JPH07189767A - Control device and method for spark ignition internal combustion engine - Google Patents

Control device and method for spark ignition internal combustion engine

Info

Publication number
JPH07189767A
JPH07189767A JP33492893A JP33492893A JPH07189767A JP H07189767 A JPH07189767 A JP H07189767A JP 33492893 A JP33492893 A JP 33492893A JP 33492893 A JP33492893 A JP 33492893A JP H07189767 A JPH07189767 A JP H07189767A
Authority
JP
Japan
Prior art keywords
fuel
amount
intake air
injection
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33492893A
Other languages
Japanese (ja)
Other versions
JP3635670B2 (en
Inventor
Mamoru Fujieda
藤枝  護
Toshiji Nogi
利治 野木
Takashige Oyama
宜茂 大山
Minoru Osuga
大須賀  稔
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33492893A priority Critical patent/JP3635670B2/en
Priority to EP98113882A priority patent/EP0890725B1/en
Priority to EP94309682A priority patent/EP0661432B1/en
Priority to DE69430596T priority patent/DE69430596T2/en
Priority to DE69416502T priority patent/DE69416502T2/en
Priority to EP01110090A priority patent/EP1136685B1/en
Priority to DE69433853T priority patent/DE69433853T2/en
Priority to US08/362,878 priority patent/US5666916A/en
Priority to KR1019940036167A priority patent/KR100377645B1/en
Publication of JPH07189767A publication Critical patent/JPH07189767A/en
Priority to US08/850,012 priority patent/US5875761A/en
Priority to US09/236,321 priority patent/US6148791A/en
Priority to US09/709,404 priority patent/US6343585B1/en
Priority to US10/057,922 priority patent/US6453871B1/en
Priority to US10/237,706 priority patent/US6644270B2/en
Application granted granted Critical
Publication of JP3635670B2 publication Critical patent/JP3635670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02T10/125
    • Y02T10/144

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve fuel consumption performance by reducing pump loss through layer combustion in a partial load state, and to increase an output through premix combustion in a maximum output state. CONSTITUTION:An ignition source 14 is provided in the vicinity of a fuel injection valve 13, and air-fuel mixture is ignited after fuel injection, in a partial load state. Frame thus formed is diffused into a cylinder by the injected fuel to cause layer combustion. When the load is increased, soot or the like is generated under the layer combustion. Then, fuel injection is performed several times. Premixture is formed in the cylinder through the initial injections. Frame thus formed is injected into a cylinder, and the premixture is burned in a shor time. Combustion time is thus reduced, and knocking generation is prevented. A compression ratio of an engine, thermal efficiency, and fuel consumption performance are improved. Generation of combustible hydrocarbon is prevented by layered intake. Responsiveness of fuel and operability are improved by inner- cylinder fuel injection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火花点火内燃機関にお
いて、特に気筒内に直接燃料を噴射する火花点火内燃機
関の制御装置及び制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spark ignition internal combustion engine, and more particularly to a control device and control method for a spark ignition internal combustion engine in which fuel is directly injected into a cylinder.

【0002】[0002]

【従来の技術】内燃機関の燃料消費率を向上するには、
圧縮比を高めて熱効率を上げ、燃料の濃度が低い希薄混
合気を瞬時に燃焼させる必要がある。また、決められた
シリンダ容積において、最大の出力を発生するには、シ
リンダに流入した空気を最大限に利用し、より多くの燃
料を効率良く燃焼する必要が有る。前者がディーゼルエ
ンジンであり、後者がガソリンエンジンの燃焼方法であ
る。本発明は火花点火内燃機関であるガソリンエンジン
に関するものである。
2. Description of the Related Art To improve the fuel consumption rate of an internal combustion engine,
It is necessary to increase the compression ratio to increase the thermal efficiency, and to instantly burn the lean air-fuel mixture having a low fuel concentration. Further, in order to generate the maximum output in the determined cylinder volume, it is necessary to make maximum use of the air that has flowed into the cylinder and efficiently burn a larger amount of fuel. The former is a diesel engine and the latter is a gasoline engine combustion method. The present invention relates to a gasoline engine which is a spark ignition internal combustion engine.

【0003】図2にエンジンの燃焼状態を示す。図2
(a)はガソリンエンジンの場合である。シリンダ内に
均一な混合気を形成し、点火プラグ14で点火し、火炎
が周りに伝パン(予混合燃焼)する。空燃比が大きくな
ると火炎の伝パンが遅くなり燃焼が不安定になりやす
い。そのため、絞り弁で吸入空気量を絞り、トルクの小
さいときの空燃比が大きくなるのを防止している。一
方、空燃比が小さくなってもシリンダ内全体が均一な空
燃比のため、多くの空気が利用でき、すす等の発生が少
ない。図2(b)は、ディーゼルエンジンの場合であ
る。シリンダ内に高温の圧縮空気を作り、その中に燃料
を燃料噴射弁13で噴射する。燃料は、高温の空気内を
飛翔しながらそれぞれの燃料液滴が蒸発しシリンダの一
部分で燃焼する(層状燃焼)。このため、燃料液滴の周
りより燃焼するため、燃料量が少なくても(空燃比が大
きても)燃焼できる。しかし、燃料量が多く(空燃比が
小さく)なると、液滴周りの空気が燃焼で消費されるた
め、空気不足になりすす等が発生しやすく、高出力時の
空気の利用率が問題となる。
FIG. 2 shows the combustion state of the engine. Figure 2
(A) is the case of a gasoline engine. A uniform air-fuel mixture is formed in the cylinder and ignited by the spark plug 14, and the flame is transmitted to the surroundings (premixed combustion). When the air-fuel ratio becomes large, the flame spread becomes slow and combustion becomes unstable. Therefore, the throttle valve restricts the intake air amount to prevent the air-fuel ratio from increasing when the torque is small. On the other hand, even if the air-fuel ratio becomes small, a large amount of air can be used because of the uniform air-fuel ratio in the entire cylinder, and soot is less likely to occur. FIG. 2B shows a case of a diesel engine. Hot compressed air is created in the cylinder, and fuel is injected into the compressed air by the fuel injection valve 13. While flying in high temperature air, each fuel droplet evaporates and the fuel burns in a part of the cylinder (stratified combustion). Therefore, since the fuel is burned around the fuel droplets, the fuel can be burned even when the amount of fuel is small (the air-fuel ratio is large). However, when the amount of fuel is large (air-fuel ratio is small), the air around the droplets is consumed by combustion, so that air shortage easily causes soot, etc., and the air utilization rate at high output becomes a problem. .

【0004】図3にエンジンの空燃比とエンジンの発生
するトルクとの関係を示す。図3において実線で示した
ガソリンエンジンの特性は、排気対策にも依るが、大部
分のトルク(運転範囲)は、空燃比(A/F)14.7
(理論空燃比)で運転される。つまり、トルクを制御す
る場合、空気量に合わせて燃料量を制御し、空燃比を一
定に保っている。また、より多くのトルクを必要とする
場合は、空燃比を小さくしてトルクを増加する。通常の
運転条件では、最小空燃比がA/F13である。それに
対して、破線で示したディーゼルエンジンの場合は、燃
料量の少ない(トルクが小さい)場合は、空燃比が大き
く、空燃比がトルクの増加とともに小さくなる。空燃比
が小さくなり、A/F14.7 近くなると図2(b)で
示したように、層状燃焼のため空気不足になりやすく、
すす等が発生する。このため、ガソリンエンジンの方が
トルクが大きい。
FIG. 3 shows the relationship between the air-fuel ratio of the engine and the torque generated by the engine. The characteristics of the gasoline engine shown by the solid line in FIG. 3 depend on the exhaust gas countermeasures, but most of the torque (operating range) has an air-fuel ratio (A / F) of 14.7.
It is operated at (theoretical air-fuel ratio). That is, when controlling the torque, the fuel amount is controlled according to the air amount, and the air-fuel ratio is kept constant. Further, when more torque is required, the air-fuel ratio is reduced and the torque is increased. Under normal operating conditions, the minimum air-fuel ratio is A / F13. On the other hand, in the case of the diesel engine shown by the broken line, the air-fuel ratio is large when the fuel amount is small (the torque is small), and the air-fuel ratio becomes small as the torque increases. When the air-fuel ratio becomes smaller and the A / F becomes closer to 14.7, as shown in Fig. 2 (b), air shortage tends to occur due to stratified combustion,
Soot is generated. Therefore, the gasoline engine has a larger torque.

