JPH07181294A - Tritium inclusive gas processor - Google Patents

Tritium inclusive gas processor

Info

Publication number
JPH07181294A
JPH07181294A JP5327503A JP32750393A JPH07181294A JP H07181294 A JPH07181294 A JP H07181294A JP 5327503 A JP5327503 A JP 5327503A JP 32750393 A JP32750393 A JP 32750393A JP H07181294 A JPH07181294 A JP H07181294A
Authority
JP
Japan
Prior art keywords
water
gas
tritium
absorbing
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5327503A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Uda
達彦 宇田
Koichi Maki
紘一 真木
Michio Otsuka
道夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5327503A priority Critical patent/JPH07181294A/en
Publication of JPH07181294A publication Critical patent/JPH07181294A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To provide a simple and compact tritium-containing gas processor for purifying a large amount of gas containing tritium. CONSTITUTION:By sending contamination gas generated in a room 1 placed with a tritium treatment component to an oxidation catalyst tower 5, tritium is converted to water. Then water is recovered with a water absorbing dryer tower 1 filled with water absorbing high polymer and cooled inside, or passed through a water-absorbing dryer tower 77 added with drying material for backup and only pure gas is discharged through an exhaust stuck 8 to the air. The water absorbing dryer tower 77 is put by water absorbing high polymer material 12 of rapid water absorbing rate near the inlet and water absorbing high polymer material 13 with large water absorbing capacity in the behind and finally by a solid drying material for almost completely eliminating water. Also, to reduce the load of the water absorbing dryer tower 7, a condenser for primarily recovering water is arranged in front and a condenser setting water-absorbing high polymer material is placed at a cooling plate in the behind.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トリチウムを取扱う施
設で発生した低濃度大容量のトリチウム含有ガスからト
リチウムを除去するトリチウム含有ガス処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tritium-containing gas treatment apparatus for removing tritium from a low-concentration and large-capacity tritium-containing gas generated in a facility handling tritium.

【0002】[0002]

【従来の技術】トリチウムは水素同位体の一つで原子力
発電所とその使用済み燃料の再処理施設でその発生が問
題とされる程度であったが、核融合実験炉の開発に伴っ
て燃料としての重要度が増している。核融合炉の燃料と
して用いたとき施設の室内に漏洩した場合に放射性排出
ガス除去装置が必要になる。またトリチウムガスが発生
するまたは取り扱う他の施設においても放射性排出ガス
除去装置が必要になる。トリチウムはβ放射性で比放射
能が高いと言う特徴があり、核融合の燃料とするトリチ
ウム取扱い施設では高純度のものを大量に扱うので安全
性には特別な配慮が求められ、独自のトリチウムプロセ
ス技術の開発が必要である。トリチウムガス1gは10,0
00Ciの放射性物質で、1気圧1ccのトリチウムガスでも
2.6Ciの放射能を有する。核融合炉の燃料としては一
日で1kgのトリチウムが使われる。従ってこのガスの一
部、例えば1Ciが何らかの事故で容積1000m3の室
内に漏れ出た時でも放射能濃度は1cc当たり1n(ナ
ノ)Ciで,これは許容濃度の1万倍である。この場合に
室内空気を直ちに換気し換気の過程でトリチウムガスを
水にして回収したのち清浄なガスのみ屋外へ排出する方
法が考えられている。例えば文献(Tritium Process La
boratory at the JAERI (Y. Naruse et al.: Fusion En
gineering and Design Vol.12 P 293-318 (1990)))に
述べられているように、処理ガスを酸素と水素を共に2
00℃以上に加熱した貴金属触媒酸化器に送り水素を水
にしてモレキュラシーブ等の固体乾燥材に吸着回収し
た。ここで一例として大型核融合炉規模の大量にトリチ
ウムを扱う施設で処理したガスと水分の量を推定すると
次のようになる。炉室容積を30万m3、湿度60%の
とき室内ガス中の水分量は3.9m3である。トリチウムの
放射能半減期は12年なので、室内のガスがトリチウム
で汚染された場合室内に閉じ込めて放射能の減衰を待つ
ことはできない。また、トリチウムは水素と同じ挙動を
するので材料に侵透し拡散し易いためできる限り早急な
回収が必要である。室内ガス中の水分を全てモレキュラ
シーブを充填した乾燥塔で回収しようとすると最低22
3のモレキュラシーブが必要になる。本装置は非常時
に用いる装置であることを考えるとこの量は極めて大量
で、設備が大規模になり設備費が膨大な額になる。ま
た、大量のモレキュラシーブを用いると放射性の固体廃
棄物を増加させることになる。本来モレキュラシーブ充
填乾燥塔の利点は吸着した水分を加熱脱離させ、モレキ
ュラシーブを再利用することにあるので、乾燥塔1基の
容積はなるだけ小さくし、繰り返し使用すべきである。
しかし、乾燥塔の再生に要する時間は、加熱、脱水、冷
却の工程を含むと12時間以上にかかるので、頻繁な再
生操作を繰り返して少ない台数の乾燥塔をサイクルさせ
使用することは、多量のガスから生成する水分を回収す
る目的には必ずしも適さない。従って従来技術ではこの
固体乾燥塔が大規模の設備となる。
2. Description of the Related Art Tritium is one of the hydrogen isotopes, and its generation was a problem at the nuclear power plant and the spent fuel reprocessing facility. Is becoming more important. When it is used as a fuel for a nuclear fusion reactor, a radioactive emission gas removal device is required if it leaks into the facility room. Also, other facilities that generate or handle tritium gas will also require radioactive emission gas removal equipment. Tritium has the characteristic of being β-radioactive and has a high specific activity. Since a large amount of high-purity tritium is used at the facility for handling tritium, which is a fuel for fusion, special consideration is required for safety, and the unique tritium process Development of technology is necessary. 1 g of tritium gas is 10,0
It is a radioactive substance of 00Ci and has a radioactivity of 2.6Ci even with 1 cc of tritium gas. 1 kg of tritium is used as fuel for the fusion reactor per day. Therefore, even if some of this gas, for example 1 Ci, leaks into a room with a volume of 1000 m 3 due to some accident, the radioactivity concentration is 1 n (nano) Ci per cc, which is 10,000 times the allowable concentration. In this case, a method is considered in which the indoor air is immediately ventilated, the tritium gas is turned into water during the ventilation process, and then only the clean gas is discharged to the outside. For example, reference (Tritium Process La
boratory at the JAERI (Y. Naruse et al .: Fusion En
gineering and Design Vol.12 P 293-318 (1990))).
It was sent to a precious metal catalyst oxidizer heated to 00 ° C. or higher and hydrogen was made into water and adsorbed and recovered on a solid drying material such as a molecular sieve. Here, as an example, the amount of gas and water processed in a large-scale fusion reactor scale facility that handles a large amount of tritium is estimated as follows. When the furnace chamber volume is 300,000 m 3 and the humidity is 60%, the amount of water in the room gas is 3.9 m 3 . Since the radioactivity half-life of tritium is 12 years, if the gas in the room is contaminated with tritium, it cannot be confined in the room and wait for the radioactivity to decay. In addition, since tritium behaves like hydrogen, it easily penetrates into the material and diffuses, so it is necessary to collect tritium as soon as possible. If you try to collect all the moisture in the room gas with a drying tower filled with molecular sieves, it will be at least 22
Requires m 3 molecular sieves. Considering that this device is used in an emergency, this amount is extremely large, and the equipment becomes large-scale and the equipment cost becomes enormous. Also, the use of large amounts of molecular sieve will increase radioactive solid waste. Originally, the advantage of the molecular sieve packed drying tower is that the adsorbed water is desorbed by heating and the molecular sieve is reused. Therefore, the volume of one drying tower should be made as small as possible and should be repeatedly used.
However, since the time required to regenerate the drying tower is 12 hours or more including the steps of heating, dehydration and cooling, it is not possible to cycle a small number of drying towers by repeating frequent regenerating operations. It is not always suitable for the purpose of recovering water generated from gas. Therefore, in the prior art, this solid drying tower is a large-scale facility.

