air warmed by the second indoor heat exchanger 9 is re-cooled, Loss of heating capacity occurs. However, by installing the check valve 25, it is possible to prevent the flow of the refrigerant to the first indoor heat exchanger 8 and to prevent the heating capacity from being lost.

電磁弁23を通過した気液二相冷媒は液側接続配管14を通じて、室外機13へと送られ、過冷却器17を通過する。過冷却バイパス用減圧装置18は閉止され、過冷却作用は行われことなくレシーバ16に送られる。レシーバ16では余剰冷媒が貯溜され、冷媒回路内の冷媒量が調整される。レシーバ16を出た液冷媒は室外減圧装置4で減圧され、低圧二相冷媒となり、室外熱交換器12にて室外空気と熱交換し、低圧ガス冷媒となり、四方弁2を通過して圧縮機1へ再び吸入される。   The gas-liquid two-phase refrigerant that has passed through the electromagnetic valve 23 is sent to the outdoor unit 13 through the liquid side connection pipe 14 and passes through the supercooler 17. The supercooling bypass decompression device 18 is closed, and the supercooling bypass pressure reducing device 18 is sent to the receiver 16 without being supercooled. In the receiver 16, surplus refrigerant is stored, and the amount of refrigerant in the refrigerant circuit is adjusted. The liquid refrigerant exiting the receiver 16 is depressurized by the outdoor decompression device 4 to become a low-pressure two-phase refrigerant, exchanges heat with outdoor air in the outdoor heat exchanger 12, becomes a low-pressure gas refrigerant, passes through the four-way valve 2, and is compressed by the compressor. 1 is inhaled again.

逆止弁25による第1の室内熱交換器8への冷媒流れの閉止効果について、図4の暖房運転時のモリエル線図により説明を行う。
eで示された点は室内減圧装置22の出口冷媒であり、この後、冷媒は電磁弁23を通過するが、この際発生する圧力損失は、第1の室内熱交換器8への冷媒の駆動圧力として作用する。逆止弁25が無い場合には、第1の室内熱交換器8にバイパス冷媒流が発生し、第2の室内熱交換器9で加熱された室内空気は第1の室内熱交換器8で冷却される。バイパス冷媒のエンタルピは点線に示されるようにeからe’まで増加する。したがって、バイパス冷媒流による冷却作用により、合計の暖房能力は低下する。これに対して、逆止弁25を配置した場合、実線で示されるように第1の室内熱交換器8での冷却が防止でき、暖房能力低下を防止できる。
また、図6に示したように、図1の逆止弁25の代わりにキャピラリやオリフィス等の流路抵抗体50を設置しても良い。この場合には、安価な構成で暖房能力の低下防止を図ることができる。さらに、図7に示したように、図1の逆止弁25の代わりに電磁弁51を設置しても良い。この場合には、暖房のみならず冷房運転時においても完全に冷媒の流通を閉止でき、能力低下を図ることができる。
The effect of closing the refrigerant flow to the first indoor heat exchanger 8 by the check valve 25 will be described with reference to the Mollier diagram in the heating operation of FIG.
The point indicated by e is the outlet refrigerant of the indoor decompression device 22, and thereafter, the refrigerant passes through the electromagnetic valve 23, and the pressure loss generated at this time is the refrigerant flow to the first indoor heat exchanger 8. Acts as a driving pressure. When the check valve 25 is not provided, a bypass refrigerant flow is generated in the first indoor heat exchanger 8, and the indoor air heated by the second indoor heat exchanger 9 is generated by the first indoor heat exchanger 8. To be cooled. The enthalpy of the bypass refrigerant increases from e to e ′ as shown by the dotted line. Therefore, the total heating capacity decreases due to the cooling action by the bypass refrigerant flow. On the other hand, when the check valve 25 is arranged, as shown by the solid line, cooling in the first indoor heat exchanger 8 can be prevented, and a reduction in heating capacity can be prevented.
Further, as shown in FIG. 6, a flow path resistor 50 such as a capillary or an orifice may be installed instead of the check valve 25 of FIG. In this case, it is possible to prevent the heating capacity from being lowered with an inexpensive configuration. Further, as shown in FIG. 7, an electromagnetic valve 51 may be installed instead of the check valve 25 of FIG. In this case, the circulation of the refrigerant can be completely closed not only in the heating but also in the cooling operation, and the capacity can be reduced.

次に再熱除湿運転時の動作を説明する。
再熱除湿運転時は冷房運転時と同様に四方弁2は通電がOFFにされ、圧縮機1の吐出ガス冷媒は室外熱交換器3にて室外空気で冷却、凝縮して高圧液冷媒となる。再熱除湿運転時には、室外送風機12の回転数を冷房運転時よりも低速回転とし、室外熱交換器3での熱交換量を抑えて凝縮圧力を高めに設定する。これにより、再熱器入口の冷媒温度を高めて再熱量の確保を行うことができる。
Next, the operation during the reheat dehumidifying operation will be described.
In the reheat dehumidifying operation, the energization of the four-way valve 2 is turned off as in the cooling operation, and the discharged gas refrigerant of the compressor 1 is cooled and condensed with outdoor air in the outdoor heat exchanger 3 to become high-pressure liquid refrigerant. . During the reheat dehumidifying operation, the rotational speed of the outdoor blower 12 is set to be lower than that during the cooling operation, and the heat exchange amount in the outdoor heat exchanger 3 is suppressed and the condensation pressure is set high. Thereby, the refrigerant | coolant temperature of a reheater entrance can be raised and the amount of reheat can be ensured.

室外熱交換器3を出た液冷媒は、全開状態の室外減圧装置4をそのまま通過して、レシーバ16に貯溜される。レシーバ16は冷媒回路内の余剰冷媒を貯溜することで、冷媒量調整を行う。レシーバ16を出た飽和液冷媒は過冷却器17を通過するが、過冷却器用減圧装置18は全閉状態とされ、過冷却作用は行われない。その後、圧縮機1の吐出配管から接続された吐出ガスバイパス回路21を通して、過熱ガス冷媒が吐出ガスバイパス用減圧装置によって流量制御され、液側接続配管14の手前に混入される。そのため、液側接続配管14を通して室内機7に高圧気液二相冷媒が送られる。   The liquid refrigerant that has exited the outdoor heat exchanger 3 passes through the fully-opened outdoor decompression device 4 as it is, and is stored in the receiver 16. The receiver 16 adjusts the amount of refrigerant by storing excess refrigerant in the refrigerant circuit. The saturated liquid refrigerant exiting the receiver 16 passes through the supercooler 17, but the subcooler decompression device 18 is fully closed, and no supercooling action is performed. Thereafter, the flow rate of the superheated gas refrigerant is controlled by the discharge gas bypass decompression device through the discharge gas bypass circuit 21 connected from the discharge pipe of the compressor 1 and mixed before the liquid side connection pipe 14. Therefore, the high-pressure gas-liquid two-phase refrigerant is sent to the indoor unit 7 through the liquid side connection pipe 14.

