JPH07192907A - Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof - Google Patents

Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof

Info

Publication number
JPH07192907A
JPH07192907A JP5332969A JP33296993A JPH07192907A JP H07192907 A JPH07192907 A JP H07192907A JP 5332969 A JP5332969 A JP 5332969A JP 33296993 A JP33296993 A JP 33296993A JP H07192907 A JPH07192907 A JP H07192907A
Authority
JP
Japan
Prior art keywords
atomic
alloy
coercive force
permanent magnet
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5332969A
Other languages
Japanese (ja)
Inventor
Kiyoshi Watanabe
清 渡辺
Masahito Watanabe
雅人 渡辺
Takafumi Nakayama
孝文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Original Assignee
Elect & Magn Alloys Res Inst
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elect & Magn Alloys Res Inst, Research Institute for Electromagnetic Materials filed Critical Elect & Magn Alloys Res Inst
Priority to JP5332969A priority Critical patent/JPH07192907A/en
Priority to EP94120423A priority patent/EP0660338A1/en
Publication of JPH07192907A publication Critical patent/JPH07192907A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide small strong permanent magnet materials having extremely large coercive force regarding the permanent magnet materials of an alloy, which 15 obtained by pressure-molding or injection-molding a material mainly comprising Pr or Co and consisting of unavoidable impurities and powder containing one kind or two kinds or more of Fe, Cu, W, Ti, Ce and Sm as by-components in addition to the material and heating and sintering the molded form, and a thin-film and the manufacture of the permanent magnet materials. CONSTITUTION:The permanent magnet material of a high coercive force Pr-Co alloy consisting of an alloy, which contains 19.5-30 atomic % as a main component and the remainder of which is composed of Co and unavoidable impurities, and one kind or two kinds or more of 0. 1-atomic % Fe, Cu and W and 0.1-5 atomic % Ti, Ce and Sm as by-components in addition to the alloy and manufacture thereof and a Pr-Co thin-film magnet material and manufacture thereof are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はPr及びCoを主成分と
し、不可避の不純物からなるもの、及びこれに副成分と
してFe,Cu,W,Ti,Ce,Smのうち1種また
は2種以上を含む粉末を加圧成形あるいは射出成形した
のち加熱、焼結した合金及び薄膜の永久磁石材料及びそ
の製造方法に関するもので、その目的とするところは保
磁力が極めて大きく小型で強力な永久磁石材料を提供す
ることにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises Pr and Co as main components and inevitable impurities, and one or more of Fe, Cu, W, Ti, Ce and Sm as auxiliary components. The present invention relates to a permanent magnet material of an alloy and a thin film obtained by pressure-molding or injection-molding a powder containing Pt, and then sintering the powder, and a method for manufacturing the same. To provide.

【0002】[0002]

【従来の技術】最近、高性能永久磁石材料としてFe−
Pt系、Nd−Fe−B系、Sm−Fe−N系合金や化
合物等が発見され、目覚ましい進展がみられている。一
方、電子技術の発展によって、小型で高性能の電子機器
が次々と生産されるようになった。特に上述した高特性
を有する永久磁石材料及びマイクロ磁気デバイスの研究
が盛んに行われており、その優れた特性によって機器の
小型化及び精密化に著しく貢献している。本発明に係わ
る高保磁力を有する小型の永久磁石材料は磁気記録、微
少な電磁アクチュエータあるいは磁気抵抗ヘッドのバイ
アス磁場の素子としての応用も考えられている。
2. Description of the Related Art Recently, Fe-- has been used as a high-performance permanent magnet material.
Pt-based, Nd-Fe-B-based, Sm-Fe-N-based alloys and compounds have been discovered, and remarkable progress has been made. On the other hand, with the development of electronic technology, small and high-performance electronic devices have been produced one after another. In particular, research on the above-mentioned permanent magnet material and micro magnetic device having high characteristics has been actively conducted, and the excellent characteristics have contributed significantly to downsizing and precision of equipment. The small permanent magnet material having a high coercive force according to the present invention is also considered to be applied as a magnetic recording element, a minute electromagnetic actuator, or a bias magnetic field element of a magnetoresistive head.

【0003】[0003]

【発明が解決しようとする課題】しかし高価なため特殊
な用途に限られるPt系磁石合金(日本金属学会誌56(1
992)1495)耐食性に難点のあるNd−Fe−B(日本応
用磁気学会誌14(1990)189 )あるいは高温に熱処理する
と窒素が分解し優れた特性が失われ、材料の製造法に限
界があるSm−Fe−N化合物(日本応用磁気学会誌17
(1993)5)等それぞれにおいて大きな問題をかかえてい
る。
However, Pt-based magnet alloys are limited to special applications because they are expensive (Journal of the Japan Institute of Metals 56 (1)
992) 1495) Nd-Fe-B (Journal of Japan Society for Applied Magnetics 14 (1990) 189), which has difficulty in corrosion resistance, or nitrogen is decomposed by heat treatment at high temperature and excellent properties are lost, and there is a limit to the manufacturing method of the material. Sm-Fe-N compound (Journal of Japan Applied Magnetics Society 17
(1993) 5) Each of them has major problems.

【0004】PrCo5 系永久磁石材料は1970年代にS
mCo5 系磁石材料とほぼ同時に見い出されたもので、
両者の結晶構造はCaCu5 (六方格子)型を有してい
る。後者のSmCo5 化合物は優れた磁石特性を発揮し
て極めて有名であるが、PrCo5 化合物は飽和磁化が
高く有利な条件を持っているにもかかわらず保磁力は最
高590 kA/mで(J.Less-Common Metals 148(1989)6
7)で希土類磁石としては低く(J.MMM 94(1991)57)未
だに実用化されていない。従来の研究結果によれば、低
い保磁力の原因は、図1に示してあるPr−Co系合金
の平衡状態図からわかるようにPrCo5 に隣接するP
5 Co19の化合物(斜方晶)が軟磁性的特性を有し、
これが高保磁力化を妨げるものと考えられていた。
PrCo 5 based permanent magnet materials were S in the 1970s.
It was found almost at the same time as the mCo 5 based magnet material,
Both crystal structures have a CaCu 5 (hexagonal lattice) type. The latter SmCo 5 compound is extremely famous for its excellent magnet properties, but the PrCo 5 compound has a high coercive force of up to 590 kA / m even though it has favorable conditions because of its high saturation magnetization (J .Less-Common Metals 148 (1989) 6
7) It is low as a rare earth magnet (J.MMM 94 (1991) 57) and has not yet been put to practical use. According to the results of conventional studies, the cause of the low coercive force is that the P adjacent to PrCo 5 is as shown in the equilibrium diagram of the Pr—Co alloy shown in FIG.
The compound of r 5 Co 19 (orthorhombic) has soft magnetic properties,
It was thought that this hinders the increase in coercive force.