【0003】このようなトリチウムを水にしてモレキュ
ラシーブ等の固体乾燥材に吸着させる公知例として特開
昭57−12399号公報がある。
As a known example of making such tritium into water and adsorbing it on a solid drying material such as molecular sieve, there is JP-A-57-12399.

【0004】[0004]

【発明が解決しようとする課題】上記の核融合炉のよう
に、大量のトリチウム燃料を扱う施設では事故時に漏洩
するトリチウム量が極めて多くなる可能性がある。ま
た、施設の規模が大きいので処理対対象となる室内の空
気中の水蒸気分及び水へ転換された水素同位体成分を加
えた水分量は大量になるが、従来法のごとき生成した水
分を回収するためのモレキュラシーブ等の固体乾燥材を
用いる装置では固体乾燥材の重量の1%しか吸水出来
ず、通常は用いない緊急時を想定した設備としては大型
となり、その設備費の負担が大きい。また、モレキュラ
シーブに吸着された水分を脱離させて再利用するときに
再生操作のため加熱器及び熱エネルギも必要となる。
In a facility that handles a large amount of tritium fuel, such as the above fusion reactor, the amount of tritium leaked during an accident may be extremely large. In addition, since the scale of the facility is large, the amount of water added will be large, including the amount of water vapor in the air in the target room and the hydrogen isotope component converted to water, but the water generated by the conventional method will be recovered. An apparatus using a solid desiccant such as a molecular sieve for absorbing water can absorb only 1% of the weight of the solid desiccant, which is a large facility for an emergency that is not normally used, and the cost of the facility is large. In addition, a heater and heat energy are required for the regeneration operation when desorbing the moisture adsorbed on the molecular sieve and reusing it.

【0005】本発明の目的は、トリチウムを含む大容量
のガスを浄化する簡略でかつコンパクトなトリチウム含
有ガス処理装置を提供することにある。
An object of the present invention is to provide a simple and compact tritium-containing gas treatment device for purifying a large volume of gas containing tritium.