室内機7では電磁弁23が閉止され、第1の室内熱交換器8に高圧気液二相冷媒が送られ、第1の室内熱交換器8にて冷却・除湿された室内空気を加熱し、冷媒は凝縮して過冷却液冷媒となる。この液冷媒は逆止弁25を通過し、室内減圧装置22により減圧されて、低温低圧の気液二相冷媒となり、第2の室内熱交換器9に流入して、室内空気と熱交換がなされて室内空気を冷却・除湿する。冷媒は蒸発し、ガス冷媒もしくはかわき度の大きい気液二相冷媒となり、ガス側接続配管15を介して、室外機13に送られ、四方弁2から圧縮機1へと戻り、一連の冷凍サイクルを形成する。   In the indoor unit 7, the electromagnetic valve 23 is closed, the high-pressure gas-liquid two-phase refrigerant is sent to the first indoor heat exchanger 8, and the indoor air cooled and dehumidified by the first indoor heat exchanger 8 is heated. The refrigerant condenses into a supercooled liquid refrigerant. This liquid refrigerant passes through the check valve 25 and is decompressed by the indoor decompression device 22 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the second indoor heat exchanger 9 to exchange heat with room air. The indoor air is cooled and dehumidified. The refrigerant evaporates to become a gas refrigerant or a gas-liquid two-phase refrigerant having a high degree of cuteness, and is sent to the outdoor unit 13 through the gas side connection pipe 15 and returns from the four-way valve 2 to the compressor 1, and a series of refrigeration cycles Form.

吐出ガスバイパス回路19を通した、ガス冷媒の液側接続配管14への混入の効果について、図5の再熱除湿運転時のモリエル線図により説明を行う。
実線は吐出ガスバイパスが無い場合の再熱除湿運転時の冷凍サイクルを示している。圧縮機1でa点の低圧低温ガス冷媒が圧縮され、b点の高圧高温ガス冷媒となる。その後、室外熱交換器3において凝縮されたc点の液冷媒は室内機7に送られd点となる。第1の室内熱交換器8にて冷却され過冷却液e点となり、室内減圧装置22で減圧され、fの低圧低温冷媒は第2の室内熱交換器9にて加熱され、a点の低圧ガス冷媒となって圧縮機1に吸入される。
The effect of mixing the gas refrigerant into the liquid side connection pipe 14 through the discharge gas bypass circuit 19 will be described with reference to the Mollier diagram in the reheat dehumidifying operation of FIG.
The solid line shows the refrigeration cycle during the reheat dehumidification operation when there is no discharge gas bypass. The low-pressure low-temperature gas refrigerant at point a is compressed by the compressor 1 to become high-pressure high-temperature gas refrigerant at point b. Thereafter, the liquid refrigerant at point c condensed in the outdoor heat exchanger 3 is sent to the indoor unit 7 and becomes point d. It is cooled by the first indoor heat exchanger 8 to become the supercooled liquid e point, depressurized by the indoor pressure reducing device 22, and the low-pressure low-temperature refrigerant of f is heated by the second indoor heat exchanger 9, and the low-pressure of the point a It becomes a gas refrigerant and is sucked into the compressor 1.

これに対して、吐出ガスバイパスを行った場合の冷凍サイクルは点線で示されるように、室外熱交換器3で凝縮されたc点の液冷媒にb点の圧縮機1の吐出ガスが混入されるため、c’点のようにかわき度が0.1から0.5程度の高圧気液二相状態となって室内機7へと送られd’点となる。この際のかわき度の調整はガスバイパス用減圧装置20の開度により制御が行われ、所要の再熱量を得るためのかわき度に設定される。これにより液冷媒を送る場合に比べてエンタルピの大きい冷媒が室内機へと送られるため、第1の室内熱交換器8でのエンタルピ差がd’からe’となり、ガスバイパスを行わない時の第1の室内熱交換器8でのエンタルピ差がdからeであるのに比べて、大きくなり再熱量が増加する。
上記のように室内機に高圧二相冷媒を供給した場合においても、再熱器として作用する第1の室内熱交換器8の入口側には減圧装置が配置されていないため、高圧のままで再熱器へと供給することが可能となり、再熱器入口の冷媒温度の低下を防止して、再熱量を大きくすることができる。
On the other hand, in the refrigeration cycle when the discharge gas bypass is performed, the discharge gas of the b-point compressor 1 is mixed into the liquid refrigerant at the point c condensed in the outdoor heat exchanger 3, as indicated by the dotted line. For this reason, as shown at point c ′, a high-pressure gas-liquid two-phase state with a degree of clearance of about 0.1 to 0.5 is sent to the indoor unit 7 and becomes point d ′. In this case, the degree of clearance is controlled by the opening degree of the gas bypass decompression device 20, and is set to the degree of clearance for obtaining a required amount of reheat. As a result, a refrigerant having a large enthalpy compared to the case of sending the liquid refrigerant is sent to the indoor unit. Therefore, the enthalpy difference in the first indoor heat exchanger 8 changes from d ′ to e ′, and the gas bypass is not performed. The enthalpy difference in the first indoor heat exchanger 8 is larger than that from d to e, and the amount of reheat increases.
Even when the high-pressure two-phase refrigerant is supplied to the indoor unit as described above, since the pressure reducing device is not arranged on the inlet side of the first indoor heat exchanger 8 acting as a reheater, the pressure remains high. It becomes possible to supply to the reheater, and it is possible to prevent the refrigerant temperature at the inlet of the reheater from decreasing and increase the amount of reheat.