【0005】しかし本発明は、それ等の結果を確かめる
ためPrCo5 の組成からPr量が多いPr5 Co19
Pr2 Co7 及びPrCo3 を含みしかも自発磁化の認
められるPrが約30原子%を含む広い組成領域にわたっ
て研究を行った。その結果、これら化合物はボールミル
によって1〜20μmに微細化し、そのまま加圧成形ある
いは射出成形したもの、さらにそれらの成形物を熱処理
することによって従来の保磁力より2〜10倍にも及ぶ大
きな値が得られることを明らかにし(日本金属学会講演
概要(1993年)181)、それ等の結果からPr−Co系合
金の永久磁石特性と組成との関係を表1及び図2に示し
た。
However, according to the present invention, in order to confirm the results, Pr 5 Co 19 , which has a large amount of Pr from the composition of PrCo 5 ,
The study was carried out over a wide composition range including Pr 2 Co 7 and PrCo 3 and about 30 atomic% of Pr in which spontaneous magnetization is recognized. As a result, these compounds were miniaturized to 1 to 20 μm by a ball mill, pressed or injection molded as they were, and by heat-treating these molded products, the coercive force was 2 to 10 times larger than the conventional value. It was clarified that it was obtained (Summary of presentation of the Japan Institute of Metals (1993) 181), and from these results, the relationship between the permanent magnet characteristics and the composition of Pr—Co alloys is shown in Table 1 and FIG.

【0006】また本合金は薄膜化しても高い保磁力が得
られることを確かめるため、室温の基板に成膜後300 〜
800 ℃に加熱したものあるいは300 〜800 ℃に加熱され
た基板上に薄膜を作製することによって高保磁力が得ら
れることを明らかにすることができた。
Further, in order to confirm that the present alloy can obtain a high coercive force even if it is made into a thin film, after forming a film on a substrate at room temperature,
It was clarified that a high coercive force can be obtained by forming a thin film on a substrate heated to 800 ℃ or a substrate heated to 300 to 800 ℃.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【課題を解決するための手段】本発明はPrCo5 から
PrCo3 の組成合金の粉末を加圧成形あるいは射出成
形したのち加熱したもの及び同等の組成を有する薄膜を
基板上に成膜したものを加熱あるいは加熱された基板上
に成膜することによって1200kA/m以上の超高保磁力
を有する永久磁石材料を提供することにある。
According to the present invention, a powder of a composition alloy of PrCo 5 to PrCo 3 is pressure-molded or injection-molded and then heated, and a thin film having an equivalent composition is formed on a substrate. It is to provide a permanent magnet material having an ultrahigh coercive force of 1200 kA / m or more by forming a film on a heated or heated substrate.

【0009】本発明は上述しておいたように従来得られ
なかった永久磁石材料を発揮させるためになされたもの
で、本発明の特徴は下記の通りである。
As described above, the present invention has been made in order to bring out the permanent magnet material which has not been obtained conventionally, and the features of the present invention are as follows.

【0010】本発明の目的とする所は、主成分としてP
rを19.5〜30原子%含有し、残部がCo及び不可避の不
純物からなる合金で、保磁力が80kA/m以上を有する
ことを特徴とする高保磁力Pr−Co系合金の永久磁石
材料を提供するにある。
The object of the present invention is to use P as the main component.
Provided is a permanent magnet material of a high coercive force Pr-Co alloy, which is an alloy containing 19.5 to 30 atomic% of r, the balance being Co and unavoidable impurities and having a coercive force of 80 kA / m or more. It is in.

【0011】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなり、これに副成分としてFe,Cu,
Wが0.1 〜3原子%及びTi,Ce,Smが0.1 〜5原
子%のうち1種または2種以上の元素からなる80kA/
m以上の保磁力を有することを特徴とする高保磁力Pr
−Co系合金の永久磁石材料を提供とするにある。
Still another object of the present invention is to contain Pr as a main component in an amount of 15 to 30 atomic%, and the balance being Co and inevitable impurities.
W of 0.1 to 3 atomic% and Ti, Ce, and Sm of 0.1 to 5 atomic% 80 kA / one or more elements.
High coercive force Pr having a coercive force of m or more
-To provide a permanent magnet material of a Co-based alloy.

【0012】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなる合金の薄膜で保磁力が80kA/m以
上を有することを特徴とする高保磁力Pr−Co系薄膜
の永久磁石材料を提供するにある。
Still another object of the present invention is to use an alloy thin film containing Pr as a main component in an amount of 15 to 30 atomic% and the balance being Co and inevitable impurities and having a coercive force of 80 kA / m or more. Another object of the present invention is to provide a permanent magnet material having a high coercive force Pr—Co based thin film.

【0013】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなり、これに副成分としてFe,Cu,
Wが0.1 〜3原子%及びTi,Ce,Smが0.1 〜5原
子%のうち1種または2種以上の元素からなる合金薄膜
で保磁力が80kA/m以上を有することを特徴とする高
保磁力Pr− Co系薄膜の薄膜磁石材料を提供するに
ある。
Still another object of the present invention is to contain Pr as the main component in an amount of 15 to 30 atomic%, and the balance being Co and inevitable impurities.
A high coercive force characterized by having a coercive force of 80 kA / m or more in an alloy thin film consisting of one or more elements out of 0.1 to 3 atomic% W and 0.1 to 5 atomic% Ti, Ce, Sm. It is to provide a thin film magnet material of a Pr-Co based thin film.