【0006】[0006]

【課題を解決するための手段】上記目的は、トリチウム
を含む水素同位体及び酸素を含む処理対象ガスを通過さ
せる酸化触媒を容器内に収納する酸化手段と、該酸化手
段で生成した水分を吸収する吸水性高分子材を容器内に
収納する吸水手段とを備えたことにより達成される。
Means for Solving the Problems The above-mentioned object is to oxidize means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen in a container, and to absorb water generated by the oxidizing means. And a water absorbing means for accommodating the water-absorbing polymer material in the container.

【0007】上記目的は、トリチウムを含む水素同位体
及び酸素を含む処理対象ガスを通過させる酸化触媒を容
器内に収納する酸化手段と、該酸化手段で生成した水分
を吸収する吸水速度の速い吸水性高分子材と吸水容量の
大きい吸水性高分子材とを容器内に収納する吸水手段と
を備えたことにより達成される。
The above-mentioned object is to oxidize means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen in a container, and water absorption having a high water absorption rate for absorbing water produced by the oxidizing means. This is achieved by including a water-absorbing means for accommodating a water-soluble polymer material having a high water-absorbing capacity and a water-soluble polymer material in a container.

【0008】上記目的は、トリチウムを含む水素同位体
及び酸素を含む処理対象ガスを通過させる酸化触媒を容
器内に収納する酸化手段と、該酸化手段で生成した水分
を吸収する吸水速度の速い吸水性高分子材と吸水容量の
大きい吸水性高分子材とを容器内に収納する第1の吸水
手段と、該第1の吸水手段の下流に配置した固体乾燥材
を容器内に収納する第2の吸水手段とを備えたことによ
り達成される。
[0008] The above-mentioned object is to oxidize means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotopes containing tritium and oxygen in a container, and water absorption having a high water absorption rate for absorbing water produced by the oxidizing means. First water absorbing means for accommodating a water-soluble polymer material having a high water absorption capacity and a water-absorbing polymer material having a large water absorption capacity, and a second water accommodating material arranged downstream of the first water absorbing means in a container And the water absorption means of

【0009】上記目的は、トリチウムを含む水素同位体
及び酸素を含む処理対象ガスを通過させる酸化触媒を容
器内に収納する酸化手段と、該酸化手段で生成した水分
を吸収する吸水速度の速い吸水性高分子材と吸水容量の
大きい吸水性高分子材と固体乾燥材を順次容器内に配置
した吸水手段とを備えたことにより達成される。
The above-mentioned object is to oxidize means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope including tritium and oxygen in a container, and water absorption having a high water absorption rate for absorbing water generated by the oxidizing means. This is achieved by providing a water-absorbing means in which a water-soluble polymer material, a water-absorbent polymer material having a large water absorption capacity, and a solid drying material are sequentially arranged in a container.

【0010】上記目的は、トリチウムを含む水素同位体
及び酸素を含む処理対象ガスを通過させる酸化触媒を容
器内に収納する酸化手段と、該酸化手段の下流に配置し
水分を凝縮させて回収する第1の凝縮器と、該第1の凝
縮器の下流に配置し冷却部表面を吸水性高分子材で被覆
した第2の凝縮器とを備えたことにより達成される。上
記目的は、トリチウムを含む水素同位体及び酸素を含む
処理対象ガス排気管に接続し浮遊粒子を除去するフィル
タと、該フィルタに接続し前記処理対象ガスを吸引する
送風器と、該送風器の吐出側に接続し前記処理対象ガス
を所定温度に予熱する予熱器と、該予熱器に接続し前記
処理対象ガス中のトリチウムを含む水素同位体を前記酸
素と酸化触媒により酸化する酸化触媒塔と、該酸化触媒
塔に接続し生成した含む前記処理対象ガスを所定温度に
冷却する冷却器と、該冷却器に接続し前記処理対象ガス
中の水分を吸水・乾燥する吸水乾燥塔と、該吸水乾燥塔
に接続し乾燥した処理対象ガスを大気放出する排気スタ
ックとを備えたことにより達成される。
The above-mentioned object is to oxidize means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen in a container, and to arrange water downstream of the oxidizing means to condense and collect water. This is achieved by providing a first condenser and a second condenser arranged downstream of the first condenser and having a surface of the cooling section coated with a water-absorbing polymer material. The above-mentioned object is a filter for removing suspended particles by connecting to a processing gas exhaust pipe containing hydrogen isotope containing tritium and oxygen, a blower connected to the filter for sucking the processing gas, and a blower of the blower. A preheater connected to the discharge side to preheat the gas to be treated to a predetermined temperature; and an oxidation catalyst tower connected to the preheater to oxidize hydrogen isotopes containing tritium in the gas to be treated with the oxygen and the oxidation catalyst. A cooler connected to the oxidation catalyst tower to cool the generated gas to be treated to a predetermined temperature; a water absorption drying tower connected to the cooler to absorb and dry the water in the gas to be treated; It is achieved by including an exhaust stack connected to the drying tower and releasing the dry gas to be treated to the atmosphere.