次に複数の室内機が設置されている空気調和機で、再熱除湿運転と冷房運転を混在運転した時の動作を説明する。
再熱除湿と冷房を混在した運転状態においては、過冷却バイパス用減圧装置18、吐出ガスバイパス用減圧装置20を全閉として運転を行う。室外機のその他の運転状態としては再熱除湿運転のみを行った場合と同様である。
室外機13から室内機7へ液側接続配管14を通して飽和液冷媒が送られ、図1中の室内機7aの運転状態が再熱除湿モード、室内機7bの運転状態が冷房モードのときには、室内機7a内に設置された電磁弁23aは閉止状態、室内機7b内の電磁弁23bは開放状態に制御される。これにより、室内機7aでは、第1の室内熱交換器8aにおいて再熱され、第2の室内熱交換器9aにおいて冷却・除湿されることとなり、再熱除湿運転が行われる。図5の再熱除湿運転のモリエル線図で実線にて示される状態がこの時の運転状態を示している。
室内機7bにおいては電磁弁23bが開放され、室内減圧装置22b、第2の室内熱交換器9bに大部分の冷媒が流れて、冷却・除湿作用を行い、第1の室内熱交換器8bにはほとんど冷媒が流れず、通常の冷房運転を行う。これにより、各室内機の運転モードを再熱除湿および冷房のいずれに設定した場合においても、それぞれ任意の運転を行うことができる。
Next, the operation when the reheat dehumidifying operation and the cooling operation are mixedly operated in an air conditioner in which a plurality of indoor units are installed will be described.
In an operation state in which reheat dehumidification and cooling are mixed, the supercooling bypass decompression device 18 and the discharge gas bypass decompression device 20 are fully closed. Other operating states of the outdoor unit are the same as when only the reheat dehumidifying operation is performed.
When the saturated liquid refrigerant is sent from the outdoor unit 13 to the indoor unit 7 through the liquid side connection pipe 14, the operation state of the indoor unit 7a in FIG. 1 is the reheat dehumidification mode, and the operation state of the indoor unit 7b is the cooling mode, The electromagnetic valve 23a installed in the unit 7a is controlled to be closed, and the electromagnetic valve 23b in the indoor unit 7b is controlled to be opened. Thereby, in the indoor unit 7a, it reheats in the 1st indoor heat exchanger 8a, and is cooled and dehumidified in the 2nd indoor heat exchanger 9a, and a reheat dehumidification operation is performed. The state indicated by the solid line in the Mollier diagram of the reheat dehumidification operation in FIG. 5 indicates the operation state at this time.
In the indoor unit 7b, the electromagnetic valve 23b is opened, and most of the refrigerant flows through the indoor decompression device 22b and the second indoor heat exchanger 9b to perform cooling and dehumidifying action, and to the first indoor heat exchanger 8b. Almost no refrigerant flows and performs normal cooling operation. Thus, any operation can be performed regardless of whether the operation mode of each indoor unit is set to reheat dehumidification or cooling.

以上説明した空気調和機は、電磁弁等の部品の追加を最小限に抑えたシンプルな室内機となり、冷房、暖房、再熱除湿の運転モードを切替え運転が可能となる。また、室内機内へ室内減圧装置22を備えることにより、冷房運転、暖房運転、および再熱除湿運転時における、室内機ごとの容量制御を行うことができる。そして、複数台接続された室内機の運転モードを冷房または再熱除湿のどちらでも任意に選択運転が可能となり、必要な冷房能力、再熱除湿能力を発生させることが可能となる。   The air conditioner described above is a simple indoor unit in which the addition of components such as a solenoid valve is minimized, and can be switched between the cooling, heating, and reheat dehumidifying operation modes. Moreover, by providing the indoor decompression device 22 in the indoor unit, capacity control for each indoor unit can be performed during the cooling operation, the heating operation, and the reheat dehumidifying operation. Further, the operation mode of the indoor units connected to each other can be arbitrarily selected by either cooling or reheat dehumidification, and the necessary cooling capacity and reheat dehumidification capacity can be generated.

さらに、冷房運転と再熱除湿運転を混在した場合には、冷房能力が低下するが、室内減圧装置22により再熱除湿運転を行っている室内機よりも冷房運転を行っている室内機の方へ供給する冷媒循環量を多く制御することで、冷房運転と再熱除湿運転とを混在して運転した場合においても、冷房運転する室内機の冷房能力を低下することを防止することができる。   Furthermore, when the cooling operation and the reheat dehumidifying operation are mixed, the cooling capacity is reduced, but the indoor unit that is performing the cooling operation rather than the indoor unit that is performing the reheat dehumidifying operation by the indoor decompression device 22 By controlling a large amount of refrigerant circulation to be supplied to the refrigerant, it is possible to prevent the cooling capacity of the indoor unit performing the cooling operation from being lowered even when the cooling operation and the reheat dehumidifying operation are mixed.

さらに、再熱除湿運転を行う室内機の再熱量を多くするときにおいては、室内機に送る冷媒に圧縮機吐出ガスをバイパスさせて気液二相冷媒とする必要があり、この際にはさらに冷房運転を行う室内機の冷房能力が低下しやすくなる。しかし、室内減圧装置22の開度調整により、冷房運転を行っている室内機への冷媒量を多くすることで所要の冷房能力を発生することが可能となる。   Furthermore, when increasing the amount of reheat of the indoor unit that performs the reheat dehumidifying operation, it is necessary to bypass the compressor discharge gas to the refrigerant to be sent to the indoor unit to form a gas-liquid two-phase refrigerant. The cooling capacity of the indoor unit that performs the cooling operation tends to decrease. However, the required cooling capacity can be generated by increasing the amount of refrigerant to the indoor unit performing the cooling operation by adjusting the opening degree of the indoor decompression device 22.

さらに、再熱除湿運転時において、室外機より供給される気液二相冷媒または液冷媒は、室内膨張弁を通過せずに第1の室内熱交換器に直接導かれるため、室内減圧装置による圧力損失を防止でき、再熱器での冷媒圧力を高くすることが可能となる。そのため再熱能力を高くすることが可能となる。
さらに、再熱器で熱交換する際の空気と冷媒の温度変化としては、再熱器出口空気温度が24℃程度に対して冷媒入口温度が40℃程度となり、2者の温度差が大きいことから再熱熱交換器の面積は比較的小さくてもよい。つまり、冷房運転時に蒸発器、暖房運転時に凝縮器として作用する第2の室内熱交換器は能力の向上のため熱交換器面積は大きいほど良く、図2に示されるように第1の室内熱交換器8は1列とし、第2の室内熱交換器9は2列とすることが望ましい。
Further, during the reheat dehumidifying operation, the gas-liquid two-phase refrigerant or liquid refrigerant supplied from the outdoor unit is directly led to the first indoor heat exchanger without passing through the indoor expansion valve, and therefore, by the indoor pressure reducing device Pressure loss can be prevented and the refrigerant pressure in the reheater can be increased. Therefore, it is possible to increase the reheating capability.
Furthermore, the temperature change between the air and the refrigerant when heat is exchanged by the reheater is such that the refrigerant inlet temperature is about 40 ° C. with respect to the reheater outlet air temperature of about 24 ° C., and the temperature difference between the two is large. Therefore, the area of the reheat heat exchanger may be relatively small. In other words, the second indoor heat exchanger that acts as an evaporator during cooling operation and a condenser during heating operation is better as the heat exchanger area is larger in order to improve the capacity. As shown in FIG. It is desirable that the exchanger 8 has one row and the second indoor heat exchanger 9 has two rows.