【0014】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなる合金をボールミルに5〜30時間かけ
て1〜20μmに微細化した粉末及び同等の合金成分の金
属粗粒をメカニカル・アロイングして微粉末とし、これ
を加圧成形または磁界中に加圧成形或いは射出成形した
ものを、さらに300 〜1180℃に熱処理あるいは焼結する
ことを特徴とする超高保磁力のPr−Co系合金粉末の
永久磁石材料の製造方法を提供するにある。
Still another object of the present invention is to use an alloy containing Pr as a main component in an amount of 15 to 30 atom% and the balance being Co and inevitable impurities in a ball mill for 1 to 20 μm in an amount of 5 to 30 hours. Finely pulverized powder and coarse metal particles of an equivalent alloy component are mechanically alloyed into a fine powder, which is then pressure-molded or pressure-molded in a magnetic field or injection-molded, and further heat-treated at 300-1180 ° C. Another object is to provide a method for producing a permanent magnet material of an ultra-high coercive force Pr—Co alloy powder, which is characterized by sintering.

【0015】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなり、これに副成分としてFe,Cu,
Wが0.1 〜3原子%及びTi,Ce,Smが0.1 〜5原
子%のうち1種または2種以上の元素からなる合金をボ
ールミルに5〜30時間かけて1〜20μmに微細化した粉
末及び同等の合金成分の金属粗粒をメカニカル・アロイ
ングして微粉末とし、これを加圧成形または磁界中に加
圧成形或いは射出成形したものを、さらに300〜1180℃
に熱処理あるいは焼結することを特徴とする高保磁力P
r−Co系合金の永久磁石材料の製造方法を提供するに
ある。
Still another object of the present invention is to contain Pr as a main component in an amount of 15 to 30 atom%, and the balance being Co and inevitable impurities.
A powder obtained by refining an alloy consisting of one or more elements out of 0.1 to 3 atomic% of W and 0.1 to 5 atomic% of Ti, Ce and Sm into 1 to 20 μm in a ball mill for 5 to 30 hours, and Mechanically alloyed coarse metal particles of the same alloy composition into fine powder, and press-molded or pressure-molded or injection-molded this in the magnetic field, and further 300-1180 ℃
High coercive force P characterized by heat treatment or sintering
Another object of the present invention is to provide a method for producing a permanent magnet material of r-Co alloy.

【0016】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなる合金をアルゴン、クリプトン、キセ
ノンのうち少なくとも1種の不活性ガスの雰囲気中で、
室温の基板に成膜後、300 〜800 ℃に加熱したものある
いは300 〜800 ℃に加熱した基板上に成膜した薄膜で、
80kA/m以上の保磁力を有するものを得ることを特徴
とする高保磁力Pr−Co系合金の永久磁石材料の製造
方法を提供するにある。
Still another object of the present invention is to use an alloy containing Pr as a main component in an amount of 15 to 30 atomic% and the balance being Co and inevitable impurities, and using at least one of argon, krypton and xenon. In an atmosphere of inert gas,
A thin film deposited on a substrate at room temperature and then heated to 300-800 ° C or a substrate heated to 300-800 ° C.
Another object of the present invention is to provide a method for producing a permanent magnet material of a high coercive force Pr-Co alloy, which is characterized by obtaining a material having a coercive force of 80 kA / m or more.

【0017】本発明の更に他の目的とする所は、主成分
としてPrを15〜30原子%含有し、残部がCo及び不可
避の不純物からなり、これに副成分としてFe,Cu,
Wが0.1 〜3原子%及びTi,Ce,Smが0.1 〜5原
子%のうち1種または2種以上の元素からなる合金をア
ルゴン、クリプトン、キセノンのうち少なくとも1種の
不活性ガスの雰囲気中で、室温の基板に成膜した薄膜
で、80kA/m以上を有するものを得ることを特徴とす
る高保磁力Pr−Co系薄膜永久磁石材料の製造方法を
提供するにある。
Still another object of the present invention is to contain Pr as a main component in an amount of 15 to 30 atomic%, and the balance being Co and inevitable impurities, in which Fe, Cu, and
In an atmosphere of an inert gas containing at least one of argon, krypton, and xenon, an alloy of one or more elements selected from 0.1 to 3 atomic% W and 0.1 to 5 atomic% Ti, Ce, and Sm is used. Then, there is provided a method for producing a high coercive force Pr—Co based thin film permanent magnet material, which comprises obtaining a thin film having a film thickness of 80 kA / m or more on a substrate at room temperature.

【作用】[Action]

【0018】本発明において、メカニカル・アロイング
とはボールミルで長時間(30〜100時間)微粉砕すると
金属結晶質が非晶質或は他の結晶質に変わる現象を言
う。
In the present invention, the mechanical alloying means a phenomenon in which a metal crystal is changed to an amorphous or other crystal when it is pulverized for a long time (30 to 100 hours) by a ball mill.

【0019】1.本発明は19.5〜30原子%Pr、残部Co
及び不可避の不純物を含むPr−Co系合金の粉末永久
磁石に係わるものであり、この組成には六方晶のPrC
5 あるいはPr2 Co7 の結晶構造を有する化合物が
主体となり、これに斜方晶のPr5 Co19,PrCo3
の相が少量加わっている。従来Pr5 Co19がPrCo
5 の相に少量混合することによってPrCo5 (16.7原
子%Pr)は高保磁力が発揮されないものとされていた
が、本発明はPr5 Co19(20.8原子%Pr)の組成合
金を含む上記組成範囲において超高保磁力を得ることが
できる。さらにより大きな保磁力を発揮させたい場合に
はPrが15〜30原子%の組成において副成分としてF
e,Cu,Wが0.1 〜3原子%及びTi,Ce,Smが
0.1〜5原子%のうち1種または2種以上の元素を加え
ればよい。
1. The present invention is 19.5 to 30 atomic% Pr, balance Co
And a powder permanent magnet of a Pr-Co alloy containing unavoidable impurities. This composition has hexagonal PrC.
A compound having a crystal structure of o 5 or Pr 2 Co 7 is mainly used, and an orthorhombic Pr 5 Co 19 , PrCo 3
Is added in a small amount. Conventional Pr 5 Co 19 is PrCo
Although it was said that PrCo 5 (16.7 atom% Pr) does not exhibit a high coercive force by being mixed in a small amount with the 5 phase, the present invention provides the above composition including a composition alloy of Pr 5 Co 19 (20.8 atom% Pr). Ultra high coercive force can be obtained in the range. When a larger coercive force is desired, F is added as an auxiliary component in a composition of Pr of 15 to 30 atom%.
e, Cu, W is 0.1 to 3 atomic% and Ti, Ce, Sm are
It suffices to add one or more elements of 0.1 to 5 atomic%.