【0011】[0011]

【作用】上記構成によれば、酸化手段で生成した水分を
吸収する吸収材に吸水性高分子材を用いることにより、
吸水能力がモレキュラシーブと比較して100倍以上と
なり簡略でかつコンパクトなトリチウム含有ガス処理装
置を提供できる。
According to the above construction, by using the water-absorbing polymer material as the absorbent material that absorbs the water generated by the oxidizing means,
It is possible to provide a simple and compact tritium-containing gas treatment device having a water absorption capacity of 100 times or more that of a molecular sieve.

【0012】上記の吸水性高分子材は植物を原料として
得られる澱粉系と繊維質からなるセルロース等の天然高
分子並びに合成高分子が代表的である。セルロース系の
代表は紙類である。後者としてはポリアクリル酸系とポ
リビニル酸系などの高分子材が挙げられる。このうち、
合成高分子はイオン性を持つ水溶性の電解質ポリマーに
架橋結合した3次元網目構造を持ったものである。これ
らの吸水材は1gの高分子材に対して100gから最大
1000gの水を吸水できる。特に合成高分子からなる
吸水材は物理吸着ではなく化学的な反応で水分をイオン
化して保持するので保水能力が高く、保持する水分が物
理的な蒸気圧により容易に再蒸発はしない。一方、モレ
キュラシーブやシリカゲルの吸水能は1g当り10mg
程度である。
The above water-absorbing polymer material is typically a natural polymer such as a cellulose composed of starch and fibrous obtained from plants as a raw material, and a synthetic polymer. A representative of cellulosics is papers. Examples of the latter include polymer materials such as polyacrylic acid type and polyvinyl acid type. this house,
The synthetic polymer has a three-dimensional network structure in which a water-soluble electrolyte polymer having ionicity is crosslinked. These water absorbing materials can absorb 100 g to 1000 g of water per 1 g of the polymer material. In particular, the water-absorbing material made of synthetic polymer has a high water-retaining ability because it retains ionized water by a chemical reaction rather than physical adsorption, and the retained water does not easily re-evaporate due to the physical vapor pressure. On the other hand, the water absorption capacity of molecular sieves and silica gel is 10 mg per 1 g.
It is a degree.

【0013】但し、モレキュラシーブ等の固体乾燥材は
一旦水分を吸収すると高温で加熱処理をしない限り水分
を脱離せず蒸気圧が低く、保水性に優れるため最終的に
処理対象ガス中に残存する水分を極めて少なくし、トリ
チウムの除染効率を高めるのに有効である。放射性ガス
の回収を目的とする場合、除染効率も要求されるので併
用することが好ましい。
However, once the solid desiccant such as molecular sieve absorbs water, it does not desorb water and has a low vapor pressure unless it is heat-treated at a high temperature, and since it has excellent water retention, the water remaining in the gas to be treated is finally retained. It is effective in reducing the decontamination efficiency of tritium. For the purpose of recovering radioactive gas, decontamination efficiency is also required, and therefore it is preferable to use them together.

【0014】[0014]

【実施例】以下、本発明の実施例を図により説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の実施例に係わるトリチウム
含有ガス処理装置の基本構成を示すフローチヤートであ
る。
FIG. 1 is a flow chart showing the basic structure of a tritium-containing gas treatment apparatus according to an embodiment of the present invention.

【0016】先ず、本実施例の構成を説明する。First, the configuration of this embodiment will be described.

【0017】本図に示すように、1はトリチウム取扱い
機器設備を設置した室、2はフィルタ、3は送風器、4
は予熱器、5は酸化触媒塔、6は冷却器、7は吸水乾燥
塔、8は排気スタックである。9、10は加熱器で、加熱
器10は水素同位体ガスの水化反応を促進する為に設けて
ある。ここで酸化触媒塔5には白金やパラジウム等の貴
金属を0.5%程度添加した触媒が充填されている。ま
た、酸化触媒塔5に当該ガスを流通させるとき新たな水
素を添加してトリチウムの回収効率を上げることが可能
である。
As shown in the figure, 1 is a room in which equipment for handling tritium is installed, 2 is a filter, 3 is a blower, and 4 is a blower.
Is a preheater, 5 is an oxidation catalyst tower, 6 is a cooler, 7 is a water absorption drying tower, and 8 is an exhaust stack. 9 and 10 are heaters, and the heater 10 is provided to accelerate the hydration reaction of the hydrogen isotope gas. Here, the oxidation catalyst tower 5 is filled with a catalyst to which a noble metal such as platinum or palladium is added by about 0.5%. In addition, it is possible to improve the efficiency of tritium recovery by adding new hydrogen when the gas is passed through the oxidation catalyst tower 5.