図8は空気調和機の構成を示す冷凍サイクル構成図であり、図において、13は室外機、7は室内機、14、15は冷媒配管で、室外機13および室内機7は液側接続配管14、ガス側接続配管15によって接続され、冷媒を循環させて冷凍サイクルを構成している。室外機13の構成および動作については実施例1に示した空気調和機の室外機と同一である。   FIG. 8 is a refrigeration cycle configuration diagram showing the configuration of the air conditioner. In the figure, 13 is an outdoor unit, 7 is an indoor unit, 14 and 15 are refrigerant pipes, and the outdoor unit 13 and the indoor unit 7 are liquid side connection pipes. 14 is connected by a gas side connection pipe 15 to constitute a refrigeration cycle by circulating a refrigerant. About the structure and operation | movement of the outdoor unit 13, it is the same as the outdoor unit of the air conditioner shown in Example 1. FIG.

室内機7において、22は室内減圧装置、8は第1の室内熱交換器、10は除湿用減圧装置、9は第2の室内熱交換器であり、再熱除湿運転時には順次これらを接続した冷媒配管を通して冷媒を流し、再熱除湿運転を行う。室内減圧装置22および除湿用減圧装置10は例えば、電子膨張弁とし、冷媒の流量および減圧量を調整する。
室内送風機11により送られた室内空気は第2の室内熱交換器9、第2の室内熱交換器8の順に送られるため、再熱除湿運転時においては、蒸発器として作用する第2の室内熱交換器9により冷却・除湿され、凝縮器として作用する第1の室内熱交換器8により再熱されて、湿度を下げながら温度の低下を小さくした再熱除湿運転を行う。
In the indoor unit 7, 22 is an indoor pressure reducing device, 8 is a first indoor heat exchanger, 10 is a dehumidifying pressure reducing device, and 9 is a second indoor heat exchanger, which are connected in sequence during the reheat dehumidifying operation. Refrigerant flows through the refrigerant piping and reheat dehumidification operation. The indoor decompression device 22 and the dehumidification decompression device 10 are, for example, electronic expansion valves, and adjust the flow rate and decompression amount of the refrigerant.
Since the indoor air sent by the indoor blower 11 is sent in the order of the second indoor heat exchanger 9 and the second indoor heat exchanger 8, the second indoor that acts as an evaporator during the reheat dehumidifying operation. It is cooled and dehumidified by the heat exchanger 9 and reheated by the first indoor heat exchanger 8 acting as a condenser to perform a reheat dehumidifying operation in which the temperature drop is reduced while the humidity is lowered.

第1の室内熱交換器8と除湿用減圧装置10を迂回するバイパス回路と、除湿用減圧装置10と第2の室内熱交換器9とを迂回するバイパス回路とが構成され、それぞれ第1の電磁弁23、第2の電磁弁24により回路の流通が開閉制御される。これらの回路を閉止した場合には、第1の室内熱交換器8、除湿用減圧装置10、第2の室内熱交換器9の順に冷媒が流通して再熱除湿運転を行うが、回路を開放した場合には、第1の室内熱交換器8と第2の室内熱交換器9が並列に接続され、冷媒が流通され、冷房運転もしくは暖房運転を行う。   A bypass circuit that bypasses the first indoor heat exchanger 8 and the dehumidification decompression device 10 and a bypass circuit that bypasses the dehumidification decompression device 10 and the second indoor heat exchanger 9 are configured. The flow of the circuit is controlled to open and close by the electromagnetic valve 23 and the second electromagnetic valve 24. When these circuits are closed, the refrigerant flows in the order of the first indoor heat exchanger 8, the dehumidifying decompressor 10, and the second indoor heat exchanger 9, and the reheat dehumidifying operation is performed. When opened, the first indoor heat exchanger 8 and the second indoor heat exchanger 9 are connected in parallel, the refrigerant is circulated, and the cooling operation or the heating operation is performed.

第2の電磁弁24は冷房運転時の蒸発器の出口側に配置されているため、開放時の流通圧損の少ないものが望ましい。つまり、圧損により蒸発器の冷媒循環量と熱交換量が低下して、冷房能力が低下するためである。
以上により、冷房運転時には蒸発器として作用する複数の室内熱交換器を並列に接続されるので、蒸発器の圧力損失が低減されて冷房能力を大きく確保できる。また、室内機7には室内減圧装置22が備えられているため、複数台の室内機7a、7bが設置されていても、冷房運転および暖房運転時において、室内機毎に木目細かく、容量制御を行うことができる。さらに、第1の室内熱交換器8を冷房運転時には蒸発器、暖房運転時には凝縮器として使用することができるため、図1で説明したものに対してそれぞれ冷房能力、暖房能力を増加させることが可能となる。
Since the second electromagnetic valve 24 is disposed on the outlet side of the evaporator during cooling operation, it is desirable that the second electromagnetic valve 24 has a low flow pressure loss when opened. That is, the refrigerant circulation amount and the heat exchange amount of the evaporator are reduced due to the pressure loss, and the cooling capacity is reduced.
As described above, since a plurality of indoor heat exchangers acting as an evaporator are connected in parallel during cooling operation, the pressure loss of the evaporator is reduced and a large cooling capacity can be secured. In addition, since the indoor unit 7 is provided with the indoor decompression device 22, even if a plurality of indoor units 7a and 7b are installed, the capacity control is finely performed for each indoor unit during the cooling operation and the heating operation. It can be performed. Furthermore, since the first indoor heat exchanger 8 can be used as an evaporator during cooling operation and as a condenser during heating operation, the cooling capacity and heating capacity can be increased as compared with those described in FIG. It becomes possible.

図9は、冷暖同時運転システムに再熱除湿可能な室内機を適用した際の空気調和機の冷凍サイクル構成例を示したものであり、室外機13と室内機7とを接続する接続配管が液側接続配管14、高圧ガス側接続配管27、低圧ガス側接続配管28の3本設置されている。そして、3本の接続配管と室内機7との間に接続配管切替え装置40が設置されている。また、このシステムに再熱除湿型の室内機7を設置することにより、多室型空気調和機の各々の室内機において、冷房、暖房、再熱除湿の運転を任意に組み合わせた運転が可能となる。   FIG. 9 shows a configuration example of a refrigeration cycle of an air conditioner when an indoor unit that can be reheated and dehumidified is applied to a cooling and heating simultaneous operation system. A connection pipe that connects the outdoor unit 13 and the indoor unit 7 is shown in FIG. Three liquid side connection pipes 14, a high pressure gas side connection pipe 27, and a low pressure gas side connection pipe 28 are installed. A connection pipe switching device 40 is installed between the three connection pipes and the indoor unit 7. Further, by installing the reheat dehumidification type indoor unit 7 in this system, each indoor unit of the multi-room type air conditioner can be operated in any combination of cooling, heating, and reheat dehumidification operations. Become.