【0020】2.アーク溶解あるいは高周波溶解によって
作られたこれら合金を粗く粉砕した後ボールミルに5時
間以上粉砕して、約1〜20μmの微粉末にしたもの、あ
るいは目的の合金組成に秤量したそれぞれの金属の粗い
粉末をメカニカル・アロイングした微粉末を1〜10t/
cm2 の圧力で加圧成形又は400 kA/m以上の磁場中で
加圧成形あるいは射出成形したもの、あるいはその後30
0 〜1180℃に10分から10時間加熱あるいは焼結すること
によって超高保磁力永久磁石材料が得られる。
2. These alloys produced by arc melting or high frequency melting were roughly crushed and then crushed in a ball mill for 5 hours or more to obtain fine powder of about 1 to 20 μm, or weighed to a desired alloy composition. 1-10t / of fine powder obtained by mechanical alloying
Pressure molded at a pressure of cm 2 or pressure molded or injection molded in a magnetic field of 400 kA / m or more, or 30 afterwards
An ultra-high coercive force permanent magnet material can be obtained by heating or sintering at 0 to 1180 ° C for 10 minutes to 10 hours.

【0021】3.本発明は材料の使用目的によって薄膜と
する場合にはPrが15〜30原子%及び不可避の不純物を
含む合金薄膜、及び副成分としてFe,Cu,Wあるい
はTi,Ce,Smのうち1種または2種以上の元素を
0.1 〜3原子%あるいは0.1 〜5原子%含有し、残部が
Coとなる合金薄膜を室温の石英又はガラスの基板上に
蒸着したのち300 〜800 ℃に加熱し、あるいは300 〜80
0 ℃に加熱されている基板上に蒸着すればよい。アルゴ
ン、クリプトン、キセノンのうち1種の不活性ガス雰囲
気中においてスパッタリングによって薄膜とすることに
よっても合金粉末と同等の超高保磁力を持つ薄膜の永久
磁石材料が得られる。
3. In the present invention, when a thin film is formed depending on the purpose of use of the material, an alloy thin film containing Pr of 15 to 30 atomic% and inevitable impurities, and Fe, Cu, W or Ti, Ce, Sm as a sub-component. One or more of these elements
An alloy thin film containing 0.1 to 3 atomic% or 0.1 to 5 atomic% with the balance being Co is vapor-deposited on a quartz or glass substrate at room temperature and then heated to 300 to 800 ° C, or 300 to 80 ° C.
It may be vapor-deposited on the substrate heated to 0 ° C. By forming a thin film by sputtering in an inert gas atmosphere of one of argon, krypton, and xenon, a thin film permanent magnet material having an ultra-high coercive force equivalent to that of alloy powder can be obtained.

【0022】[0022]

【実施例】次に本発明の実施例について述べる。 実施例1 実施例では代表的な磁石(A)Prが19.5原子%、残り
Co及び磁石(B)Prが23原子%残りCoの2種類の
組成からなる永久磁石材料の熱処理効果を調べ図3に示
した。 (1)まず原料としては99.9%純度の電解Co及び電解P
rを用いた。実験の試料を造るには全重量20gの原料を
目的の組成に秤量してアーク溶解を行った。試料は数回
にわたり回転させてアーク溶解を繰り返し均質な合金と
した。
EXAMPLES Next, examples of the present invention will be described. Example 1 In Example 1, the heat treatment effect of a permanent magnet material composed of two kinds of compositions, a typical magnet (A) Pr was 19.5 atomic% and the remaining Co and magnet (B) Pr was 23 atomic% and the remaining Co was investigated. It was shown to. (1) First, as a raw material, electrolytic Co and electrolytic P having a purity of 99.9%
r was used. In order to prepare a sample for the experiment, a total weight of 20 g of the raw material was weighed to a desired composition and subjected to arc melting. The sample was rotated several times to repeat arc melting and form a homogeneous alloy.

【0023】(2)これらは更に1080℃に1〜10時間加熱
して均質化処理を施した後粉砕して粗い粉末とし、これ
をボールミルに入れてアルゴンを封したのち微細化して
1〜20μmの微粉末とし800 kA/mの磁場中に5t/
cm2 の圧力で加圧成形した。なお、等方性の永久磁石材
料の場合には磁場をかけないで加圧する。測定は4000k
A/mのパルス磁場で磁化したのちBH磁束計で行っ
た。
(2) These are further heated at 1080 ° C. for 1 to 10 hours, homogenized and pulverized to obtain a coarse powder, which is put in a ball mill and sealed with argon and then micronized to 1 to 20 μm. Fine powder of 5 t / in a magnetic field of 800 kA / m
It was pressure molded at a pressure of cm 2 . In the case of an isotropic permanent magnet material, pressure is applied without applying a magnetic field. Measurement is 4000k
It was magnetized with a pulsed magnetic field of A / m and then measured with a BH magnetometer.

【0024】(3)図3からわかるように加圧成形された
磁石(A)はそのままで450 kA/mの高保磁力 iHc
及び0.70Tの残留磁束密度Brを示すが、その後さらに
真空中あるいはアルゴン雰囲気中で700 〜950 ℃、1時
間に加熱して焼成すると最高1350kA/m以上の超高保
磁力 iHc と0.75TのBrが得られる。この傾向は磁石
(B)についても同様であり、1270kA/m以上の超高
保磁力、0.64Tの残留磁束密度Brを示した。
(3) As can be seen from FIG. 3, the pressure-molded magnet (A) remains as it is and has a high coercive force iHc of 450 kA / m.
And 0.70 T of residual magnetic flux density Br. After that, when further heated in a vacuum or an argon atmosphere at 700 to 950 ° C. for 1 hour and baked, an ultra-high coercive force iHc of 1350 kA / m or more and Br of 0.75 T are obtained. can get. This tendency is the same for the magnet (B) as well, showing an ultrahigh coercive force of 1270 kA / m or more and a residual magnetic flux density Br of 0.64 T.

【0025】(4)また1000℃〜1100℃に加熱し焼結処理
を施すと保磁力 iHc は減少するが、残留磁束密度Br
は加熱温度の上昇とともに漸次増加する。
(4) The coercive force iHc decreases when heated to 1000 ° C to 1100 ° C and subjected to a sintering treatment, but the residual magnetic flux density Br
Gradually increases as the heating temperature increases.