【0018】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0019】トリチウム取扱い機器設備を設置した室1
の空気がトリチウム化水素HTで汚染した事が検知され
たとき非常用排気弁11を開いてこのトリチウム含有ガス
処理装置にガスを導入し、送風器3で排風する。トリチ
ウムで汚染されたガスは予熱器4で酸化反応が可能とな
る温度迄昇温され、酸化触媒塔5でガス中に含まれる酸
素により酸化されて水になり、冷却器6で冷却されて吸
水乾燥塔7において水分が吸着される。吸水乾燥塔7で
トリチウムが除染されたガスが排気スタック8から大気
へ放出される。
Room 1 equipped with equipment for handling tritium
When it is detected that the air is contaminated with tritiated hydrogen HT, the emergency exhaust valve 11 is opened to introduce the gas into the tritium-containing gas processing device, and the blower 3 exhausts the gas. The gas contaminated with tritium is heated in the preheater 4 to a temperature at which the oxidation reaction is possible, oxidized by oxygen contained in the gas in the oxidation catalyst tower 5 to become water, and cooled in the cooler 6 to absorb water. Water is adsorbed in the drying tower 7. The gas from which tritium has been decontaminated in the water absorption drying tower 7 is released from the exhaust stack 8 to the atmosphere.

【0020】図2は図1に示す吸水乾燥塔の構成を示す
説明図である。
FIG. 2 is an explanatory view showing the structure of the water absorption drying tower shown in FIG.

【0021】本図に示すように、吸水乾燥塔7には高分
子吸水材が充填されガスの入口側に吸水速度の速い高分
子材12、例えばセルロース系材料を配し、後段には吸水
容量の大きい高分子材13、例えばポリアクリル酸系の高
分子材を配置し、吸水能力を高めるため冷却管14も配置
した構造である。
As shown in the figure, the water absorption / drying tower 7 is filled with a polymer water absorbent material, and a polymer material 12 having a high water absorption rate, for example, a cellulosic material is arranged on the gas inlet side, and a water absorption capacity is provided in the subsequent stage. In this structure, a polymer material 13 having a large size, for example, a polyacrylic acid-based polymer material is arranged, and a cooling pipe 14 is also arranged in order to enhance the water absorption capacity.

【0022】このように吸水乾燥塔7において、従来の
モレキュラシーブの如き固体乾燥材に代えて単位重量当
たりの吸水率の高い吸水性高分子材を用いることによっ
て吸水乾燥塔7の設備容量を大幅に縮小できる。
As described above, in the water absorption drying tower 7, the water absorption polymer material having a high water absorption rate per unit weight is used in place of the solid drying material such as the conventional molecular sieve, whereby the equipment capacity of the water absorption drying tower 7 is significantly increased. Can be reduced.

【0023】しかし、吸水性高分子材は吸水容量は大き
いがガス中に残存する水分をモレキュラシーブ程は低減
出来ない。即ち、ガス中の水分を完全に回収するため
に、バックアップ用としてモレキュラシーブ充填乾燥塔
を設けるとより効率が上がる。この場合のモレキュラシ
ーブ容量は少なくて良く、再生操作の頻度も極めて少な
くなる。
However, although the water-absorbent polymer material has a large water-absorption capacity, it cannot reduce the water content remaining in the gas to the extent of molecular sieve. That is, in order to completely recover the water content in the gas, a molecular sieve packed drying tower is provided as a backup to further improve the efficiency. In this case, the molecular sieve capacity may be small, and the frequency of the regenerating operation is extremely low.

【0024】図3は図2に示す吸水乾燥塔の他の実施例
の構成を示す説明図である。
FIG. 3 is an explanatory view showing the construction of another embodiment of the water absorption drying tower shown in FIG.

【0025】本図に示すように吸水乾燥塔77は第3層に
モレキュラシーブのごとき吸水率は低いが水分蒸気圧を
極めて低くできる固体乾燥材15を配置した構造である。
As shown in the figure, the water absorption drying tower 77 has a structure in which a solid desiccant 15, such as a molecular sieve, having a low water absorption rate but an extremely low water vapor pressure is arranged in the third layer.

【0026】図2、図3に示す吸水乾燥塔7は構造が簡
単なので一種の廃棄物容器として扱うことができる。従
って、吸水後は本容器で保管廃棄でき汚染の拡大を防ぐ
ことが可能である。廃棄のタイミングは吸水乾燥塔7の
入口と出口の差圧をモニタし差圧の増加により判断する
か、湿度計で湿度をモニタし湿度の増加により判断する
か、露点計で露点温度をモニタし露点温度の上昇により
判断するか、吸水性高分子材の電気伝導度をモニタし電
気伝導度の低下により判断することも可能である。
Since the water absorption drying tower 7 shown in FIGS. 2 and 3 has a simple structure, it can be treated as a kind of waste container. Therefore, after absorbing water, it can be stored and discarded in this container, and it is possible to prevent the spread of contamination. The timing of disposal can be judged by monitoring the differential pressure between the inlet and outlet of the water absorption drying tower 7 and judging by the increase of the differential pressure, by monitoring the humidity with a hygrometer and judging by the increase of humidity, or by monitoring the dew point temperature with a dew point meter. It is possible to make the determination by increasing the dew point temperature or by making a decrease in the electrical conductivity by monitoring the electrical conductivity of the water-absorbing polymer material.

【0027】次に、高分子吸水材を用いた吸水乾燥塔の
負荷を軽減させて、発生する固体廃棄物量を低減させる
実施例について説明する。
Next, a description will be given of an embodiment in which the load on a water absorption drying tower using a polymer water absorbing material is reduced to reduce the amount of solid waste generated.