室外機13は、圧縮機1、四方弁2a、2b、逆止弁26、室外熱交換器3a、3b、室外減圧装置4a、4b、レシーバ16、過冷却器17およびこれらを接続する接続配管からなるメイン冷媒回路として構成されている。また、過冷却器17と室内機7とをつなぐ液側接続配管14との間には過冷却バイパス回路19が接続され、過冷却バイパス用減圧装置18、過冷却器17の順でつながれ、圧縮機1の吸入側に接続されている。さらに、四方弁2aには高圧ガス側接続配管27が接続され、圧縮機吸入側には低圧ガス側接続配管28が接続されている。室内機7は、実施例1と同様である。
14、27、28の接続配管と室内機7との間には接続配管切替え回路40が設置され、低圧ガス管電磁弁41、高圧ガス管電磁弁42、液管電磁弁43が設置されている。低圧ガス管電磁弁41、高圧ガス管電磁弁42は、それぞれ低圧ガス側接続配管28と室内機7のガス配管、および高圧ガス側接続配管27と室内機7のガス配管への切替え回路に設けられ、液管電磁弁43は高圧ガス側接続配管27から室内機7液配管へのバイパス回路に設けられている。
The outdoor unit 13 is composed of the compressor 1, the four-way valves 2a and 2b, the check valve 26, the outdoor heat exchangers 3a and 3b, the outdoor pressure reducing devices 4a and 4b, the receiver 16, the supercooler 17, and the connection pipes connecting these. It is comprised as a main refrigerant circuit. In addition, a supercooling bypass circuit 19 is connected between the supercooler 17 and the liquid side connection pipe 14 that connects the indoor unit 7, and the supercooling bypass pressure reducing device 18 and the supercooler 17 are connected in this order and compressed. It is connected to the suction side of the machine 1. Further, a high pressure gas side connection pipe 27 is connected to the four-way valve 2a, and a low pressure gas side connection pipe 28 is connected to the compressor suction side. The indoor unit 7 is the same as that in the first embodiment.
A connection pipe switching circuit 40 is installed between the connection pipes 14, 27, and 28 and the indoor unit 7, and a low-pressure gas pipe solenoid valve 41, a high-pressure gas pipe solenoid valve 42, and a liquid pipe solenoid valve 43 are installed. . The low pressure gas pipe solenoid valve 41 and the high pressure gas pipe solenoid valve 42 are provided in a switching circuit to the low pressure gas side connection pipe 28 and the gas pipe of the indoor unit 7, and the high pressure gas side connection pipe 27 and the gas pipe of the indoor unit 7, respectively. The liquid pipe solenoid valve 43 is provided in a bypass circuit from the high-pressure gas side connection pipe 27 to the indoor unit 7 liquid pipe.

全室内機が冷房運転を行う場合、四方弁2aは圧縮機1の吐出側と室外熱交換器3a、および圧縮機1の吸入側と高圧ガス側接続配管27とを接続するように切り替えられる。四方弁2bは圧縮機1吐出側と室外熱交換器3b、および圧縮機1の吸入側と逆止弁26とを接続するように切り替えられ、2つの室外熱交換器3a、3bが共に凝縮器として作用する。また、高圧ガス側接続配管27、低圧ガス側接続配管28が圧縮機の吸入側に接続されて、共に低圧ガス接続配管として使用される。   When all the indoor units perform the cooling operation, the four-way valve 2a is switched so as to connect the discharge side of the compressor 1 and the outdoor heat exchanger 3a, and the suction side of the compressor 1 and the high-pressure gas side connection pipe 27. The four-way valve 2b is switched so as to connect the discharge side of the compressor 1 and the outdoor heat exchanger 3b, and the suction side of the compressor 1 and the check valve 26, and the two outdoor heat exchangers 3a and 3b are both condensers. Acts as Further, the high pressure gas side connection pipe 27 and the low pressure gas side connection pipe 28 are connected to the suction side of the compressor, and both are used as the low pressure gas connection pipe.

接続配管切替え装置40では低圧ガス管電磁弁41、高圧ガス管電磁弁42が開放され、液管電磁弁43が閉止される。これにより、27、28の2本のガス側接続配管に室内機のガス側配管が接続された状態で、実施例1と同様の冷房運転が行われる。この際、室内機7内の電磁弁23は開放状態とし、第2の室内熱交換器9のみに冷媒を流通させ、冷房作用を行う。   In the connection pipe switching device 40, the low pressure gas pipe solenoid valve 41 and the high pressure gas pipe solenoid valve 42 are opened, and the liquid pipe solenoid valve 43 is closed. Thereby, the cooling operation similar to Example 1 is performed in a state where the gas side pipes of the indoor units are connected to the two gas side connection pipes 27 and 28. At this time, the electromagnetic valve 23 in the indoor unit 7 is opened, and the refrigerant is allowed to flow only through the second indoor heat exchanger 9 to perform a cooling operation.

全室内機が暖房運転を行う場合、四方弁2aは圧縮機1の吐出側と高圧ガス側接続配管27および、圧縮機1の吸入側と室外熱交換器3aとを接続するように切り替えられる。四方弁2bは圧縮機1の吐出側と逆止弁26および、圧縮機1の吸入側と室外熱交換器3bとを接続するように切り替えられる。これにより、室外熱交換器3a、3bともに蒸発器として作用する。
また、高圧ガス側接続配管27は高圧ガスの流通に使用され、低圧ガス側接続配管28は低圧に引かれた状態として使用され、接続配管切替え装置40では低圧ガス管電磁弁41が閉止され、高圧ガス管電磁弁42が開放され、液管電磁弁43が閉止される。これにより、高圧ガス側接続配管27および液側接続配管14が室内機に接続され、実施例1と同様の暖房運転が行われる。この際、室内機7内の電磁弁23は開放状態とし、第2の室内熱交換器9のみに冷媒を流通させ、暖房作用を行う。
When all the indoor units perform the heating operation, the four-way valve 2a is switched so as to connect the discharge side of the compressor 1 and the high-pressure gas side connection pipe 27, and the suction side of the compressor 1 and the outdoor heat exchanger 3a. The four-way valve 2b is switched to connect the discharge side of the compressor 1 and the check valve 26, and the suction side of the compressor 1 and the outdoor heat exchanger 3b. Thereby, both the outdoor heat exchangers 3a and 3b act as an evaporator.
Further, the high pressure gas side connection pipe 27 is used for the circulation of the high pressure gas, the low pressure gas side connection pipe 28 is used in a state pulled to a low pressure, and the low pressure gas pipe solenoid valve 41 is closed in the connection pipe switching device 40. The high pressure gas pipe solenoid valve 42 is opened, and the liquid pipe solenoid valve 43 is closed. Thereby, the high pressure gas side connection pipe 27 and the liquid side connection pipe 14 are connected to the indoor unit, and the heating operation similar to that in the first embodiment is performed. At this time, the electromagnetic valve 23 in the indoor unit 7 is opened and the refrigerant is circulated only to the second indoor heat exchanger 9 to perform a heating operation.