【0005】図4に燃料量と空気量との関係を示す。実
線のガソリンエンジンの場合は、燃料と空気が共に多く
なり、図3の空燃比が小さくなる点で、空気の増加が小
さくなる。空気量は、シリンダの往復運動で決まる。そ
のためガソリンエンジンは、絞り弁で吸気管圧力を増減
し、シリンダに入る質量空気量を変化させる。このた
め、絞り弁開度が小さい(吸気管圧力が小さい)部分負
荷では、ポンピング損失(絞り損失)が発生し、燃費が
減少する。これに対しディーゼルエンジンは、空気量は
ほぼ一定で(絞り損失が無い)、燃料のみが増加する。
このため部分負荷の燃費が増加する。
FIG. 4 shows the relationship between the fuel amount and the air amount. In the case of the gasoline engine indicated by the solid line, the fuel and the air both increase, and the air-fuel ratio in FIG. 3 decreases, and the increase in the air decreases. The amount of air is determined by the reciprocating motion of the cylinder. Therefore, in the gasoline engine, the throttle valve increases or decreases the intake pipe pressure to change the mass air amount entering the cylinder. Therefore, at a partial load where the throttle valve opening is small (intake pipe pressure is small), pumping loss (throttle loss) occurs and fuel consumption is reduced. On the other hand, in a diesel engine, the amount of air is almost constant (no throttling loss) and only the fuel increases.
Therefore, the fuel efficiency of the partial load increases.

【0006】[0006]

【発明が解決しようとする課題】以上のように、ディー
ゼルエンジンは層状燃焼であるため、部分負荷の燃費は
増加するが、最大出力が小さい。これに対し、ガソリン
エンジンは、予混合燃焼のため、最大出力は大きいが、
部分負荷では、ポンプ損失により燃費が減少する。
As described above, since the diesel engine uses stratified combustion, the fuel consumption at partial load is increased, but the maximum output is small. On the other hand, the gasoline engine has a large maximum output because of premixed combustion,
At partial load, fuel consumption decreases due to pump loss.

【0007】本発明の課題は、部分負荷では層状燃焼に
よりポンプ損失をなくして、燃費を高め、最大出力時
は、予混合燃焼により出力を大きくできる装置及び方法
を提供することである。
An object of the present invention is to provide an apparatus and method capable of eliminating pump loss due to stratified combustion at partial load to improve fuel consumption and increasing output by premixed combustion at maximum output.

【0008】[0008]

【課題を解決するための手段】上記従来技術の問題を解
決するために、本発明においては、部分負荷時は燃料噴
射弁の近傍に点火源を設け、燃料を噴射した後に混合気
に点火し、生じた火炎を燃料の噴霧でシリンダ内に拡散
し、層状燃焼させる。一方、負荷が大きくなり、層状燃
焼ですす等が発生する場合は、燃料噴射を複数回にし、
前半の噴射でシリンダ内に予混合気を作り、この予混合
気を後半の噴射で作った火炎を気筒内に噴射し、予混合
気を短時間で燃焼する。
In order to solve the above-mentioned problems of the prior art, in the present invention, an ignition source is provided in the vicinity of the fuel injection valve at the time of partial load, and the mixture is ignited after fuel injection. The generated flame is diffused into the cylinder by the spray of fuel and burned in layers. On the other hand, if the load becomes large and stratified combustion causes soot, etc., make fuel injection multiple times,
The pre-mixture is created in the cylinder by the first-half injection, and the flame created by the latter-half injection is injected into the cylinder to burn the pre-mixture in a short time.

【0009】[0009]

【作用】部分負荷のように燃料の噴射量が少ないとき
は、噴射始めと点火時期を比較的近くできるため、燃料
はシリンダ内にあまり分散せず、比較的狭い範囲で燃焼
する(層状燃焼)。負荷の増加に合わせて噴射始めを速
くすることにより混合気の形成される範囲(予混合気)
が大きくでき予混合燃焼が発生し、発生トルクが増加で
きる。
When the fuel injection amount is small such as partial load, the injection start and the ignition timing can be relatively close, so the fuel is not dispersed in the cylinder so much and burns in a relatively narrow range (stratified combustion). . Range in which air-fuel mixture is formed by premature injection start as load increases (pre-mixture)
Can be increased, premixed combustion occurs, and the generated torque can be increased.

【0010】[0010]

【実施例】図1に本発明の第一実施例である制御システ
ムの構成を示す。燃料タンク1より燃料ポンプ2に燃料
を送り、加圧する。加圧された燃料は、圧力センサ3で
燃料圧を検出し、制御回路5に圧力信号を送る。制御回
路5は、あらかじめ決められた目標と比較し、設定値以
上であれば燃料ポンプ2のスピル弁4を開き燃料圧を目
標圧力に制御する。加圧された燃料は、燃料噴射弁13
に送られる。制御回路5には、アクセルペダル19より
運転者の意図する信号(トルク信号)が送られる。これ
を受けて制御回路5は、エンジン回転数センサ10の信
号を加味して一回あたりの噴射量を計算し、燃料噴射弁
13の噴射弁駆動部20に送る。これにより燃料噴射弁
13が開き、燃料が燃焼室7に噴射される。この時の燃
料の噴射時期と噴射量(噴射時間)は、制御回路5で最
適値に選定される。燃焼室7に噴射された燃料は、最適
な点火時期に制御回路5より点火回路22に信号が送ら
れ、点火回路22で高電圧が発生し、これが点火プラグ
14に送られて、火花点火により点火される。燃焼室7
の圧力が上がり、ピストン9に作用し、クランク軸16
に回転力を与え、変速機15よりデフレンシャルギア1
7を介して、タイヤ18a,18bを駆動して走行す
る。エンジン6の発生トルクは、燃焼室7の燃焼圧力を
圧力センサ8で検出し、制御回路5に送り、運転者の意
図であるアクセルペダル19の信号と比較される。この
比較結果は、次の気筒の燃料噴射に反映される。エンジ
ン6の空気量は、空気量検出器で計測され、絞り弁で流
量が制御される。また、空気は、吸気管27に配置され
たスワール制御弁28で気筒内に適度な乱れが生成でき
るように制御される。吸気弁12の弁リフトを弁リフト
制御装置11で制御する。燃焼ガスは、排気弁21より
排気される。
FIG. 1 shows the configuration of a control system which is a first embodiment of the present invention. Fuel is fed from the fuel tank 1 to the fuel pump 2 and pressurized. The pressure of the pressurized fuel is detected by the pressure sensor 3, and a pressure signal is sent to the control circuit 5. The control circuit 5 compares it with a predetermined target, and if it is a set value or more, opens the spill valve 4 of the fuel pump 2 and controls the fuel pressure to the target pressure. The pressurized fuel is supplied to the fuel injection valve 13
Sent to. A signal (torque signal) intended by the driver is sent from the accelerator pedal 19 to the control circuit 5. In response to this, the control circuit 5 calculates the injection amount per injection in consideration of the signal from the engine speed sensor 10, and sends it to the injection valve drive unit 20 of the fuel injection valve 13. As a result, the fuel injection valve 13 is opened and fuel is injected into the combustion chamber 7. The injection timing and injection amount (injection time) of the fuel at this time are selected by the control circuit 5 to be optimum values. The fuel injected into the combustion chamber 7 is sent a signal from the control circuit 5 to the ignition circuit 22 at the optimum ignition timing, a high voltage is generated in the ignition circuit 22, and this is sent to the spark plug 14 to generate spark ignition. Is ignited. Combustion chamber 7
The pressure rises and acts on the piston 9, and the crankshaft 16
To the differential gear 1 from the transmission 15
The tires 18a and 18b are driven via the vehicle 7 to travel. The torque generated by the engine 6 detects the combustion pressure in the combustion chamber 7 by the pressure sensor 8 and sends it to the control circuit 5 to be compared with the signal of the accelerator pedal 19 which is the driver's intention. The result of this comparison is reflected in the fuel injection of the next cylinder. The air amount of the engine 6 is measured by the air amount detector, and the flow rate is controlled by the throttle valve. Further, the air is controlled by a swirl control valve 28 arranged in the intake pipe 27 so that appropriate turbulence can be generated in the cylinder. The valve lift of the intake valve 12 is controlled by the valve lift controller 11. The combustion gas is exhausted from the exhaust valve 21.