【0028】図4は本発明の実施例の冷却板に吸水性高
分子材を設置した凝縮器の構成を示す説明図である。
FIG. 4 is an explanatory view showing the structure of a condenser in which a water-absorbing polymer material is installed on the cooling plate of the embodiment of the present invention.

【0029】通常、使用後の吸水性高分子材は廃棄物と
なるが、液体廃棄物とは異なる取扱い上の利点がある。
しかし、回収したトリチウム水を濃縮してトリチウムを
回収したい場合がある。その時は酸化触媒塔5の下流に
図示せざる凝縮器を設けて水蒸気圧を下げて凝縮した水
分を貯水槽へ回収する。凝縮器で水分を回収することは
一般的に行われているが、単に凝縮器を配置しただけで
は蒸気圧分の水分が下流側へ流出するので、凝縮器の下
流側に更に凝縮器66を設ける。この凝縮器66の冷却板17
の表面に吸水性高分子材18を配置し表面に凝縮した水分
を吸収させる。使用後冷却板17の表面の吸水性高分子材
18は取外し、新たな吸水性高分子材18と交換可能な構造
とする。例えば冷却水配管20との接続をフランジ継ぎ手
19とし、冷却板17を引き出す方式として冷却板17上の吸
水性高分子材18の交換を容易にするか、引きだしたもの
全体を廃棄物とし新たなものと交換する。
Usually, the water-absorbent polymer material after use becomes a waste, but it has a handling advantage different from liquid waste.
However, there is a case where it is desired to concentrate the recovered tritiated water to recover tritium. At that time, a condenser (not shown) is provided downstream of the oxidation catalyst tower 5 to reduce the water vapor pressure and collect condensed water in a water storage tank. Although water is generally collected by a condenser, simply arranging the condenser causes water corresponding to vapor pressure to flow out to the downstream side. Set up. This condenser 66 cold plate 17
A water-absorbent polymer material 18 is arranged on the surface of the to absorb the condensed water on the surface. Water absorbent polymer material on the surface of the cooling plate 17 after use
18 has a structure that can be removed and replaced with a new water-absorbing polymer material 18. For example, the connection with the cooling water pipe 20 is a flange joint.
In order to pull out the cooling plate 17, the water absorbing polymer material 18 on the cooling plate 17 can be easily replaced, or the whole drawn out product can be discarded and replaced with a new one.

【0030】トリチウム化水素のモル濃度はたとえ放射
能濃度では高い値を示しても極めて希薄なので生成した
トリチウム水は微量である可能性が高い。従って、トリ
チウムの回収率、すなわち、除染効率を高めるため水素
ガスを予熱器4の上流から供給する。これによって除染
係数1000以上を達成可能であるが、反面廃液として回収
する水分量は増す。
Even if the molar concentration of tritiated hydrogen shows a high value in the radioactivity concentration, the tritiated water produced is highly likely to be in a trace amount because it is extremely dilute. Therefore, hydrogen gas is supplied from the upstream of the preheater 4 in order to improve the recovery rate of tritium, that is, the decontamination efficiency. This makes it possible to achieve a decontamination coefficient of 1000 or more, but increases the amount of water recovered as waste liquid.

【0031】以上述べたように、吸水乾燥塔に吸水性高
分子材を用いることで大幅に小型化でき、経済的な材料
を用いて緊急時に大容量のトリチウム汚染ガスを浄化す
る装置を提供することができる。
As described above, by using a water-absorbing polymer material for the water-absorption drying tower, it is possible to greatly reduce the size and provide an apparatus for purifying a large amount of tritium-contaminated gas in an emergency using an economical material. be able to.

【0032】[0032]

【発明の効果】本発明によれば、酸化手段で生成した水
分を吸収する吸収材に吸水性高分子材を用いることによ
り、簡略でかつコンパクトなトリチウム含有ガス処理装
置を提供できる。
According to the present invention, a simple and compact tritium-containing gas treatment device can be provided by using a water-absorbent polymer material as an absorbent material that absorbs the water generated by the oxidizing means.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係わるトリチウム含有ガス処
理装置の基本構成を示すフローチヤートである。
FIG. 1 is a flow chart showing a basic configuration of a tritium-containing gas treatment device according to an embodiment of the present invention.

【図2】図1に示す吸水乾燥塔の構成を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a configuration of a water absorption drying tower shown in FIG.

【図3】図2に示す吸水乾燥塔の他の実施例の構成を示
す説明図である。
FIG. 3 is an explanatory diagram showing a configuration of another embodiment of the water absorption drying tower shown in FIG.