次に冷房と暖房を混在運転する場合、四方弁2aは圧縮機1の吐出側と高圧ガス側接続配管27および、圧縮機1の吸入側と室外熱交換器3aとを接続するように切り替えられ、四方弁2bは圧縮機1の吐出側と室外熱交換器3bおよび、圧縮機1の吸入側と逆止弁26とを接続するように切り替えられる。
冷房運転容量が暖房運転容量に比べ大きいときには、室外減圧装置4aを全閉状態として、室外熱交換器3aを休止状態とし、室外減圧装置4bを全開状態として、室外熱交換器3bを凝縮器として使用する。暖房運転容量が冷房運転容量よりも大きいときには、室外減圧装置4aを全開状態として、室外熱交換器3aを蒸発器として使用し、室外減圧装置4bを全閉状態として、室外熱交換器3bを休止状態とする。
Next, when the cooling and heating operations are mixed, the four-way valve 2a is switched to connect the discharge side of the compressor 1 and the high-pressure gas side connection pipe 27, and the suction side of the compressor 1 and the outdoor heat exchanger 3a. The four-way valve 2b is switched to connect the discharge side of the compressor 1 and the outdoor heat exchanger 3b, and the suction side of the compressor 1 and the check valve 26.
When the cooling operation capacity is larger than the heating operation capacity, the outdoor pressure reducing device 4a is fully closed, the outdoor heat exchanger 3a is inactive, the outdoor pressure reducing device 4b is fully open, and the outdoor heat exchanger 3b is a condenser. use. When the heating operation capacity is larger than the cooling operation capacity, the outdoor pressure reducing device 4a is fully opened, the outdoor heat exchanger 3a is used as an evaporator, the outdoor pressure reducing device 4b is fully closed, and the outdoor heat exchanger 3b is stopped. State.

冷房運転を行っている室内機7に接続された、接続配管切替え装置40では、低圧ガス管電磁弁41を開放し、高圧ガス管電磁弁42、液管電磁弁43は閉止する。また、室内機7内の電磁弁22は開放状態として、運転を行うことにより、液側接続配管14から供給されるエンタルピの低い液冷媒により、第2の室内熱交換器9において、冷房作用を行うことができる。
暖房運転を行っている室内機7に接続された、接続配管切替え装置40では、低圧ガス管電磁弁41、液管電磁弁43を閉止し、高圧ガス管電磁弁42を開放する。また、室内機7内の電磁弁22は開放状態として、運転を行うことにより、高圧ガス側接続配管28を通して供給されるエンタルピの高いガス冷媒により、第2の室内熱交換器9において、暖房作用を行うことができる。
In the connection pipe switching device 40 connected to the indoor unit 7 performing the cooling operation, the low pressure gas pipe solenoid valve 41 is opened, and the high pressure gas pipe solenoid valve 42 and the liquid pipe solenoid valve 43 are closed. Further, when the electromagnetic valve 22 in the indoor unit 7 is opened and operated, the second indoor heat exchanger 9 performs a cooling action by the liquid refrigerant having a low enthalpy supplied from the liquid side connection pipe 14. It can be carried out.
In the connection pipe switching device 40 connected to the indoor unit 7 performing the heating operation, the low pressure gas pipe solenoid valve 41 and the liquid pipe solenoid valve 43 are closed, and the high pressure gas pipe solenoid valve 42 is opened. Further, when the electromagnetic valve 22 in the indoor unit 7 is opened and operated, the second indoor heat exchanger 9 is heated by the high enthalpy gas refrigerant supplied through the high-pressure gas side connection pipe 28. It can be performed.

次に、再熱除湿運転時の運転状態の場合、再熱除湿運転時には先に説明を行った、冷房と暖房を混在運転する場合と同じように室外機の四方弁2a、2bを切り替える。、室外減圧装置4a、4bの開閉状態は、冷房、暖房同時運転時と同様に冷房と暖房の運転容量により決定する。
再熱除湿を行う室内機に接続された接続配管切替え装置40は低圧ガス電磁弁41、液管電磁弁43を開放し、高圧ガス管電磁弁42を閉止する。これにより、高圧ガス側接続配管27から液側接続配管14へ液管電磁弁43を通して高圧ガスが混入され、室内機7の液接続配管側に高圧気液二相流を導入することができる。さらに室内機7内の電磁弁23を閉止状態とすることにより、高圧気液二相流を第1の室内熱交換器へ導くことができ、液冷媒を室内機に導入する時に比べて再熱量を大きくすることができる。
以上、説明したように、実施例3では、冷房運転、暖房運転、再熱除湿運転の3つの運転状態を室内機ごとに任意に選択して運転することができ、幅広い負荷に対応することのできる多室型空気調和機を提供することができる。
Next, in the case of the operation state during the reheat dehumidification operation, the four-way valves 2a and 2b of the outdoor unit are switched in the same manner as in the case of the mixed operation of cooling and heating described above during the reheat dehumidification operation. The open / close state of the outdoor decompression devices 4a and 4b is determined by the cooling and heating operation capacities as in the case of the simultaneous cooling and heating operation.
The connection pipe switching device 40 connected to the indoor unit that performs reheat dehumidification opens the low pressure gas solenoid valve 41 and the liquid pipe solenoid valve 43, and closes the high pressure gas pipe solenoid valve. Thereby, the high pressure gas is mixed from the high pressure gas side connection pipe 27 to the liquid side connection pipe 14 through the liquid pipe solenoid valve 43, and the high pressure gas-liquid two-phase flow can be introduced to the liquid connection pipe side of the indoor unit 7. Further, by closing the electromagnetic valve 23 in the indoor unit 7, the high-pressure gas-liquid two-phase flow can be guided to the first indoor heat exchanger, and the amount of reheat compared to when the liquid refrigerant is introduced into the indoor unit. Can be increased.
As described above, in the third embodiment, the three operation states of the cooling operation, the heating operation, and the reheat dehumidifying operation can be arbitrarily selected for each indoor unit and can be operated. A multi-room air conditioner that can be provided can be provided.