【0011】図5に燃焼室の縦断面図により、本発明の
第一実施例を説明する。エンジンヘッド25に形成され
た副燃焼室23に燃料噴射弁13,点火プラグ14を設
置する。この時の燃料噴射弁13と点火プラグ14の位
置関係は燃料噴射弁13の噴霧の下流側に点火プラグ1
4が設置されるのが良い。これは、点火プラグ14で形
成した火炎核を噴霧で燃焼室7やピストン9に設置した
キャビティ24に分散しやすい。しかし、点火プラグ1
4が噴霧に近過ぎると点火プラグ14が噴霧で濡れて点
火不良を引き起こす場合もあり位置関係が重要である。
また、副燃焼室23の出口部26を絞ることにより、火
炎核の噴出速度を調整できる。この場合でも、絞り過ぎ
ると圧力損失を生じ熱効率が低下する。
A first embodiment of the present invention will be described with reference to FIG. 5 which is a vertical sectional view of a combustion chamber. The fuel injection valve 13 and the spark plug 14 are installed in the auxiliary combustion chamber 23 formed in the engine head 25. At this time, the positional relationship between the fuel injection valve 13 and the spark plug 14 is such that the spark plug 1 is located downstream of the spray of the fuel injection valve 13.
4 should be installed. This is because the flame kernel formed by the ignition plug 14 is easily dispersed in the cavity 24 provided in the combustion chamber 7 or the piston 9 by spraying. But the spark plug 1
When 4 is too close to the spray, the ignition plug 14 may get wet with the spray and cause ignition failure, so the positional relationship is important.
Further, by squeezing the outlet portion 26 of the auxiliary combustion chamber 23, the ejection speed of the flame kernel can be adjusted. Even in this case, if the throttle is excessively narrowed, pressure loss occurs and the thermal efficiency decreases.

【0012】図6に空燃比A/Fと排気(HC,NO
x)の関係を示す。燃料の噴射時期がクランク角90°
の場合はNOxのピーク値がA/F16近くである。こ
のようなNOxの排出量の変化は、均一混合気の場合に
見られる傾向である。噴射時期がクランク角90°と吸
気行程の中盤までは噴射された噴霧がピストンの動きや
吸気による気筒内の空気の流れにより気筒内全体に分散
するためである。噴射時期が大きくなるにつれてNOx
のピーク値の発生空燃比が大きくなる。それと同時にN
Oxの発生がなだらかになって来る。また、HCの排出
量も変化する。噴射時期90°と噴射時期180°を比
較するとA/F15近くのHCは、噴射時期90°が3
800ppmC,噴射時期180°が6500ppmCであ
る。このように同じ空燃比でHCが異なるのは、燃焼し
ているところの空燃比が異なるためである。つまり、噴
射時期180°の方が実際に燃焼している場所の空燃比
が小さいためである。このため、空燃比が大きくなった
場合噴射時期が90°の場合が小さい空燃比で燃焼不良
(失火)を起こしている。このように噴射時期を大きく
すると安定して(HCが増加しない)燃焼する空燃比が
大きくなるのは、噴射時期が大きくなると点火時期に近
くなり、燃料が分散しにくくなり層状混合気となるため
である。このように噴射時期を選定することにより、均
一混合気と層状混合気が自由に形成できる。そこで、エ
ンジントルクが小さいときは、噴射時期を大きくして点
火時期に近かづける。トルクが大きくなるに従って噴射
時期を小さくし均一混合気に近かづける。
FIG. 6 shows the air-fuel ratio A / F and exhaust (HC, NO
The relationship of x) is shown. Fuel injection timing is crank angle 90 °
In the case of, the peak value of NOx is near A / F16. Such a change in the NOx emission amount tends to be observed in the case of a homogeneous air-fuel mixture. This is because, until the injection timing reaches a crank angle of 90 ° and the middle of the intake stroke, the injected spray is dispersed throughout the cylinder due to the movement of the piston and the air flow in the cylinder due to the intake air. NOx increases as the injection timing increases
The generated air-fuel ratio of the peak value of becomes large. At the same time N
The generation of Ox becomes gentle. In addition, the amount of discharged HC also changes. When the injection timing 90 ° and the injection timing 180 ° are compared, HC near A / F15 has an injection timing 90 ° of 3
800ppmC, injection timing 180 ° is 6500ppmC. The reason why the HCs differ with the same air-fuel ratio is that the air-fuel ratios at which they are burning differ. That is, the air-fuel ratio at the place where the combustion is actually performed is smaller at the injection timing of 180 °. Therefore, when the air-fuel ratio becomes large, the combustion failure (misfire) occurs at a small air-fuel ratio when the injection timing is 90 °. The reason why the air-fuel ratio at which combustion is stable (HC does not increase) increases when the injection timing is increased is that the ignition timing is approached when the injection timing is increased, and the fuel is less likely to be dispersed and becomes a stratified mixture. Is. By selecting the injection timing in this way, a uniform air-fuel mixture and a stratified air-fuel mixture can be freely formed. Therefore, when the engine torque is small, the injection timing is increased to bring it closer to the ignition timing. As the torque increases, the injection timing is reduced to bring the mixture closer to the uniform mixture.

【0013】図7に第二実施例を燃焼室の縦断面図で示
す。本実施例は、燃料噴射弁13を燃焼室7に突出し燃
料を気筒内に広く分散するように噴射口が穿孔されてい
る。このような場合は、ピストンが低くなる下死点近く
で燃料を噴射すると気筒壁面に燃料が直接あたり、壁面
流が作られる。このような状態では、良好な燃焼は期待
できない。そのため、このように噴霧が広い噴射弁場合
はキャビティ24が上死点近くに有り、燃料がこのキャ
ビティ24内に吹き込めるようなタイミングで吹く必要
が有る。その一例として燃料の噴射を図8に示すように
複数回に分けて噴射することができる。クランク角0度
近くで前噴射を行い均一混合気を作る。点火時期近くで
噴射する後噴射で火種を作り前噴射で形成した均一混合
気を急速に燃焼させる。噴射量の調整は後噴射でも、前
噴射でもできるので、最適状態で噴射できる。このよう
に、前,後二回に分ける場合は、図5に示した噴射角度
が小さい噴射弁であっても有効である。
FIG. 7 is a vertical sectional view of the combustion chamber of the second embodiment. In this embodiment, the fuel injection valve 13 is projected into the combustion chamber 7 and the injection port is bored so that the fuel is widely dispersed in the cylinder. In such a case, when the fuel is injected near the bottom dead center where the piston is lowered, the fuel directly hits the wall surface of the cylinder and a wall surface flow is created. In such a state, good combustion cannot be expected. Therefore, in the case of such an injection valve with a wide spray, the cavity 24 is near the top dead center, and it is necessary to blow the fuel at a timing such that the fuel can be blown into the cavity 24. As an example, as shown in FIG. 8, the fuel injection can be divided into multiple injections. Pre-injection is performed at a crank angle of near 0 degrees to create a uniform mixture. The homogeneous mixture formed by the pre-injection is rapidly burned by producing the spark in the post-injection that is injected near the ignition timing. Since the injection amount can be adjusted by either the post-injection or the pre-injection, the injection can be performed in the optimum state. In this way, in the case where the injection is divided into the front and the rear, the injection valve with a small injection angle shown in FIG. 5 is effective.