【図4】本発明の実施例の冷却板に吸水性高分子材を設
置した凝縮器の構成を示す説明図である。
FIG. 4 is an explanatory diagram showing a configuration of a condenser in which a water-absorbent polymer material is installed on a cooling plate according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 トリチウム取扱い機器設備を設置した室 2 フィルタ 3 送風器 4 予熱器 5 酸化触媒塔 6 冷却器 7 吸水乾燥塔 8 排気スタック 9 加熱器 10 加熱器 11 非常用排気弁 12 吸水速度の速い高分子材 13 吸水容量の大きい高分子材 14 冷却管 15 固体乾燥材 17 冷却板 18 吸水性高分子材 19 フランジ継ぎ手 20 冷却水配管 66 凝縮器 77 吸水乾燥塔 1 Room in which equipment for handling tritium handling equipment is installed 2 Filter 3 Blower 4 Preheater 5 Oxidation catalyst tower 6 Cooler 7 Water absorption drying tower 8 Exhaust stack 9 Heater 10 Heater 11 Emergency exhaust valve 12 Polymer material with high water absorption rate 13 Polymer Material with Large Water Absorption Capacity 14 Cooling Pipe 15 Solid Drying Material 17 Cooling Plate 18 Water Absorbing Polymer Material 19 Flange Joint 20 Cooling Water Pipe 66 Condenser 77 Water Absorption Drying Tower

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 トリチウムを含む水素同位体及び酸素を
含む処理対象ガスを通過させる酸化触媒を容器内に収納
する酸化手段と、該酸化手段で生成した水分を吸収する
吸水性高分子材を容器内に収納する吸水手段とを備えた
ことを特徴とするトリチウム含有ガス処理装置。
1. A container comprising an oxidizing means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen, and a water-absorbing polymer material for absorbing water generated by the oxidizing means. A tritium-containing gas treatment device comprising: a water absorbing means housed inside.
【請求項2】 トリチウムを含む水素同位体及び酸素を
含む処理対象ガスを通過させる酸化触媒を容器内に収納
する酸化手段と、該酸化手段で生成した水分を吸収する
吸水速度の速い吸水性高分子材と吸水容量の大きい吸水
性高分子材とを容器内に収納する吸水手段とを備えたこ
とを特徴とするトリチウム含有ガス処理装置。
2. An oxidizing means for accommodating an oxidation catalyst for allowing a gas to be treated containing hydrogen isotope containing tritium and oxygen to pass through in a container, and a high water absorption rate for absorbing water generated by the oxidizing means and having a high water absorption rate. A tritium-containing gas treatment device comprising: a water absorbing means for accommodating a molecular material and a water absorbent polymer material having a large water absorbing capacity in a container.
【請求項3】 トリチウムを含む水素同位体及び酸素を
含む処理対象ガスを通過させる酸化触媒を容器内に収納
する酸化手段と、該酸化手段で生成した水分を吸収する
吸水速度の速い吸水性高分子材と吸水容量の大きい吸水
性高分子材とを容器内に収納する第1の吸水手段と、該
第1の吸水手段の下流に配置した固体乾燥材を容器内に
収納する第2の吸水手段とを備えたことを特徴とするト
リチウム含有ガス処理装置。
3. An oxidizing means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen in a container, and a high water absorption rate for absorbing water generated by the oxidizing means and having a high water absorption rate. First water absorbing means for accommodating a molecular material and a water absorbent polymer material having a large water absorption capacity in a container, and second water absorbing material for accommodating a solid desiccant arranged downstream of the first water absorbing means in a container And a means for treating gas containing tritium.
【請求項4】 トリチウムを含む水素同位体及び酸素を
含む処理対象ガスを通過させる酸化触媒を容器内に収納
する酸化手段と、該酸化手段で生成した水分を吸収する
吸水速度の速い吸水性高分子材と吸水容量の大きい吸水
性高分子材と固体乾燥材を順次容器内に配置した吸水手
段とを備えたことを特徴とするトリチウム含有ガス処理
装置。
4. An oxidizing means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen in a container, and a high water absorption rate for absorbing the water generated by the oxidizing means and having a high water absorption rate. A tritium-containing gas treatment device comprising: a molecular material, a water-absorbent polymer material having a large water absorption capacity, and a water-absorbing means in which a solid drying material is sequentially arranged in a container.
【請求項5】 トリチウムを含む水素同位体及び酸素を
含む処理対象ガスを通過させる酸化触媒を容器内に収納
する酸化手段と、該酸化手段の下流に配置し水分を凝縮
させて回収する第1の凝縮器と、該第1の凝縮器の下流
に配置し冷却部表面を吸水性高分子材で被覆した第2の
凝縮器とを備えたことを特徴とするトリチウム含有ガス
処理装置。
5. An oxidizing means for accommodating an oxidation catalyst for passing a gas to be treated containing hydrogen isotope containing tritium and oxygen, and an oxidizing means arranged downstream of the oxidizing means for condensing and collecting water. And a second condenser arranged downstream of the first condenser and having a surface of the cooling section coated with a water-absorbing polymer material.
【請求項6】 トリチウムを含む水素同位体及び酸素を
含む処理対象ガス排気管に接続し浮遊粒子を除去するフ
ィルタと、該フィルタに接続し前記処理対象ガスを吸引
する送風器と、該送風器の吐出側に接続し前記処理対象
ガスを所定温度に予熱する予熱器と、該予熱器に接続し
前記処理対象ガス中のトリチウムを含む水素同位体を前
記酸素と酸化触媒により酸化する酸化触媒塔と、該酸化
触媒塔に接続し生成した含む前記処理対象ガスを所定温
度に冷却する冷却器と、該冷却器に接続し前記処理対象
ガス中の水分を吸水・乾燥する吸水乾燥塔と、該吸水乾
燥塔に接続し乾燥した処理対象ガスを大気放出する排気
スタックとを備えたことを特徴とするトリチウム含有ガ
ス処理装置。
6. A filter connected to an exhaust pipe for a gas to be treated containing hydrogen isotope containing tritium and oxygen to remove suspended particles, a blower connected to the filter for sucking the gas to be treated, and the blower. A preheater connected to the discharge side of the preheater for preheating the gas to be treated to a predetermined temperature, and an oxidation catalyst tower connected to the preheater for oxidizing hydrogen isotopes containing tritium in the gas to be treated with the oxygen and the oxidation catalyst. A cooler connected to the oxidation catalyst tower to cool the generated gas to be treated to a predetermined temperature, a water absorption drying tower connected to the cooler to absorb and dry the water in the gas to be treated, A tritium-containing gas treatment device, comprising: an exhaust stack connected to a water absorption drying tower to release a dried treatment target gas to the atmosphere.
JP5327503A 1993-12-24 1993-12-24 Tritium inclusive gas processor Pending JPH07181294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5327503A JPH07181294A (en) 1993-12-24 1993-12-24 Tritium inclusive gas processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5327503A JPH07181294A (en) 1993-12-24 1993-12-24 Tritium inclusive gas processor