本発明による一実施例のサイクル構成図。The cycle block diagram of one Example by this invention. 一実施例の室内機における内部構造を示す断面図。Sectional drawing which shows the internal structure in the indoor unit of one Example. 一実施例の空気調和機の冷房運転時における動作を示すモリエル線図。The Mollier diagram which shows the operation | movement at the time of air_conditionaing | cooling operation of the air conditioner of one Example. 一実施例の空気調和機の暖房運転時における動作を示すモリエル線図。The Mollier diagram which shows the operation | movement at the time of the heating operation of the air conditioner of one Example. 一実施例の空気調和機の再熱除湿運転時における動作を示すモリエル線図。The Mollier diagram which shows the operation | movement at the time of the reheat dehumidification driving | operation of the air conditioner of one Example. 他の実施例による室内器のサイクル構成図。The cycle block diagram of the indoor unit by another Example. さらに、他の実施例による室内器のサイクル構成図。Furthermore, the cycle block diagram of the indoor unit by another Example. 本発明による他の実施例によるサイクル構成図。The cycle block diagram by the other Example by this invention. さらに他の実施例によるサイクル構成図。The cycle lineblock diagram by other examples.

符号の説明Explanation of symbols

1…圧縮機、2…四方弁、3…室外熱交換器、4…室外減圧装置、7…室内機、8…第1の室内熱交換器、9…第1の室内熱交換器、11…室内送風機、12…室外送風機、13…室外機、14…液側接続配管、15…ガス側接続配管、16…レシーバ、17…過冷却器、18…過冷却器用減圧装置、19…過冷却器バイパス回路、20…吐出ガスバイパス用減圧装置、21…吐出ガスバイパス回路、22…室内減圧装置、23…開閉弁(電磁弁)、25…逆止弁、26…逆止弁、27…高圧ガス側接続配管、28…低圧ガス側接続配管、32 吸込み口。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Outdoor decompression device, 7 ... Indoor unit, 8 ... 1st indoor heat exchanger, 9 ... 1st indoor heat exchanger, 11 ... Indoor blower, 12 ... outdoor blower, 13 ... outdoor unit, 14 ... liquid side connection piping, 15 ... gas side connection piping, 16 ... receiver, 17 ... subcooler, 18 ... subcooler decompression device, 19 ... subcooler Bypass circuit, 20 ... decompression device for discharge gas bypass, 21 ... discharge gas bypass circuit, 22 ... indoor decompression device, 23 ... open / close valve (solenoid valve), 25 ... check valve, 26 ... check valve, 27 ... high pressure gas Side connection pipe, 28 ... Low pressure gas side connection pipe, 32 Suction port.

Claims (6)

圧縮機、四方弁、室外熱交換器を有する室外機と、複数の室内機とを冷媒配管で接続して冷凍サイクルを構成する多室型空気調和機において、
前記室外機は、前記室外熱交換器で冷却された冷媒を更に過冷却するための過冷却器と、液側となる冷媒配管から前記過冷却器を通過して前記圧縮機の吸入配管に接続され過冷却器用減圧装置を有する過冷却バイパス回路とを備え、
前記室内機は、第1の室内熱交換器、室内減圧装置、第2の室内熱交換器が順次配管接続され、前記第1の室内熱交換器をバイパスして前記室内減圧装置と前記第2の室内熱交換器に冷媒が流れる回路と、該回路を開閉させる開閉弁とを備え、
冷房運転時は、前記過冷却バイパス回路を通じて前記過冷却器用減圧装置で減圧させた冷媒を前記過冷却器を通過させた後に前記圧縮機へ流すと共に、前記開閉弁を開放して、蒸発器となる前記第2の室内熱交換器に前記過冷却器で過冷却された冷媒を流し、
再熱除湿運転時は、前記過冷却器用減圧装置を全閉状態にすると共に、前記開閉弁を閉鎖して、凝縮器となる前記第1の室内熱交換器と蒸発器となる前記第2の室内熱交換器に冷媒を流すことを特徴とする多室型空気調和機。
In a multi-room air conditioner that configures a refrigeration cycle by connecting a compressor, a four-way valve, an outdoor unit having an outdoor heat exchanger, and a plurality of indoor units with refrigerant piping,
The outdoor unit is connected to a supercooler for further supercooling the refrigerant cooled by the outdoor heat exchanger and a refrigerant pipe on the liquid side through the supercooler and connected to the suction pipe of the compressor A subcooling bypass circuit having a pressure reducing device for the subcooler,
The indoor unit includes a first indoor heat exchanger, the chamber pressure reducing device, the second indoor heat exchanger are sequentially pipe connection, wherein said chamber pressure reducing device by bypassing the first indoor heat exchanger first A circuit through which refrigerant flows in the indoor heat exchanger of 2 and an on-off valve for opening and closing the circuit,
During the cooling operation, the refrigerant depressurized by the subcooler decompression device through the supercooling bypass circuit is passed through the supercooler and then flows to the compressor, and the on- off valve is opened , comprising flowing the refrigerant said subcooled in subcooler to the second indoor heat exchanger,
During the reheat dehumidifying operation, the subcooler decompression device is fully closed, the on- off valve is closed , and the first indoor heat exchanger that serves as a condenser and the second that serves as an evaporator. A multi-room type air conditioner characterized by flowing a refrigerant through an indoor heat exchanger.
請求項1に記載のものにおいて、
冷房運転時は、前記過冷却器を通った前記液側となる冷媒配管を流れる冷媒の一部を分岐させて前記過冷却バイパス回路を通じて前記圧縮機へ流すと共に、前記開閉弁を開放して、蒸発器となる前記第2の室内熱交換器に前記過冷却器で過冷却された冷媒を流し、前記第2の室内熱交換器に室内空気を送って室内空気を冷却し、
再熱除湿運転時は、前記過冷却器用減圧装置を全閉状態にすると共に、前記開閉弁を閉鎖して、凝縮器となる前記第1の室内熱交換器,蒸発器となる前記第2の室内熱交換器の順に冷媒を流し、前記第2の室内熱交換器,前記第1の室内熱交換器の順に室内空気を送り、前記第2の室内熱交換器により室内空気を冷却除湿して前記第1の室内熱交換器により加熱することを特徴とする多室型空気調和機。
In claim 1,
At the time of cooling operation, a part of the refrigerant flowing through the refrigerant pipe on the liquid side that has passed through the supercooler is branched to flow to the compressor through the supercooling bypass circuit, and the on-off valve is opened, The refrigerant subcooled by the supercooler is caused to flow through the second indoor heat exchanger serving as an evaporator, and the indoor air is sent to the second indoor heat exchanger to cool the indoor air.
During the reheat dehumidifying operation, the subcooler decompression device is fully closed, the on-off valve is closed, and the first indoor heat exchanger that serves as a condenser and the second that serves as an evaporator. The refrigerant flows in the order of the indoor heat exchanger, the indoor air is sent in the order of the second indoor heat exchanger and the first indoor heat exchanger, and the indoor air is cooled and dehumidified by the second indoor heat exchanger. A multi-room air conditioner heated by the first indoor heat exchanger .
請求項1又は2に記載のものにおいて、
前記冷媒配管を液配管,低圧ガス配管、及び高圧ガス配管とし、該液配管,低圧ガス配管、及び高圧ガス配管と前記室内機との間に接続配管切替え装置を備え、
再熱除湿運転時は、前記高圧ガス配管から前記液配管に高圧ガス冷媒を混入させることを特徴とする多室型空気調和機。
In the thing of Claim 1 or 2 ,
The refrigerant pipe is a liquid pipe, a low-pressure gas pipe, and a high-pressure gas pipe, and includes a liquid pipe, a low-pressure gas pipe, and a connection pipe switching device between the high-pressure gas pipe and the indoor unit,
During operation reheat dehumidification, multiple room air conditioner, characterized in that to incorporate the high-pressure gas refrigerant in the liquid pipe from the high-pressure gas pipe.
請求項1又は2に記載のものにおいて、前記圧縮機の吐出配管から前記液側となる冷媒配管に接続される吐出ガスバイパス回路と、該吐出ガスバイパス回路を通流する冷媒の流量を制御する吐出ガスバイパス用減圧装置とを備えることを特徴とする多室型空気調和機。 In those described in claim 1 or 2, to control the discharge gas bypass circuit connected to the refrigerant pipes serving as the liquid side from the discharge pipe of the compressor, the flow rate of the refrigerant flowing through the gas bypass circuit exits said discharge A multi-chamber air conditioner comprising a discharge gas bypass decompression device . 請求項に記載のものにおいて、再熱除湿運転時には、前記圧縮機から吐出された冷媒を前記吐出ガスバイパス用減圧装置によって流量制御し、前記吐出ガスバイパス回路から前記液側となる冷媒配管を流れる冷媒に混入させることを特徴とする多室型空気調和機。 5. The refrigerant pipe according to claim 4 , wherein during reheat dehumidification operation, the refrigerant discharged from the compressor is controlled in flow rate by the discharge gas bypass decompression device, and the refrigerant pipe from the discharge gas bypass circuit to the liquid side is provided. A multi-room air conditioner characterized by being mixed with a flowing refrigerant . 請求項1乃至5の何れかに記載のものにおいて、暖房運転時には、前記過冷却器用減圧装置を全閉状態にすると共に、前記開閉弁を開放して、前記圧縮機で圧縮された冷媒をガス側となる冷媒配管から凝縮器となる前記第2の室内熱交換器に流すことを特徴とする多室型空気調和機。6. The refrigerant according to claim 1, wherein during the heating operation, the decompressor for the supercooler is fully closed, the on-off valve is opened, and the refrigerant compressed by the compressor is gasified. A multi-chamber air conditioner that flows from a refrigerant pipe on the side to the second indoor heat exchanger that serves as a condenser.
JP2004101803A 2004-03-31 2004-03-31 Reheat dehumidification type air conditioner Expired - Lifetime JP4270555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101803A JP4270555B2 (en) 2004-03-31 2004-03-31 Reheat dehumidification type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101803A JP4270555B2 (en) 2004-03-31 2004-03-31 Reheat dehumidification type air conditioner