【0026】これらの結果は図3に示した。またこのよ
うにして得られたPr−Co系永久磁石材料の代表例は
表1に示した。
The results are shown in FIG. Table 1 shows typical examples of the Pr—Co based permanent magnet material thus obtained.

【0027】実施例2 本発明に述べた組成の永久磁石材料はメカニカル・アロ
イングによっても容易に得られ、この方法では溶解の必
要がない。ここでは磁石(B)のPrが23原子%−Co
合金について実施した例を述べる。
Example 2 The permanent magnet material having the composition described in the present invention can be easily obtained by mechanical alloying and does not require melting in this method. Here, Pr of the magnet (B) is 23 atomic% -Co
An example performed on the alloy will be described.

【0028】(1)まず100 〜200 メッシュ程度の粗いC
o粉末とヤスリで削ったPrを必要な組成に秤量し、こ
れらをボールミルに入れアルゴンガスを封入してメカニ
カル・アロイングを50時間行って微粉末とし、800 kA
/mの磁場中において5 t/cm2 の圧力で加圧成形し
た。
(1) First, a coarse C of about 100 to 200 mesh
o Powder and sanded Pr were weighed to the required composition, placed in a ball mill, filled with argon gas, and mechanically alloyed for 50 hours to obtain fine powder, 800 kA
In a magnetic field of / m, pressure molding was performed at a pressure of 5 t / cm 2 .

【0029】(2)この成形物の保磁力 iHc は低く12k
A/m程度であったが、800 ℃の真空炉に入れ1時間加
熱すると1400kA/m以上の超高保磁力及び0.65Tの残
留磁束密度Brが得られ、アーク溶解した場合と同等の
特性が得られる。
(2) The coercive force iHc of this molded product is low and is 12k.
It was about A / m, but when placed in a vacuum furnace at 800 ° C and heated for 1 hour, an ultra-high coercive force of 1400 kA / m or more and a residual magnetic flux density Br of 0.65 T were obtained, and the same characteristics as when arc melting was obtained. To be

【0030】実施例3 Pr−Co2元系を主成分としてこれに副成分として代
表的なPr18Ti2 −Co80,Pr17Cu3 Co80,P
17Ce3 Co80合金をアーク溶解し、これらをボール
ミルに入れてアルゴン封入した後、10時間微細化して1
〜20μmの微粉末としたのち800 〜900 ℃に1時間加熱
し、これを4000kA/mのパルス磁場にかけたのち測定
して得られた減磁曲線の結果をPr19.5Co80.3の結果
と比較して図4に示した。これから分かるようにCe系
は保磁力 iHc は変わらないが残留磁束密度Brが増加
する。Ti及びCuを添加した場合には保磁力 iHc が
増加するがBrが減少している。なお、図5にはPr
20-xx Co80(xは副成分)として副成分の原子%と
保磁力と残留磁束密度との関係が示してある。
Example 3 A Pr-Co binary system as a main component and Pr 18 Ti 2 -Co 80 , Pr 17 Cu 3 Co 80 , P, which are typical as subcomponents, were added.
The r 17 Ce 3 Co 80 alloy was arc-melted, placed in a ball mill and filled with argon, and then refined for 10 hours to 1
After making it into a fine powder of ~ 20μm, heating it at 800-900 ° C for 1 hour, applying it to a pulsed magnetic field of 4000kA / m, and measuring it, the result of the demagnetization curve was compared with that of Pr 19.5 Co 80.3. And shown in FIG. As can be seen from this, in the Ce system, the coercive force iHc does not change, but the residual magnetic flux density Br increases. When Ti and Cu are added, the coercive force iHc increases but Br decreases. In addition, in FIG.
20-x X x Co 80 ( x is subcomponent) are the relationship between the atomic% and the coercive force of the secondary components and residual magnetic flux density shown as.

【0031】実施例4 製造法の実施例としてPrが18.5原子%−Co合金の場
合について述べる。 (1)本発明では上記の合金をアーク溶解しこれを1050℃
で均質化したのち粗粉砕した粉末を、さらにアルゴンを
封じたボールミルで10時間微粉砕して1〜20μmの微粉
末を得て、これを800 kA/mの磁場で5t/cm2 で加
圧成形するだけで既に455 kA/mの高保磁力 iHc が
得られた。
Example 4 As an example of the manufacturing method, a case where Pr is 18.5 atomic% -Co alloy will be described. (1) In the present invention, the above alloy is arc-melted and then melted at 1050 ° C.
The powder was homogenized and then coarsely pulverized with a ball mill containing argon for 10 hours to obtain a fine powder of 1 to 20 μm, which was pressed under a magnetic field of 800 kA / m at 5 t / cm 2. A high coercive force iHc of 455 kA / m was already obtained only by molding.

【0032】(2)更に上記の合金を、750 〜900 ℃のう
ち、ここでは850 ℃に1時間加熱することによって1270
kA/mの超高保磁力 iHc 、0.82Tの残留磁束密度
Brが得られる。
(2) Further, by heating the above alloy to 850 ° C., here 850 ° C., for 1 hour among 750 to 900 ° C., 1270
An ultrahigh coercive force iHc of kA / m and a residual magnetic flux density Br of 0.82T can be obtained.

【0033】(3)しかし上記の合金について、従来行わ
れていた4時間のボールミリングを行ったところ図3に
示したSchweizer らの値(IEEE Trans.Mag.Sept.(1971)
429 )とほぼ等しく最高500 kA/mの値が得られる
が、この1100℃の温度では、本発明では既に保磁力が低
下の段階にある。また合金粉末の粒度が微細化されてい
るため850 ℃の加熱でほぼ焼結に近い結果が得られ、そ
のときの比重は合金の95%以上に達し、ビッカース硬度
は約500 であった。
(3) However, when the above-mentioned alloy was subjected to conventional ball milling for 4 hours, the values of Schweizer et al. Shown in FIG. 3 (IEEE Trans.Mag.Sept. (1971))
429) and a maximum value of 500 kA / m can be obtained, but at this temperature of 1100 ° C., the coercive force of the present invention is already at the stage of decreasing. In addition, since the grain size of the alloy powder was made fine, a result close to sintering was obtained by heating at 850 ° C. At that time, the specific gravity reached 95% or more of the alloy, and the Vickers hardness was about 500.