Publications (1)

Publication Number Publication Date
JPH07181294A true JPH07181294A (en) 1995-07-21

Family

ID=18199874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5327503A Pending JPH07181294A (en) 1993-12-24 1993-12-24 Tritium inclusive gas processor

Country Status (1)

Country Link
JP (1) JPH07181294A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706646B1 (en) * 2006-04-19 2007-04-13 한국원자력연구소 An apparatus for removing tritium from air and the method of using the same
JP2013160601A (en) * 2012-02-03 2013-08-19 Toshiba Corp Method and apparatus for processing spent fuel aggregate
JP2019035735A (en) * 2017-08-21 2019-03-07 日鉄住金セメント株式会社 Processing method of tritium-water including contaminated water
WO2019151438A1 (en) * 2018-01-31 2019-08-08 国立大学法人北海道大学 Adsorbent for heavy water adsorption and method for separating heavy water
JP2022072376A (en) * 2020-10-29 2022-05-17 昌人 川畑 Method for processing radioactive material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100706646B1 (en) * 2006-04-19 2007-04-13 한국원자력연구소 An apparatus for removing tritium from air and the method of using the same
JP2013160601A (en) * 2012-02-03 2013-08-19 Toshiba Corp Method and apparatus for processing spent fuel aggregate
JP2019035735A (en) * 2017-08-21 2019-03-07 日鉄住金セメント株式会社 Processing method of tritium-water including contaminated water
WO2019151438A1 (en) * 2018-01-31 2019-08-08 国立大学法人北海道大学 Adsorbent for heavy water adsorption and method for separating heavy water
JP2022072376A (en) * 2020-10-29 2022-05-17 昌人 川畑 Method for processing radioactive material

Similar Documents

Publication Publication Date Title
RU2568184C2 (en) Method for detritiation of soft household wastes and apparatus therefore
US4741882A (en) Arrangement for cleaning gaseous atmospheres from a plurality of separate, contained working spaces
JP2000254446A (en) Iodine removing filter carrying silver and iodine removing device
JPH07181294A (en) Tritium inclusive gas processor
US4867762A (en) Method and a device for purifying a gas containing hydrogen isotopes
CN112614605A (en) Method for removing radioactive methyl iodide gas
CN111710453A (en) Method for treating radioactive waste gas of nuclear power station
CN205177419U (en) Use waste gas treatment system of pond formula ordinary pressure heat supply heap of spentnuclear fuel
Jubin Organic iodine removal from simulated dissolver off-gas systems utilizing silver-exchanged mordenite
CN214552319U (en) Comprehensive dangerous waste gas collecting and treating system
JPH0268140A (en) Adsorbent for removal of iodine in gas
KR100956694B1 (en) Facility and method for removing radioactive material in the used active carbon
KR101495546B1 (en) Processing Method of Radwaste Spent Activated Carbon
Jubin Organic iodine removal from simulated dissolver off-gas streams using partially exchanged silver mordenite
CN209020394U (en) A kind of mercury collection device and the active coke regeneration device including it
JP2648757B2 (en) Tritium water adsorbent regeneration method and regeneration device
JPH01316693A (en) Method and device for recovering heavy water in which high-concentration tritium coexists
CN110624501A (en) Adsorbent for strengthening radon removal and adsorption purification device
Klein et al. Tritium stripping in a nitrogen glove box using palladium/zeolite and SAES St 198
CN217473125U (en) Tritium removing system applied to glove box
CN218794958U (en) Standardized processing apparatus of volatility organic waste gas
JPS5954946A (en) Method for detecting leakage from filter filled with silver zeolite
JPS5853760B2 (en) Tritium water vapor removal method
KR101580271B1 (en) Processing Method of Radwaste Spent Activated Carbon
JP2002090496A (en) Tritium removing and processing system