【0014】図9に前噴射,後噴射する場合の燃料噴射
時間の計算のフローチャートを示す。ステップ101で
アクセル開度α、エンジン回転数Neを読み込む。この
時空気量を測定している場合は、空気量Qaを追加して
もよい。ステップ102で燃料量Qfを計算する。ステ
ップ103でQf>Qf1の判定をする。NOの場合
は、ステップ109に進み、無効噴射量Qxを加えて噴
射時間Tp2を算出する。ステップ110でTp2を後
噴射の時期に噴射して完了する。ステップ103がYes
の場合は、ステップ104に進み、最小噴射量Qf0を
減算して、Qf2を算出する。ステップ105でQf2
に無効噴射量Qxを加えて噴射時間Tp1を算出する。
Tp1を前噴射の時期で噴射する。ステップ107でQ
f0にQxを加えてTp2を算出し、Tp2を後噴射の
時期に噴射する。このように、前,後噴射ともそれぞれ
無効噴射量Qxを追加する必要が有る。
FIG. 9 shows a flow chart for calculating the fuel injection time in the case of pre-injection and post-injection. In step 101, the accelerator opening α and the engine speed Ne are read. If the air amount is being measured at this time, the air amount Qa may be added. In step 102, the fuel amount Qf is calculated. In step 103, it is determined that Qf> Qf1. In the case of NO, the routine proceeds to step 109, where the invalid injection amount Qx is added to calculate the injection time Tp2. In step 110, Tp2 is injected at the time of post-injection, and the process is completed. Step 103 is Yes
In the case of, the routine proceeds to step 104, where the minimum injection amount Qf0 is subtracted to calculate Qf2. Qf2 in step 105
The injection time Tp1 is calculated by adding the ineffective injection amount Qx to.
Tp1 is injected at the timing of the previous injection. Q at step 107
Qx is added to f0 to calculate Tp2, and Tp2 is injected at the time of post-injection. As described above, it is necessary to add the invalid injection amount Qx for both the front and rear injections.

【0015】図10に燃料圧力の制御装置を示す。燃料
タンク1より燃料ポンプ2燃料が送られる。燃料ポンプ
2は、モータ30で駆動され、加圧した燃料を高圧配管
34に送る。高圧配管34には噴射弁13a〜13d,
アキュームレータ33,燃料圧力センサ3,リリーフ弁
32が配設されている。リリーフ弁33は、ガスがダン
パとして封入されており燃料圧力が高くなるとアキュー
ムレータ内に燃料が流入する。圧力が下がると燃料を高
圧配管34に送り出す。リリーフ弁32は、燃料が高く
なり過ぎた場合に燃料を流失させて、圧力上昇を防止す
る。燃料圧力センサ3は、圧力に比例した信号を制御回
路5に送り燃料ポンプ2の電磁スピル装置4に送り燃料
ポンプ2の吐出量を制御し、燃料圧力を制御する。ま
た、モータ30のコントローラ31に信号をおくり、燃
料ポンプ30の回転数を制御して、燃料圧力を制御す
る。本実施例は、電磁スピル装置4とコントローラ31
の両方設置したがどちらか一つでも燃料圧力は、制御で
きる。しかし、燃料ポンプ2をエンジンにて駆動する場
合はモータ30は無いので電磁スピル装置4だけとな
る。
FIG. 10 shows a fuel pressure control device. Fuel pump 2 fuel is sent from fuel tank 1. The fuel pump 2 is driven by the motor 30 and sends the pressurized fuel to the high pressure pipe 34. The high pressure pipe 34 includes injection valves 13a to 13d,
An accumulator 33, a fuel pressure sensor 3, and a relief valve 32 are provided. Gas is enclosed as a damper in the relief valve 33, and the fuel flows into the accumulator when the fuel pressure increases. When the pressure drops, the fuel is delivered to the high pressure pipe 34. The relief valve 32 drains the fuel when the fuel becomes too high and prevents pressure rise. The fuel pressure sensor 3 sends a signal proportional to the pressure to the control circuit 5 to the electromagnetic spill device 4 of the fuel pump 2 to control the discharge amount of the fuel pump 2 to control the fuel pressure. Further, a signal is sent to the controller 31 of the motor 30 to control the number of revolutions of the fuel pump 30 to control the fuel pressure. In this embodiment, the electromagnetic spill device 4 and the controller 31 are used.
Although both are installed, the fuel pressure can be controlled by either one. However, when the fuel pump 2 is driven by the engine, there is no motor 30, and only the electromagnetic spill device 4 is used.

【0016】図11にEGRの制御系統図を示す。空気
は、空気流量計35,絞り弁37,吸気管27よりエン
ジン6に入り、排気となり排気管41に排出される。排
気管41には、触媒39が有る。ここでEGRが必要に
なると、制御装置5よりEGR弁38に信号を送りEGR
弁を開く。また絞り弁アクチェータ36に信号を送り、
絞り弁37を閉し吸気管27の圧力を大気圧より低くす
る。すると、吸気管圧力に比例して排気が排気管41か
ら吸気管27にEGR弁38を介して流れる。この時の
排気の流量は、吸気管圧力に比例するので、この吸気管
圧力を吸気管圧力センサ40で検出し、制御回路に5に
送り、絞り弁アクチェータ36で絞り弁37の開度を調
節する。絞り弁37の開度を制御すれば吸気管27の圧
力が制御でき、EGR量がフィードバック制御により正
確に制御できる。
FIG. 11 shows a control system diagram of the EGR. Air enters the engine 6 through the air flow meter 35, the throttle valve 37, and the intake pipe 27, becomes exhaust gas, and is exhausted to the exhaust pipe 41. The exhaust pipe 41 has a catalyst 39. If EGR is required here, a signal is sent from the control device 5 to the EGR valve 38.
Open the valve. Also, send a signal to the throttle valve actuator 36,
The throttle valve 37 is closed to lower the pressure in the intake pipe 27 below atmospheric pressure. Then, the exhaust gas flows from the exhaust pipe 41 to the intake pipe 27 via the EGR valve 38 in proportion to the intake pipe pressure. Since the flow rate of the exhaust gas at this time is proportional to the intake pipe pressure, the intake pipe pressure is detected by the intake pipe pressure sensor 40, sent to the control circuit 5, and the opening degree of the throttle valve 37 is adjusted by the throttle valve actuator 36. To do. By controlling the opening of the throttle valve 37, the pressure in the intake pipe 27 can be controlled, and the EGR amount can be accurately controlled by feedback control.

【0017】図12に本発明の第三実施例を示す。空気
は絞り弁213によって調整され、吸気管214を介し
て、エンジンに吸入される。吸気弁208のリフトは形
状の異なるカム203を切り替えることによって変化さ
せることができる。カムの切り替えはロッカーアーム2
10を油圧制御弁202で切り替えることによって行
う。油圧制御弁202は例えば電磁ソレノイドで行う。
絞り弁はモータ212によって開度を制御する。エンジ
ンには気筒内圧力を検出するセンサ220を取り付け
る。また、気筒内に燃料を直接噴射する噴射弁204を
取り付ける。排気管には排気の空燃比を検出するセンサ
205を取り付ける。排気管には触媒を取り付ける。触
媒は酸素過多の条件でもNOxを除去できるものが望ま
しい。また、理論空燃比条件では、HC,CO,NOx
を同時に除去できる三元触媒に機能が必要である。ま
た、排気の1部は排気管流量を制御する弁215,21
8によって、制御される。これによって、燃焼温度を低
下させ、NOxを低減する。これら、各制御弁は制御装
置201で制御される。燃費を低減するためには、吸気
管内の圧力を大気圧に近付け、ポンピング損失を小さく
することが望ましい。そのため、絞り弁212はなるべ
く全開状態とする。しかし、配管216から排気還流を
行う場合では、吸気管内の圧力を排気管内の圧力より小
さくする必要があるので、絞り弁を閉じる。
FIG. 12 shows a third embodiment of the present invention. The air is adjusted by the throttle valve 213 and is taken into the engine via the intake pipe 214. The lift of the intake valve 208 can be changed by switching the cams 203 having different shapes. Rocker arm 2 for switching cams
This is performed by switching 10 with the hydraulic control valve 202. The hydraulic control valve 202 is, for example, an electromagnetic solenoid.
The throttle valve is controlled in opening by a motor 212. A sensor 220 that detects the cylinder pressure is attached to the engine. Further, an injection valve 204 for directly injecting fuel into the cylinder is attached. A sensor 205 for detecting the air-fuel ratio of exhaust gas is attached to the exhaust pipe. A catalyst is attached to the exhaust pipe. It is desirable that the catalyst be capable of removing NOx even under the condition of excessive oxygen. Further, under the stoichiometric air-fuel ratio condition, HC, CO, NOx
It is necessary for the three-way catalyst to be capable of simultaneously removing hydrogen to have a function. Further, a part of the exhaust gas is provided with valves 215, 21 for controlling the exhaust pipe flow rate.
Controlled by 8. This lowers the combustion temperature and NOx. These control valves are controlled by the control device 201. In order to reduce fuel consumption, it is desirable to bring the pressure in the intake pipe close to atmospheric pressure to reduce pumping loss. Therefore, the throttle valve 212 is fully opened as much as possible. However, when the exhaust gas recirculation is performed from the pipe 216, the pressure in the intake pipe needs to be lower than the pressure in the exhaust pipe, so the throttle valve is closed.