【0034】実施例5 高周波マグネトロンスパッタ法によりPr−Co合金を
成膜した。ターゲットはCo板上にPrチップを配置し
た複合型である。ここでは組成が Pr19.5Co80.5
なるようにPrのチップを変化させた。最初真空にした
後成膜中のアルゴンガス圧力5mTorr、投入電力10
0 Wのもとでスパッタを行った。基板としては石英(S
iO2 )を用い、基板温度を650 〜700 ℃とした。これ
をマイクロマグネトメータで測定したところほとんど合
金粉末系磁石と同様1200kA/m以上の超高保磁力が得
られた。
Example 5 A Pr—Co alloy film was formed by a high frequency magnetron sputtering method. The target is a composite type in which a Pr chip is arranged on a Co plate. Here, the Pr tip was changed so that the composition was Pr 19.5 Co 80.5 . Argon gas pressure during film formation 5 mTorr, power input 10 after first vacuuming
Sputtering was performed under 0 W. Quartz (S
iO 2 ) was used and the substrate temperature was 650 to 700 ° C. When measured with a micro magnetometer, an ultra-high coercive force of 1200 kA / m or more was obtained almost like the alloy powder magnet.

【0035】本発明において合金粉末、薄膜永久磁石材
料及び製造条件の限定理由を述べると次の通りである。 (1)Pr−Co系合金において主成分としてPrを19.5
〜30原子%、保磁力が80kA/mとしたのは、Prが1
9.5原子%未満は既にPrCo5 化合物として研究成果
が報告されているからであり、Prが30原子%以上は磁
化が認められず磁石材料にならないからである。
The reasons for limiting the alloy powder, the thin film permanent magnet material and the manufacturing conditions in the present invention are as follows. (1) Pr-Co alloy containing Pr as a main component at 19.5
〜30 at.% And coercive force of 80 kA / m, Pr is 1
This is because research results have already been reported as PrCo 5 compounds when the content is less than 9.5 atomic%, and magnetization is not recognized and a magnetic material cannot be obtained when Pr is 30 atomic% or more.

【0036】(2)合金の製造過程に精錬材として不可避
の不純物として混入されるMg,Mn,Si,C,Ca
はこれが0.5 原子%を超えて残留すると永久磁石特性が
劣化するので、これら不純物は0.5 %以下とするのが好
ましい。
(2) Mg, Mn, Si, C, Ca mixed as unavoidable impurities as refining material in the manufacturing process of the alloy
If 0.5% by weight remains, the characteristics of the permanent magnet deteriorate. Therefore, it is preferable that these impurities be 0.5% or less.

【0037】(3)副成分としてTi,Fe,Cu,W,
Ce,Smのうち何れか1種または2種以上を0.1 〜5
原子%添加することは、合計添加量が0.1 原子%以下で
は効果がなく、また合計添加量が5原子%を超えると永
久磁石特性が劣化するのでそれらの合計添加量を0.1 〜
5原子%と限定した。
(3) Ti, Fe, Cu, W, and
Any one or more of Ce and Sm is 0.1 to 5
Addition of at.% Is ineffective if the total addition amount is less than 0.1 at.%, And if the total addition amount exceeds 5 at.%, The permanent magnet characteristics deteriorate.
Limited to 5 atom%.

【0038】(4)副成分として他元素を添加した合金及
び薄膜の永久磁石材料の主成分のPrを15〜30原子%、
保磁力が80kA/m以上と限定したのは全く新規の材料
として発明したもので、これ以外の組成では永久磁石特
性が得られないからである。
(4) Pr, which is the main component of the alloy and thin film permanent magnet material to which another element is added as a subcomponent, is 15 to 30 atomic%,
The coercive force was limited to 80 kA / m or more because it was invented as a completely new material and permanent magnet characteristics cannot be obtained with other compositions.

【0039】(5)スパッタリングの雰囲気をきめたのは
大気中、又は真空中では薄膜の生成が極めて困難であり
成膜できなくなるが、アルゴン、クリプトン、キセノン
の1種の不活性ガスの雰囲気でスパッタリングを行うこ
とにより不純物の少ない良質の薄膜が得られるからであ
る。
(5) The atmosphere for sputtering is determined in the air or in vacuum because it is extremely difficult to form a thin film and film formation cannot be performed. However, in an atmosphere of an inert gas of argon, krypton or xenon. This is because a good quality thin film with few impurities can be obtained by performing sputtering.

【0040】[0040]

【発明の効果】本発明は従来永久磁石材料としてとらえ
られていなかったPr−Co系合金の1〜20μmの微粉
末及びメカニカルアロイングにより作られた微粉末を加
圧成形、それを熱処理、焼結することならびに同等の成
分を有する合金薄膜を作ることによって超高保磁力を発
揮せしめ、性能を著しく改善させることができる工業上
大きな効果がある。
INDUSTRIAL APPLICABILITY The present invention pressure-molds fine powder of Pr-Co alloy having a size of 1 to 20 μm and fine powder made by mechanical alloying, which has not been conventionally regarded as a permanent magnet material, and heat-treats and burns it. By binding and by forming an alloy thin film having the same composition, it is possible to exert an ultra-high coercive force and significantly improve the performance, which is a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はPr−Co系合金の平衡状態図である。FIG. 1 is an equilibrium state diagram of a Pr—Co based alloy.

【図2】図2はPr−Co系合金の永久磁石特性、組成
及びPrCo5 ,Pr5 Co19,Pr2 Co7 ,PrC
3 化合物との関係を示す特性図である。
FIG. 2 is a permanent magnet characteristic and composition of Pr—Co alloy and PrCo 5 , Pr 5 Co 19 , Pr 2 Co 7 , and PrC.
It is a characteristic view showing a relationship with o 3 compound.

【図3】図3は従来得られていた保磁力と熱処理との関
係及び本発明の比較を示す図である。
FIG. 3 is a diagram showing a relationship between coercive force and heat treatment, which have been conventionally obtained, and a comparison of the present invention.