Publications (2)

Publication Number Publication Date
JP2005283058A JP2005283058A (en) 2005-10-13
JP4270555B2 true JP4270555B2 (en) 2009-06-03

Family

ID=35181643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101803A Expired - Lifetime JP4270555B2 (en) 2004-03-31 2004-03-31 Reheat dehumidification type air conditioner

Country Status (1)

Country Link
JP (1) JP4270555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230168013A1 (en) * 2021-09-15 2023-06-01 Mitsubishi Electric Us, Inc. Heat pump system with flash defrosting mode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730738B2 (en) * 2005-12-26 2011-07-20 日立アプライアンス株式会社 Air conditioner
JP6012031B2 (en) * 2010-10-22 2016-10-25 エア・ウォーター株式会社 Oxygen concentrator
KR102436706B1 (en) * 2018-01-19 2022-08-25 엘지전자 주식회사 Method for controlling multi-type air conditioner
KR102418488B1 (en) * 2018-01-19 2022-07-06 엘지전자 주식회사 Method for controlling multi-type air conditioner
CN112013474A (en) * 2019-05-30 2020-12-01 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN110848845B (en) * 2019-11-18 2024-02-20 珠海格力电器股份有限公司 Air supplementing and enthalpy increasing heat pump system, control method and air conditioner
KR20220019933A (en) * 2020-08-11 2022-02-18 엘지전자 주식회사 Multi-type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230168013A1 (en) * 2021-09-15 2023-06-01 Mitsubishi Electric Us, Inc. Heat pump system with flash defrosting mode

Also Published As

Publication number Publication date
JP2005283058A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP6599002B2 (en) Air conditioner
US8656729B2 (en) Air conditioning system with defrosting operation
JP4441965B2 (en) Air conditioner
JP4909093B2 (en) Multi-type air conditioner
JP2006284035A (en) Air conditioner and its control method
JPWO2017145762A1 (en) Heat pump device and air conditioner
JPH08189713A (en) Binary refrigerating device
KR101737365B1 (en) Air conditioner
JP2005299935A (en) Air conditioner
KR19980076725A (en) Control method of HVAC and HVAC
JP2000274879A (en) Air conditioner
JP4270555B2 (en) Reheat dehumidification type air conditioner
JP4258363B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner
JP2006194525A (en) Multi-chamber type air conditioner
JP3969381B2 (en) Multi-room air conditioner
JPH04332350A (en) Air conditioner and its operating method
KR100885566B1 (en) Controlling method for air conditioner
JP3675609B2 (en) Operation method of multi-room air conditioner
JP3511161B2 (en) Air conditioner
JP2004177064A (en) Air conditioner
KR20210063506A (en) Automotive air conditioning system
JP6203230B2 (en) Air conditioner, control method of air conditioner
JPH10325641A (en) Refrigerating device
JP4572470B2 (en) Operation control method of air conditioner

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250