【0018】図13に本発明の第三実施例の動作を示
す。運転条件に応じて図13のように吸気弁カムのリフ
トを変化させる。空気量が多く必要なときには吸気弁の
リフトをAのようにする。空気量が少ないときには吸気
弁のリフトをリフトB,リフトCのように変化させる。
リフトを変化させることによって、排気弁とのオーバラ
ップも変化させる。高出力運転時には、排気弁と吸気弁
のオーバラップ期間を大きくする。このようにして、吸
気弁のリフトによって、空気量を変化させることができ
る。
FIG. 13 shows the operation of the third embodiment of the present invention. The lift of the intake valve cam is changed as shown in FIG. 13 according to the operating conditions. When a large amount of air is required, the intake valve lift is set to A. When the amount of air is small, the intake valve lift is changed to lift B and lift C.
By changing the lift, the overlap with the exhaust valve is also changed. During high power operation, the overlap period between the exhaust valve and the intake valve is increased. In this way, the air amount can be changed by the lift of the intake valve.

【0019】図14にロッカーアーム221,223,
224とカム225,226,227の構成の1例を示
す。ロッカーアーム223とカム225で駆動し、吸気
弁を往復運動させる。ロッカーアーム226とカム22
4は固定されておらず、自由な状態になっている。カム
を切り替えるときには、ロッカーアーム224とカム2
26で駆動し、吸気弁を往復運動させる。ロッカーアー
ム223とカム225は固定されておらず、自由な状態
になっている。このようにすることによって、カムを切
り替えることができる。この例では、カムのリフトを変
化させるようにしたが、カムの形状を変えて、開弁及び
閉弁の時期を同時に制御しても良い。
FIG. 14 shows rocker arms 221, 223,
An example of the configuration of the 224 and the cams 225, 226, 227 is shown. It is driven by the rocker arm 223 and the cam 225 to reciprocate the intake valve. Rocker arm 226 and cam 22
4 is not fixed and is in a free state. When switching the cam, the rocker arm 224 and the cam 2
Driven by 26, the intake valve is reciprocated. The rocker arm 223 and the cam 225 are not fixed and are in a free state. By doing so, the cam can be switched. In this example, the lift of the cam is changed, but the shape of the cam may be changed to control the valve opening and closing timings at the same time.

【0020】図15にアクセル開度とエンジン回転数に
対するカムの選択のマップを示す。この例ではカムの切
り替えを3段階に選んだ。エンジン回転数が低く、アク
セル開度が小さいときにはリフトの小さいカムAを選
ぶ。エンジン回転数及びアクセル開度が大きくなるのに
従って、リフトの大きいカムに切り替える。
FIG. 15 shows a map of cam selection with respect to accelerator opening and engine speed. In this example, the cam switching is selected in three stages. When the engine speed is low and the accelerator opening is small, the cam A with a small lift is selected. As the engine speed and accelerator opening increase, the cam is switched to a larger lift.

【0021】図16にエンジントルクとエンジン回転数
に対するカムの選択のマップを示す。この例ではカムの
切り替えを3段階に選んだ。エンジントルクはアクセル
開度に対してあらかじめ決めた目標トルクとする。エン
ジン回転数が低く、エンジンが小さいときにはリフトの
小さいカムAを選ぶ。エンジン回転数及びエンジントル
クが大きくなるのに従って、リフトの大きいカムに切り
替える。
FIG. 16 shows a map of cam selection with respect to engine torque and engine speed. In this example, the cam switching is selected in three stages. The engine torque is a target torque that is predetermined with respect to the accelerator opening. When the engine speed is low and the engine is small, select the cam A with a small lift. As the engine speed and engine torque increase, the cam is switched to a larger lift.

【0022】図17に空燃比A/Fの切り替え時の吸入
空気量の制御方法を示す。絞り弁全開やリフトの大きい
カムを選定すると、空燃比を小さくすると燃料量が多く
なり、軸トルクが大きくなる。空燃比が16付近はNO
xの排出量が多くなりやすいので、空燃比を18から1
5にスキップさせる。このとき、空気量をそのままにし
て、空燃比を15に切り替えると燃料量が多くなり、C
のように軸トルクが増大し、違和感を感じる。そこで、
空燃比を切り替えるときには、空気量を少なくして、燃
料量の増大を防止し、軸トルクがAからBのように変化
させ、ショックを少なくする。空気量の調整は絞り弁ま
たはカムの切り替えで行う。絞り弁で行うと吸気管内の
圧力が小さくなり、ポンピング損失が大きくなるので、
できる限り、カムの切り替えで行うのが良い。また、軸
トルクが小さくなり、例えば空燃比を70以上にして
も、目標の軸トルクにならない場合もカムまたは絞り弁
で空気量を調整する。
FIG. 17 shows a method of controlling the intake air amount when switching the air-fuel ratio A / F. When the throttle valve is fully opened or a cam with a large lift is selected, the fuel amount increases and the shaft torque increases when the air-fuel ratio is reduced. NO when the air-fuel ratio is around 16
Since the emission amount of x tends to increase, the air-fuel ratio is changed from 18 to 1
Skip to 5. At this time, if the air-fuel ratio is changed to 15 while keeping the air amount as it is, the fuel amount increases, and C
As you can see, the shaft torque increases and you feel something strange. Therefore,
When switching the air-fuel ratio, the amount of air is reduced to prevent an increase in the amount of fuel, the axial torque is changed from A to B, and the shock is reduced. The amount of air is adjusted by switching the throttle valve or cam. If the throttle valve is used, the pressure in the intake pipe decreases and pumping loss increases, so
It is best to switch cams as much as possible. Further, even if the axial torque becomes small and the target axial torque is not achieved even if the air-fuel ratio becomes 70 or more, the air amount is adjusted by the cam or the throttle valve.

【0023】図18に燃料量と軸トルクの関係を示す。
燃料量を多くすると軸トルクを大きくできるので、燃料
量によって軸トルクを制御できる。
FIG. 18 shows the relationship between the fuel amount and the shaft torque.
Since the shaft torque can be increased by increasing the fuel amount, the shaft torque can be controlled by the fuel amount.

【0024】図19に本発明の第四実施例を示す。アク
セル開度α及びエンジン回転数Nなどエンジン状態を検
出するエンジン状態検出部301、それから燃料噴射量
Qfを計算する燃料噴射量計算部302によって燃料噴
射量Qfを求める。充填効率マップ303に基づいて3
04でエンジンの空気量を計算し、各カムの空気量を求
めて空燃比を計算する。305で空燃比が可燃範囲であ
るかを判定し、306でカムの選定、及び、307で絞
り弁開度の決定を行う。空気量が多過ぎる場合には、混
合気が希薄状態になってしまうのでリフトの少ないカム
に切り替える。筒内噴射では気筒内の混合気を直接制御
するので、希薄混合気の限界を従来の吸気ポート噴射シ
ステムに比べて、大きくできるので、燃料量で制御でき
る軸トルクの範囲が広い。そのため、空気量を従来のよ
うに微細に制御しなくても燃料量で軸トルクを制御でき
る。
FIG. 19 shows a fourth embodiment of the present invention. The fuel injection amount Qf is obtained by the engine state detection unit 301 that detects the engine state such as the accelerator opening α and the engine speed N, and the fuel injection amount calculation unit 302 that calculates the fuel injection amount Qf. 3 based on the filling efficiency map 303
At 04, the air amount of the engine is calculated, the air amount of each cam is obtained, and the air-fuel ratio is calculated. At 305, it is determined whether the air-fuel ratio is within the combustible range, at 306, the cam is selected, and at 307, the throttle valve opening is determined. If the amount of air is too large, the air-fuel mixture becomes lean, so switch to a cam with less lift. In the in-cylinder injection, the air-fuel mixture in the cylinder is directly controlled. Therefore, the limit of the lean air-fuel mixture can be made larger than that in the conventional intake port injection system, so that the range of the axial torque that can be controlled by the fuel amount is wide. Therefore, the shaft torque can be controlled by the fuel amount without finely controlling the air amount as in the conventional case.