【図4】図4はPr19.5Co80.5及び副成分を添加した
合金の代表的なPr15−Ti2Co80,Pr17Cu3
80,Pr17Ce3 Co80の永久磁石材料の減磁曲線の
比較を示す特性図である。
FIG. 4 shows typical Pr 15 —Ti 2 Co 80 , Pr 17 Cu 3 C of Pr 19.5 Co 80.5 and alloys containing secondary components.
o 80, is a characteristic diagram showing a comparison of the demagnetization curve of a permanent magnet material of Pr 17 Ce 3 Co 80.

【図5】図4はPr20-xx Co20としたときの副成分
x と磁石特性との関係を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a sub-component X x and a magnet characteristic when Pr 20-x X x Co 20 is used.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年1月25日[Submission date] January 25, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【表1】 [Table 1]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】実施例3 Pr−Co2元系を主成分としてこれに副成分として代
表的なPr18Ti2 −Co80,Pr17Cu3 Co80,P
17Ce3 Co80合金をアーク溶解し、これらをボール
ミルに入れてアルゴン封入した後、10時間微細化して1
〜20μmの微粉末としたのち800 〜900 ℃に1時間加熱
し、これを4000kA/mのパルス磁場にかけたのち測定
して得られた減磁曲線の結果をPr19.5Co80.5の結果
と比較して図4に示した。これから分かるようにCe系
は保磁力 iHc は変わらないが残留磁束密度Brが増加
する。Ti及びCuを添加した場合には保磁力 iHc が
増加するがBrが減少している。なお、図5にはPr
20-xx Co80(xは副成分)として副成分の原子%と
保磁力と残留磁束密度との関係が示してある。
Example 3 A Pr-Co binary system as a main component and Pr 18 Ti 2 -Co 80 , Pr 17 Cu 3 Co 80 , P, which are typical as subcomponents, were added.
The r 17 Ce 3 Co 80 alloy was arc-melted, placed in a ball mill and filled with argon, and then refined for 10 hours to 1
Fine powder of ~ 20μm was heated to 800-900 ° C for 1 hour, and this was subjected to a pulsed magnetic field of 4000kA / m, and the result of the demagnetization curve obtained by measurement was compared with the result of Pr 19.5 Co 80.5. And shown in FIG. As can be seen from this, in the Ce system, the coercive force iHc does not change, but the residual magnetic flux density Br increases. When Ti and Cu are added, the coercive force iHc increases but Br decreases. In addition, in FIG.
20-x X x Co 80 ( x is subcomponent) are the relationship between the atomic% and the coercive force of the secondary components and residual magnetic flux density shown as.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】図4はPr19.5Co80.5及び副成分を添加した
合金の代表的なPr18Ti2Co80,Pr17Cu3 Co
80,Pr17Ce3 Co80の永久磁石材料の減磁曲線の比
較を示す特性図である。
FIG. 4 shows typical Pr 18 Ti 2 Co 80 , Pr 17 Cu 3 Co alloys containing Pr 19.5 Co 80.5 and subcomponents.
80 is a characteristic diagram showing a comparison of the demagnetization curve of a permanent magnet material of Pr 17 Ce 3 Co 80.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 主成分としてPrを19.5〜30原子%含有
し、残部がCo及び不可避の不純物からなる合金で、保
磁力が80kA/m以上を有することを特徴とする高保磁
力Pr−Co系合金の永久磁石材料。
1. A high coercive force Pr—Co system characterized by containing Pr as a main component in an amount of 19.5 to 30 atomic% and the balance being Co and unavoidable impurities and having a coercive force of 80 kA / m or more. Alloy permanent magnet material.
【請求項2】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなり、これに副
成分としてFe,Cu,Wが0.1 〜3原子%及びTi,
Ce,Smが0.1 〜5原子%のうち1種または2種以上
の元素からなる80kA/m以上の保磁力を有することを
特徴とする高保磁力Pr−Co系合金の永久磁石材料。
2. Pr as a main component is contained in an amount of 15 to 30 atomic%, and the balance is composed of Co and unavoidable impurities, and Fe, Cu and W are contained as auxiliary components in an amount of 0.1 to 3 atomic% and Ti,
A permanent magnet material of a high coercive force Pr-Co alloy, which has a coercive force of 80 kA / m or more consisting of one or more elements of Ce and Sm of 0.1 to 5 atomic%.
【請求項3】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなる合金の薄膜
で保磁力が80kA/m以上を有することを特徴とする高
保磁力Pr−Co系薄膜の永久磁石材料。
3. A high coercive force Pr-Co which is a thin film of an alloy containing Pr as a main component in an amount of 15 to 30 atomic% and the balance being Co and inevitable impurities and having a coercive force of 80 kA / m or more. System thin film permanent magnet material.
【請求項4】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなり、これに副
成分としてFe,Cu,Wが0.1 〜3原子%及びTi,
Ce,Smが0.1 〜5原子%のうち1種または2種以上
の元素からなる合金薄膜で保磁力が80kA/m以上を有
することを特徴とする高保磁力Pr−Co系薄膜の薄膜
磁石材料。
4. Pr of 15 to 30 atomic% is contained as a main component, the balance is Co and unavoidable impurities, and Fe, Cu and W are contained as 0.1 to 3 atomic% of Ti, Ti and Ti, inevitable impurities.
A thin film magnet material of a high coercive force Pr-Co type thin film, which is an alloy thin film composed of one or more elements of Ce and Sm of 0.1 to 5 atomic% and has a coercive force of 80 kA / m or more.
【請求項5】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなる合金をボー
ルミルに5〜30時間かけて1〜20μmに微細化した粉末
及び同等の合金成分の金属粗粒をメカニカル・アロイン
グして微粉末とし、これを加圧成形または磁界中に加圧
成形或いは射出成形したものを、さらに300 〜1180℃に
熱処理あるいは焼結することを特徴とする超高保磁力の
Pr−Co系合金粉末の永久磁石材料の製造方法。
5. A powder obtained by refining an alloy containing 15 to 30 atomic% of Pr as a main component and the balance consisting of Co and inevitable impurities into a ball mill for 1 to 20 μm in 5 to 30 hours, and an equivalent alloy component. Characterized by subjecting the metal coarse particles of the above to mechanically alloying to form fine powder, which is then pressure-molded or pressure-molded or injection-molded in a magnetic field and further heat-treated or sintered at 300 to 1180 ° C. A method for manufacturing a permanent magnet material of a high coercive force Pr-Co alloy powder.
【請求項6】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなり、これに副
成分としてFe,Cu,Wが0.1 〜3原子%及びTi,
Ce,Smが0.1 〜5原子%のうち1種または2種以上
の元素からなる合金をボールミルに5〜30時間かけて1
〜20μmに微細化した粉末及び同等の合金成分の金属粗
粒をメカニカル・アロイングして微粉末とし、これを加
圧成形または磁界中に加圧成形或いは射出成形したもの
を、さらに300 〜1180℃に熱処理あるいは焼結すること
を特徴とする高保磁力Pr−Co系合金の永久磁石材料
の製造方法。
6. Pr as a main component is contained in an amount of 15 to 30 atomic%, and the balance is composed of Co and unavoidable impurities, and Fe, Cu and W are contained as auxiliary components in an amount of 0.1 to 3 atomic% and Ti,
An alloy consisting of one or more elements of Ce and Sm in the range of 0.1 to 5 atomic% is placed in a ball mill for 5 to 30 hours for 1 hour.
Powder finely powdered to ~ 20μm and coarse metal particles of an equivalent alloy component are mechanically alloyed into fine powder, which is then pressure-molded or pressure-molded in a magnetic field or injection-molded, and further 300-1180 ℃ 1. A method for producing a permanent magnet material of a high coercive force Pr—Co alloy, which is characterized by heat treatment or sintering.
【請求項7】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなる合金をアル
ゴン、クリプトン、キセノンのうち少なくとも1種の不
活性ガスの雰囲気中で、室温の基板に成膜後、300 〜80
0 ℃に加熱したものあるいは300 〜800 ℃に加熱した基
板上に成膜した薄膜で、80kA/m以上の保磁力を有す
るものを得ることを特徴とする高保磁力Pr−Co系合
金の永久磁石材料の製造方法。
7. An alloy containing Pr as a main component in an amount of 15 to 30 atomic% and the balance being Co and inevitable impurities in an atmosphere of an inert gas of at least one of argon, krypton, and xenon at room temperature. After film formation on the substrate, 300-80
A permanent magnet of a high coercive force Pr-Co alloy characterized by obtaining a thin film formed on a substrate heated to 0 ° C or heated to 300 to 800 ° C and having a coercive force of 80 kA / m or more. Material manufacturing method.
【請求項8】 主成分としてPrを15〜30原子%含有
し、残部がCo及び不可避の不純物からなり、これに副
成分としてFe,Cu,Wが0.1 〜3原子%及びTi,
Ce,Smが0.1 〜5原子%のうち1種または2種以上
の元素からなる合金をアルゴン、クリプトン、キセノン
のうち少なくとも1種の不活性ガスの雰囲気中で、室温
の基板に成膜した薄膜で、80kA/m以上を有するもの
を得ることを特徴とする高保磁力Pr−Co系薄膜永久
磁石材料の製造方法。
8. Pr as a main component is contained in an amount of 15 to 30 atomic%, and the balance is composed of Co and unavoidable impurities, and Fe, Cu and W are contained as auxiliary components in an amount of 0.1 to 3 atomic% and Ti,
A thin film formed by depositing an alloy composed of one or more elements of Ce and Sm in the range of 0.1 to 5 atomic% on a substrate at room temperature in an atmosphere of an inert gas of at least one of argon, krypton, and xenon. And a method of producing a high coercive force Pr-Co thin film permanent magnet material, characterized in that the material having 80 kA / m or more is obtained.
JP5332969A 1993-12-27 1993-12-27 Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof Withdrawn JPH07192907A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5332969A JPH07192907A (en) 1993-12-27 1993-12-27 Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof
EP94120423A EP0660338A1 (en) 1993-12-27 1994-12-22 Permanent magnet material of high coercive force Pr-Co alloy and permanent magnet material of thin film and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332969A JPH07192907A (en) 1993-12-27 1993-12-27 Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07192907A true JPH07192907A (en) 1995-07-28