【0025】図20に本発明の第五実施例を示す。31
1でアクセル開度を検出し、312で目標トルクを決定
する。目標トルクから燃料量計算手段313で燃料量を
決定する。軸トルクに対して空燃比をあらかじめ決めて
おくと、空気量Qaを求めることができる。316で空
燃比を判定し、空燃比が18以上である場合には、31
8で絞り弁を全開として、トルク検出手段319でエン
ジンのトルクを検出し、目標トルクになるように燃料噴
射量を制御する。一方、空燃比が18以下の場合には3
21で目標の空燃比になるように空気量を制御する。空
気量はたとえば絞り弁開度またはカムのリフトで行う。
ここで、322の空気量センサで空気量を検出し、目標
の空気量になるように空気量を制御してもよい。
FIG. 20 shows a fifth embodiment of the present invention. 31
The accelerator opening is detected at 1 and the target torque is determined at 312. The fuel amount calculation means 313 determines the fuel amount from the target torque. The air amount Qa can be obtained by previously determining the air-fuel ratio with respect to the shaft torque. 316 determines the air-fuel ratio, and if the air-fuel ratio is 18 or more, 31
At 8, the throttle valve is fully opened, the torque of the engine is detected by the torque detecting means 319, and the fuel injection amount is controlled so as to reach the target torque. On the other hand, if the air-fuel ratio is 18 or less, 3
At 21, the air amount is controlled so that the target air-fuel ratio is achieved. The amount of air is controlled by, for example, the throttle valve opening or the cam lift.
Here, the air amount may be detected by the air amount sensor 322 and the air amount may be controlled so as to reach the target air amount.

【0026】図21に目標空燃比のマップを示す。軸ト
ルクの増大とともに空燃比を小さくするが、B点では空
燃比16をスキップするように空燃比をC点に切り替え
る。さらにトルクを大きくするときには空燃比を小さく
して、D点に向かうようにする。空燃比をさらに小さく
すると混合気が濃い状態になりすぎる。そのため、この
領域では空気量を検出し、空燃比制御をおこなうのが望
ましい。
FIG. 21 shows a map of the target air-fuel ratio. Although the air-fuel ratio is reduced as the shaft torque increases, the air-fuel ratio is switched to point C so that the air-fuel ratio 16 is skipped at point B. When the torque is further increased, the air-fuel ratio is decreased so as to move toward the point D. If the air-fuel ratio is further reduced, the mixture will become too rich. Therefore, it is desirable to detect the air amount and control the air-fuel ratio in this region.

【0027】図22にエンジン回転数Nと吸入空気量Q
aに対する絞り弁開度θthの関係を示す。絞り弁で空
気量を制御する場合には、吸入空気量に対するマップか
ら絞り弁開度を求める。さらに精密な制御を行うときに
は空気量を検出し、フィードバックをかける。
FIG. 22 shows the engine speed N and the intake air amount Q.
The relationship of the throttle valve opening θth with respect to a is shown. When controlling the air amount by the throttle valve, the throttle valve opening is obtained from the map for the intake air amount. When performing more precise control, the air amount is detected and feedback is applied.

【0028】図23,図24に本発明の第六実施例を示
す。空燃比が18以上の場合、混合気が希薄すぎて運転
性,排気浄化性が低下する場合があるので、燃焼変動を
検出し、空気量を少なくするように、絞り弁開度または
カムリフトを設定する。
23 and 24 show a sixth embodiment of the present invention. When the air-fuel ratio is 18 or more, the air-fuel mixture may be too lean and the drivability and exhaust gas purification performance may deteriorate, so combustion fluctuations are detected and the throttle valve opening or cam lift is set to reduce the air amount. To do.

【0029】図25に本発明の第七実施例を示す。エン
ジンのシリンダガスケット231に電極234を埋め込
み電極232から高電圧を加える。ガスケットにはネジ
止め用の穴233が開いている。
FIG. 25 shows a seventh embodiment of the present invention. The electrode 234 is embedded in the cylinder gasket 231 of the engine and a high voltage is applied from the electrode 232. A hole 233 for screwing is opened in the gasket.

【0030】図26に図25の縦断面図を示す。電極2
38と239の間に高電圧が点火コイルより加えられ、
火花放電する。これによって気筒壁面近く及び多点から
混合気に点火が行われるので、燃焼速度がおおきくな
る。また、壁面近くから燃焼させるので、壁面近くのい
わゆるクエンチ領域が少なくなり、未燃焼炭化水素が少
なくなり、かつノッキングが発生しにくくなる。ガスケ
ット上下面には絶縁層235及び237を設ける。電極
239がアースである場合には絶縁層237はなくても
良い。
FIG. 26 shows a vertical sectional view of FIG. Electrode 2
A high voltage is applied from the ignition coil between 38 and 239,
Sparks out. As a result, the air-fuel mixture is ignited near the wall surface of the cylinder and from multiple points, so that the combustion speed becomes large. Further, since the fuel is burned from near the wall surface, the so-called quench region near the wall surface is reduced, unburned hydrocarbons are reduced, and knocking is less likely to occur. Insulating layers 235 and 237 are provided on the upper and lower surfaces of the gasket. The insulating layer 237 may be omitted when the electrode 239 is grounded.

【0031】[0031]

【発明の効果】本発明により、燃焼時間が短縮し、ノッ
クが防止でき、エンジンの圧縮比が高められ、熱効率が
上昇し、燃費が高くなる。層状吸気により未燃炭化水素
の発生が防止できる。筒内直接燃料噴射により、燃料の
応答性が高まり運転性が向上する。
According to the present invention, the combustion time can be shortened, knock can be prevented, the compression ratio of the engine can be increased, the thermal efficiency can be increased, and the fuel consumption can be improved. Generation of unburned hydrocarbons can be prevented by the stratified intake. Direct cylinder fuel injection improves fuel responsiveness and improves drivability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示し、本制御システムの
構成を示す概念図。
FIG. 1 is a conceptual diagram showing a configuration of a control system according to a first embodiment of the present invention.

【図2】エンジンの燃焼室内の燃焼状態を示す概念図。FIG. 2 is a conceptual diagram showing a combustion state in a combustion chamber of an engine.

【図3】空燃比と発生トルクとの相関図。FIG. 3 is a correlation diagram between an air-fuel ratio and generated torque.

【図4】燃料量と空気量との相関図。FIG. 4 is a correlation diagram of the fuel amount and the air amount.

【図5】燃焼室の縦断面図。FIG. 5 is a vertical sectional view of a combustion chamber.

【図6】空燃比A/Fと排気中のHC,NOxの相関
図。
FIG. 6 is a correlation diagram of air-fuel ratio A / F and HC and NOx in exhaust gas.

【図7】本発明の第二実施例を示し、図5と同様燃焼室
の縦断面図。
FIG. 7 is a vertical cross-sectional view of the combustion chamber showing the second embodiment of the present invention and similar to FIG.

【図8】燃料噴射時期を表すチャート図。FIG. 8 is a chart showing fuel injection timing.

【図9】燃料噴射時間の計算のフローチャート図。FIG. 9 is a flowchart of calculation of fuel injection time.

【図10】燃料圧力の制御装置のブロック図。FIG. 10 is a block diagram of a fuel pressure control device.

【図11】EGRの制御系統を表す概念図。FIG. 11 is a conceptual diagram showing an EGR control system.

【図12】本発明の第三実施例を示し、本制御システム
の構成を示す概念図。
FIG. 12 is a conceptual diagram showing the configuration of the control system according to the third embodiment of the present invention.

【図13】吸気弁の動作を示すタイムチャート図。FIG. 13 is a time chart showing the operation of the intake valve.

【図14】ロッカーアームの構成を示す斜視図。FIG. 14 is a perspective view showing the structure of a rocker arm.

【図15】エンジン回転数とアクセル開度とカムの選択
のマップ図。
FIG. 15 is a map diagram of engine speed, accelerator opening, and cam selection.

【図16】エンジン回転数とエンジントルクとカムの選
択のマップ図。
FIG. 16 is a map diagram of engine speed, engine torque, and cam selection.

【図17】空燃比A/Fと軸トルクとの相関図。FIG. 17 is a correlation diagram between the air-fuel ratio A / F and the shaft torque.

【図18】燃料量と軸トルクとの相関図。FIG. 18 is a correlation diagram between the fuel amount and the shaft torque.

【図19】本発明の第四実施例を示す、本制御システム
のブロック図。
FIG. 19 is a block diagram of the present control system showing a fourth embodiment of the present invention.

【図20】本発明の第五実施例を示す、本制御システム
のブロック図。
FIG. 20 is a block diagram of the present control system showing a fifth embodiment of the present invention.

【図21】目標空燃比のエンジントルクに対するマップ
図。
FIG. 21 is a map diagram of a target air-fuel ratio with respect to engine torque.

【図22】エンジン回転数と吸入空気量に対する絞り弁
開度の相関図。
FIG. 22 is a correlation diagram of the throttle valve opening with respect to the engine speed and the intake air amount.

【図23】本発明の第六実施例を示す、本制御システム
のブロック図。
FIG. 23 is a block diagram of the present control system showing a sixth embodiment of the present invention.

【図24】図23と同様、本制御システムのブロック
図。
FIG. 24 is a block diagram of the control system, similar to FIG. 23.

【図25】本発明の第七実施例を示し、エンジンのシリ
ンダガスケットの構成を示す上面図。
FIG. 25 is a top view showing the configuration of the cylinder gasket of the engine according to the seventh embodiment of the present invention.

【図26】図25の縦断面図。FIG. 26 is a vertical sectional view of FIG. 25.

【符号の説明】[Explanation of symbols]

1…燃料タンク、2…燃料ポンプ、3…燃料圧力セン
サ、4…電磁スピル装置、5…制御回路、6…エンジ
ン、7…燃焼室、8…燃焼圧力センサ、9…ピストン、
12…吸気弁、13…燃料噴射弁、14…点火プラグ、
19…アクセルペダル、21…排気弁、24…キャビテ
ィ、28…スワールコントロール弁。
1 ... Fuel tank, 2 ... Fuel pump, 3 ... Fuel pressure sensor, 4 ... Electromagnetic spill device, 5 ... Control circuit, 6 ... Engine, 7 ... Combustion chamber, 8 ... Combustion pressure sensor, 9 ... Piston,
12 ... intake valve, 13 ... fuel injection valve, 14 ... spark plug,
19 ... Accelerator pedal, 21 ... Exhaust valve, 24 ... Cavity, 28 ... Swirl control valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大須賀 稔 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 白石 拓也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Minoru Osuga Minoru 1-7-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Takuya Shiraishi 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】燃料を火花点火機関の燃焼室に直接噴射す
る燃料噴射手段と、 前記燃焼室内の混合気に点火する点火手段と、 前記火花点火機関の出力トルクを検出するトルク検出手
段と、 前記燃焼室への吸入空気を導入する弁手段と、 前記燃料噴射手段から噴射される燃料の燃料量と噴射時
期とを制御する燃料制御手段と、 前記点火手段の点火時期を制御する点火時期制御手段
と、 前記燃焼室への吸入空気量を制御する吸入空気量制御手
段とからなる火花点火内燃機関の制御装置において、 前記トルク検出手段が検出した出力トルクの値があらか
じめ定められた値に近づくように、前記燃料制御手段は
燃料量を変化させ、前記吸入空気量制御手段は吸入空気
量を変化させて、空燃比を変化させるとともに、 前記燃料噴射手段の近傍に前記点火手段を設け、 部分負荷時は燃料を噴射した後に混合気に点火し、生じ
た火炎を燃料の噴霧でシリンダ内に拡散して燃焼させ、 負荷が大きくなり層状燃焼ですす等が発生する場合は、
燃料噴射を複数回に分け、前半の噴射でシリンダ内に予
混合気を作り、この予混合気を後半の噴射で作った火炎
を気筒内に噴射して予混合気を燃焼させることを特徴と
する火花点火内燃機関の制御装置。
1. A fuel injection means for directly injecting fuel into a combustion chamber of a spark ignition engine, an ignition means for igniting an air-fuel mixture in the combustion chamber, and a torque detection means for detecting an output torque of the spark ignition engine. Valve means for introducing intake air into the combustion chamber, fuel control means for controlling the fuel amount and injection timing of fuel injected from the fuel injection means, and ignition timing control for controlling ignition timing of the ignition means And an intake air amount control unit for controlling the intake air amount into the combustion chamber, the control device for the spark ignition internal combustion engine, wherein the value of the output torque detected by the torque detection unit approaches a predetermined value. As described above, the fuel control unit changes the fuel amount, the intake air amount control unit changes the intake air amount to change the air-fuel ratio, and the fuel injection unit is provided in the vicinity of the fuel injection unit. When a means of fire is provided and the mixture is ignited after injecting fuel at the time of partial load, the resulting flame is diffused into the cylinder by fuel spray and burned, and the load increases and stratified combustion causes soot, etc. Is
It is characterized by dividing the fuel injection into multiple times, making a premixed gas in the cylinder by the first half injection, and injecting the flame made by the latter half injection into the cylinder to burn the premixed air mixture. Control device for spark ignition internal combustion engine.
【請求項2】請求項1の記載において、前記吸入空気量
制御手段は吸入空気量を一定として、前記燃料制御手段
は燃料量を変化させ、空燃比を変化させることを特徴と
する火花点火内燃機関の制御装置。
2. The spark ignition internal combustion engine according to claim 1, wherein the intake air amount control means keeps the intake air amount constant, and the fuel control means changes the fuel amount to change the air-fuel ratio. Engine control unit.
【請求項3】請求項1の記載において、前記吸入空気量
制御手段は吸入空気量をステップ状に変化させて、前記
燃料制御手段は燃料量を変化させ、空燃比を変化させる
ことを特徴とする火花点火内燃機関の制御装置。
3. The method according to claim 1, wherein the intake air amount control means changes the intake air amount stepwise, and the fuel control means changes the fuel amount to change the air-fuel ratio. Control device for spark ignition internal combustion engine.
【請求項4】請求項1の記載において、前記吸入空気量
制御手段は吸入空気量を定められた関数に従って変化さ
せて、前記燃料制御手段は燃料量を変化させ、空燃比を
変化させることを特徴とする火花点火内燃機関の制御装
置。
4. The method according to claim 1, wherein the intake air amount control means changes the intake air amount according to a predetermined function, and the fuel control means changes the fuel amount to change the air-fuel ratio. A characteristic control device for a spark ignition internal combustion engine.
【請求項5】燃料噴射手段は燃料を火花点火機関の燃焼
室に直接噴射し、 点火手段は前記燃焼室内の混合気に点火し、 トルク検出手段は前記火花点火機関の出力トルクを検出
し、 弁手段は前記燃焼室へ吸入空気を導入し、 燃料制御手段は前記燃料噴射手段から噴射される燃料の
燃料量と噴射時期とを制御し、 点火時期制御手段は前記点火手段の点火時期を制御し、 吸入空気量制御手段は前記燃焼室への吸入空気量を制御
する火花点火内燃機関の制御方法において、 前記トルク検出手段が検出した出力トルクの値があらか
じめ定められた値に近づくように、前記燃料制御手段は
燃料量を変化させ、前記吸入空気量制御手段は吸入空気
量を変化させ、空燃比を変化させるとともに、 前記燃料噴射手段の近傍に前記点火手段を設け、 部分負荷時は燃料を噴射した後に混合気に点火し、生じ
た火炎を燃料の噴霧でシリンダ内に拡散して燃焼させ、 負荷が大きくなり層状燃焼ですす等が発生する場合は、
燃料噴射を複数回に分け、前半の噴射でシリンダ内に予
混合気を作り、この予混合気を後半の噴射で作った火炎
を気筒内に噴射して予混合気を燃焼させることを特徴と
する火花点火内燃機関の制御方法。
5. A fuel injection means directly injects fuel into a combustion chamber of a spark ignition engine, an ignition means ignites an air-fuel mixture in the combustion chamber, a torque detection means detects an output torque of the spark ignition engine, The valve means introduces intake air into the combustion chamber, the fuel control means controls the fuel amount and the injection timing of the fuel injected from the fuel injection means, and the ignition timing control means controls the ignition timing of the ignition means. However, the intake air amount control means, in the control method of the spark ignition internal combustion engine for controlling the intake air amount to the combustion chamber, so that the value of the output torque detected by the torque detection means approaches a predetermined value, The fuel control unit changes the fuel amount, the intake air amount control unit changes the intake air amount, changes the air-fuel ratio, and the ignition unit is provided in the vicinity of the fuel injection unit. Igniting the air-fuel mixture after fuel is injected, resulting flame was burning diffused into the cylinder in a spray of fuel, if the load soot or the like occurs in increased and stratified combustion is
It is characterized by dividing the fuel injection into multiple times, making a premixed gas in the cylinder by the first half injection, and injecting the flame made by the latter half injection into the cylinder to burn the premixed air mixture. Method for controlling spark ignition internal combustion engine.
【請求項6】請求項5の記載において、前記吸入空気量
制御手段は吸入空気量を一定として、前記燃料制御手段
は燃料量を変化させ、空燃比を変化させることを特徴と
する火花点火内燃機関の制御方法。
6. The spark ignition internal combustion engine according to claim 5, wherein the intake air amount control means keeps the intake air amount constant, and the fuel control means changes the fuel amount to change the air-fuel ratio. Engine control method.
【請求項7】請求項5の記載において、前記吸入空気量
制御手段は吸入空気量をステップ状に変化させて、前記
燃料制御手段は燃料量を変化させ、空燃比を変化させる
ことを特徴とする火花点火内燃機関の制御方法。
7. The method according to claim 5, wherein the intake air amount control means changes the intake air amount stepwise, and the fuel control means changes the fuel amount to change the air-fuel ratio. Method for controlling spark ignition internal combustion engine.
【請求項8】請求項5の記載において、前記吸入空気量
制御手段は吸入空気量を定められた関数に従って変化さ
せて、前記燃料制御手段は燃料量を変化させ、空燃比を
変化させることを特徴とする火花点火内燃機関の制御方
法。
8. The method according to claim 5, wherein the intake air amount control means changes the intake air amount according to a predetermined function, and the fuel control means changes the fuel amount to change the air-fuel ratio. A method for controlling a spark ignition internal combustion engine, which is characterized.
JP33492893A 1993-12-28 1993-12-28 Control apparatus and method for spark ignition internal combustion engine Expired - Fee Related JP3635670B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP33492893A JP3635670B2 (en) 1993-12-28 1993-12-28 Control apparatus and method for spark ignition internal combustion engine
EP94309682A EP0661432B1 (en) 1993-12-28 1994-12-22 Apparatus for and method of controlling internal combustion engine
DE69430596T DE69430596T2 (en) 1993-12-28 1994-12-22 Method and device for controlling an internal combustion engine
DE69416502T DE69416502T2 (en) 1993-12-28 1994-12-22 Method and device for controlling an internal combustion engine
EP01110090A EP1136685B1 (en) 1993-12-28 1994-12-22 Apparatus for and method of controlling an internal combustion engine
DE69433853T DE69433853T2 (en) 1993-12-28 1994-12-22 Method and device for controlling an internal combustion engine
EP98113882A EP0890725B1 (en) 1993-12-28 1994-12-22 Apparatus for and method of controlling internal combustion engine
KR1019940036167A KR100377645B1 (en) 1993-12-28 1994-12-23 Apparatus and method for controlling internal combustion engine
US08/362,878 US5666916A (en) 1993-12-28 1994-12-23 Apparatus for and method of controlling internal combustion engine
US08/850,012 US5875761A (en) 1993-12-28 1997-05-01 Apparatus for and method of controlling internal combustion engine
US09/236,321 US6148791A (en) 1993-12-28 1999-01-25 Apparatus for and method of controlling internal combustion engine
US09/709,404 US6343585B1 (en) 1993-12-28 2000-11-13 Apparatus for and method of controlling internal combustion engine
US10/057,922 US6453871B1 (en) 1993-12-28 2002-01-29 Apparatus for and method of controlling internal combustion engine
US10/237,706 US6644270B2 (en) 1993-12-28 2002-09-10 Apparatus for and method of controlling internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33492893A JP3635670B2 (en) 1993-12-28 1993-12-28 Control apparatus and method for spark ignition internal combustion engine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004210914A Division JP2004286038A (en) 2004-07-20 2004-07-20 Internal combustion engine control device and method