Family

ID=18260849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332969A Withdrawn JPH07192907A (en) 1993-12-27 1993-12-27 Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof

Country Status (2)

Country Link
EP (1) EP0660338A1 (en)
JP (1) JPH07192907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251993A (en) * 2007-03-30 2008-10-16 Tdk Corp Magnetic material and magnet using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575920B (en) * 2013-10-16 2018-01-19 中国科学院宁波材料技术与工程研究所 Rare-earth permanent magnet and preparation method thereof
CN107604211A (en) * 2017-09-21 2018-01-19 桂林电子科技大学 A kind of LaPrCo magnetic microwave absorbing material and preparation method thereof
CN113502452B (en) * 2021-07-12 2023-03-24 深圳市阿尔法材料科技有限公司 TaN-rare earth composite coating and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633806A (en) * 1979-08-29 1981-04-04 Seiko Instr & Electronics Ltd Preparation of rare-earth magnet
JPS60197843A (en) * 1984-03-17 1985-10-07 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPH05156397A (en) * 1991-12-05 1993-06-22 Mitsubishi Materials Corp Rare earth-cobalt 1-5 series permanent magnet alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251993A (en) * 2007-03-30 2008-10-16 Tdk Corp Magnetic material and magnet using the same

Also Published As

Publication number Publication date
EP0660338A1 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
WO1997038426A1 (en) Bonded magnet with low losses and easy saturation
JPH01298704A (en) Rare earth permanent magnet
JPS6110209A (en) Permanent magnet
JP3865180B2 (en) Heat-resistant rare earth alloy anisotropic magnet powder
JPH06212327A (en) Rare earth permanent magnet alloy
JPH0574618A (en) Manufacture of rare earth permanent magnet
JPS61174364A (en) Permanent magnet
JPH01220803A (en) Magnetic anisotropic sintered magnet and manufacture thereof
JPH07192907A (en) Permanent magnet material of high coercive-force pr-co alloy and permanent magnet material of thin-film and manufacture thereof
JPS59217304A (en) Permanent magnet material and manufacture thereof
JP2000114016A (en) Permanent magnet and manufacture thereof
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH0474426B2 (en)
JPS6151901A (en) Manufacture of permanent magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JP2753431B2 (en) Sintered permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
US20230019328A1 (en) Permanent magnet and method for manufacturing the same
JP2753430B2 (en) Bonded magnet
JPH01289102A (en) Manufacture of rare earth permanent magnet
JPS59219452A (en) Permanent magnet material and its production
JPH045737B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306