Publications (2)

Publication Number Publication Date
JPH07189767A true JPH07189767A (en) 1995-07-28
JP3635670B2 JP3635670B2 (en) 2005-04-06

Family

ID=18282813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33492893A Expired - Fee Related JP3635670B2 (en) 1993-12-28 1993-12-28 Control apparatus and method for spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP3635670B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128048A1 (en) 1996-12-19 2001-08-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Spark ignition type in-cylinder injection internal combustion engine
US6470850B1 (en) 1998-07-10 2002-10-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP1075593B1 (en) * 1999-03-01 2003-12-03 Robert Bosch Gmbh Fuel injection method for an internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128048A1 (en) 1996-12-19 2001-08-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Spark ignition type in-cylinder injection internal combustion engine
US6470850B1 (en) 1998-07-10 2002-10-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP1075593B1 (en) * 1999-03-01 2003-12-03 Robert Bosch Gmbh Fuel injection method for an internal combustion engine

Also Published As

Publication number Publication date
JP3635670B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
KR100377645B1 (en) Apparatus and method for controlling internal combustion engine
JP3500951B2 (en) Non-throttle compression-ignition internal combustion engine and control method thereof
US7194996B2 (en) Internal combustion engine and method for auto-ignition operation of said engine
US6345499B1 (en) Catalyst light-off method and device for direct injection engine
US5207058A (en) Internal combustion engine
US6651617B2 (en) Method of controlling ignition timing of compression ignition engine of premixed mixture type
EP1445461B1 (en) Combustion control device and method for engine
US6978771B2 (en) Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
US6745743B2 (en) Control apparatus for a direct injection engine
JP2002004913A (en) Compression self-ignition type internal combustion engine
KR101016924B1 (en) Fuel injection control apparatus and fuel injection control method of internal combustion engine
JP4126971B2 (en) INTERNAL COMBUSTION ENGINE OPERATED BY COMPRESSED SELF-IGNITION OF MIXED AIR AND CONTROL METHOD FOR INTERNAL COMBUSTION ENGINE
WO2002097255A1 (en) Compression ignition internal combustion engine
JPH0735726B2 (en) Internal combustion engine and operating method thereof
JP4297288B2 (en) Control method of ignition timing of premixed compression ignition engine
JP2000120457A (en) Diesel engine
JP4117799B2 (en) Control method of ignition timing of premixed compression ignition engine
JP2001355449A (en) Compressed self-ignition type internal combustion engine
JPH10212995A (en) Exhaust temperature raising device
JP2007192235A (en) Control device and method for spark ignition internal combustion engine
JP3635670B2 (en) Control apparatus and method for spark ignition internal combustion engine
JP2004286038A (en) Internal combustion engine control device and method
JP3677947B2 (en) Fuel injection control device for internal combustion engine
JP3677948B2 (en) Fuel injection control device for internal combustion engine
JP2007192234A (en) Control device and method for spark ignition internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees