JPH0717731A - Production of quartz glass foame - Google Patents

Production of quartz glass foame

Info

Publication number
JPH0717731A
JPH0717731A JP16547293A JP16547293A JPH0717731A JP H0717731 A JPH0717731 A JP H0717731A JP 16547293 A JP16547293 A JP 16547293A JP 16547293 A JP16547293 A JP 16547293A JP H0717731 A JPH0717731 A JP H0717731A
Authority
JP
Japan
Prior art keywords
silica
powder
quartz glass
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16547293A
Other languages
Japanese (ja)
Other versions
JP2820865B2 (en
Inventor
Akira Fujinoki
朗 藤ノ木
Akihiko Sugama
明彦 須釜
Toru Yokota
横田透
Hiroshi Kimura
博至 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP16547293A priority Critical patent/JP2820865B2/en
Publication of JPH0717731A publication Critical patent/JPH0717731A/en
Application granted granted Critical
Publication of JP2820865B2 publication Critical patent/JP2820865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the production of a quartz glass foame with which the quartz glass foame having improved purity can be produced with improved efficiency and environmental hygiene by forming a cake out of a slurry obtained through allowing a silica fine powder, that is conventionally disposed of as waste due to its difficulty for handling, to contact with water and presintering the pulverized cake. CONSTITUTION:The lumpy, porous silica cake is obtained by dispersing in water a silica fine powder having a 10 to 400m<2>/g specific surface area or a synthetic quartz glass fine powder, which has a 15 to 80m<2>/g specific surface area and is obtained by hydrolyzing a volatile silicon compound with the oxyhydrogen flame, to form a slurry and then dehydrating and drying the slurry. This porous silica cake is pulverized to form granular, porous silica glass powdery particles and then the silica glass powdery particles are presintered at 800 to 1300 deg.C and at the point when the presintering is completed or thereafter, the presintered powdery particles are allowed to react with ammonia in the ammonia atmosphere at a temp. in the same range as described above and thereafter classified to obtain powdery particles having 100 to 700mum paricle size. Then 100 pts.wt. of the above silica glass powdery particles and 0.5 to 50 pts.wt. of the above silica fine powder, which has a 10 to 400m<2>/g specific surface area and is not subjected to reaction with ammonia, are blended together and the blend is charged into a mold and thereafter heated to >=1400 deg.C to expand it and to produce the objective quartz glass foamy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細シリカ粉から石英
ガラス発泡体を製造する方法に関し、特に、取扱い困難
な微粉状シリカを原料として均質且つ発泡度のコントロ
−ルされた石英ガラス発泡体の効果的製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a quartz glass foam from a fine silica powder, and particularly to a quartz glass foam having a uniform and controlled foaming degree using fine powdery silica which is difficult to handle. The present invention relates to an effective manufacturing method of.

【0002】[0002]

【従来の技術】合成石英ガラス発泡体の製造は、シリカ
ガラス粉体若しくはシリカガラス粉体の凝集体をアンモ
ニアガスを含む雰囲気中で加熱してシリカの表面にアン
モニア基を導入し、そのアンモニア化されたガラス粉体
又は凝集体を型に入れて、更に高い温度で加熱溶融さ
せ、粉体の融着とアンモニア基の分解,放出を同時に行
わせる発泡方法が一般に採用されている。この方法は、
例えば、ス−ト法で得られた多孔質シリカ母材(ス−ト
体)、あるいは微細な石英ガラス粉体をポリビニルアル
コ−ル等の樹脂で固めたような凝集体が一般に用いられ
る。
2. Description of the Related Art A synthetic quartz glass foam is manufactured by heating a silica glass powder or an agglomerate of silica glass powder in an atmosphere containing ammonia gas to introduce an ammonia group on the surface of silica, and then converting it into an ammoniac group. A foaming method is generally adopted in which the formed glass powder or agglomerate is put into a mold, and heated and melted at a higher temperature to fuse the powder and decompose and release the ammonia group at the same time. This method
For example, a porous silica base material (soot body) obtained by the soot method, or an aggregate obtained by hardening fine quartz glass powder with a resin such as polyvinyl alcohol is generally used.

【0003】アンモニアを利用して均質なシリカガラス
の発泡体を得るには、シリカガラスに可及的均一にアン
モニアを結合させることが重要であり、そのためには、
シリカ粉体表面にアンモニアと化学的に結合すると思わ
れる反応基(一般にSiOH基と推定される)が多く存在す
ること、及びアンモニア化されるシリカ粉体が大きな表
面積を有する微細粉であることが望ましい。しかし、か
かる技術的概念にもかかわらず、処理される微細シリカ
粉の取扱いの困難さから、実際には、1g/cc以上のかさ
密度の比較的大きなシリカ粉体が用いられている。
In order to obtain a homogeneous silica glass foam using ammonia, it is important to bond ammonia to the silica glass as uniformly as possible.
There are many reactive groups (generally assumed to be SiOH groups) that are believed to chemically bond with ammonia on the surface of the silica powder, and the silica powder to be ammoniated is a fine powder having a large surface area. desirable. However, in spite of such a technical concept, due to the difficulty of handling the fine silica powder to be treated, a silica powder having a relatively large bulk density of 1 g / cc or more is actually used.

【0004】他方、直接法やス−ト法による合成石英ガ
ラスの製造においては、合成石英ガラス体として固定で
きない多量のシリカ微粉体が生成するが、その取扱いの
困難さから廃棄処分されているのが実状である。そのよ
うな捨てられているシリカ微粉体は、例えば、かさ密度
が0.3 g/cc以下で粒径が 0.2〜数μm程度の微細粉であ
って、本来、アンモニア化するには望ましいが、ハンド
リングの困難さのために有効利用されることはなかっ
た。本発明者らは、かかる表面積の大きい極微細シリカ
粉をシリカガラス発泡体の製造に有効利用することに着
目した。
On the other hand, in the production of synthetic quartz glass by the direct method or the soot method, a large amount of fine silica powder that cannot be fixed as a synthetic quartz glass body is produced, but it is discarded because it is difficult to handle. Is the actual situation. Such discarded silica fine powder is, for example, a fine powder having a bulk density of 0.3 g / cc or less and a particle diameter of 0.2 to several μm. It was never put to good use due to the difficulty. The present inventors have paid attention to the effective use of such ultrafine silica powder having a large surface area for producing a silica glass foam.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の課題
は、ハンドリングが困難な極めて微細なシリカガラス粉
を有効に利用する工業的に望ましい技術を開発すること
にある。また、本発明の他の課題は、特に、従来合成石
英ガラスの製造において、バッグフィルタ−で捕集され
産業廃棄物として捨てられていた極めて微細なシリカガ
ラス粉を原料として、その大きな比表面積を利用して効
果的に且つ極めて均質な石英ガラス発泡体を製造する方
法を提供することにある。
Therefore, an object of the present invention is to develop an industrially desirable technique for effectively utilizing extremely fine silica glass powder which is difficult to handle. In addition, another object of the present invention is to use, as a raw material, extremely fine silica glass powder that was collected by a bag filter and discarded as industrial waste, particularly in the production of conventional synthetic quartz glass, and has a large specific surface area. It is an object of the present invention to provide a method for effectively and extremely homogeneously producing a quartz glass foam.

【0006】[0006]

【課題を解決するための手段】本発明者らは、比表面積
が大きいためアンモニアとの反応性としては望ましいも
のの、取扱いの困難な極微細なシリカ粉を出発原料とし
てシリカ発泡体を製造する方法について研究を重ねた結
果、該微細シリカ粉を水と接触させて、形成された水性
スラリ−からケ−キを形成させ、これを仮焼成して粉砕
した顆粒状の多孔質粉粒体が、実質的にその大きな表面
積が保持された取扱い容易なシリカ原料として極めて有
用であり望ましい材料であることを見出した。
The present inventors have proposed a method for producing a silica foam by using an extremely fine silica powder, which is difficult to handle, as a starting material, though it has a large specific surface area and is desirable as a reactivity with ammonia. As a result of repeated studies on the above, the fine silica powder was brought into contact with water to form a cake from the formed aqueous slurry, which was calcinated and pulverized to obtain a granular porous powdery granule, It has been found that it is a very useful and desirable material as an easy-to-handle silica raw material with its large surface area being substantially retained.

【0007】すなわち、本発明は、比表面積10m2/g〜
400 m2/gを有するシリカ微粉末を水に分散させ、その
分散スラリ−を脱水,乾燥させて塊状の多孔質のシリカ
ケ−キを作り、該シリカケ−キを粉砕して得られた顆粒
状の多孔質シリカガラス粉粒体を 800〜1300℃の範囲内
の温度で加熱仮焼結させた後、又は該仮焼結時に同範囲
内の温度でアンモニア雰囲気中にてアンモニアと反応さ
せ、次いで、この仮焼結された粉粒体を型に入れて1400
℃以上の温度に加熱して発泡させることを特徴とする石
英ガラス発泡体の製造方法を要旨とするものでる。
That is, the present invention has a specific surface area of 10 m 2 / g
A fine silica powder having 400 m 2 / g is dispersed in water, the dispersed slurry is dehydrated and dried to form a lumpy porous silica cake, and the silica cake is pulverized to obtain a granular form. After the porous silica glass powder of No. 1 is heated and pre-sintered at a temperature in the range of 800 to 1300 ° C, or at the time of the pre-sintering, reacted with ammonia in an ammonia atmosphere at a temperature in the same range, and then , Put this pre-sintered powder into the mold 1400
The gist is a method for producing a quartz glass foam, which is characterized by heating to a temperature of ℃ or more to foam.

【0008】本発明は、従来、合成石英ガラス製造にお
いて生ずる工業的に利用できなかった大きな比表面積を
有する、換言すれば、見かけ比重の極めて小さいハンド
リング困難なシリカ微粉を、そのハンドリングを容易に
すると共に、大きな比表面積を利用して好都合にアンモ
ニア化を行い、更に、これを加熱溶融と発泡を連続し
て、あるいは同時に行わせて所望の均質な石英ガラス発
泡体を効果的に製造することができるという技術的発見
に新規性と進歩性を主張するものである。
The present invention facilitates the handling of silica fine powder having a large specific surface area which has hitherto been industrially unusable in the production of synthetic quartz glass, in other words, which has a very small apparent specific gravity and is difficult to handle. At the same time, the large specific surface area can be used to conveniently carry out the ammonialation, and further, the heating and melting and the foaming can be performed continuously or simultaneously to effectively produce a desired homogeneous quartz glass foam. It asserts novelty and inventive step in the technical discovery that it can be done.

【0009】本発明の方法に用いられる出発原料は、10
2/g〜400 m2/gの比表面積を有する極微細なシリカ
粉であり、揮発性珪素化合物を酸水素炎で加水分解して
得られるシリカ超微粉体や合成石英ガラスの製造の際に
ダクトを経てバッグフィルタ−に捕集される極めて軽量
なシリカ微粉体やシリカを粉砕する時などに形成される
取扱い困難な極微細な粉体であって、例えば、粒径が
0.2〜2μmで比表面積が30m2/g以上を有する微粉状
シリカ類が包含される。
The starting materials used in the method of the present invention are 10
m 2 / g~400 m 2 / g is a very fine silica powder having a specific surface area of, the production of ultrafine silica fine powder and a synthetic quartz glass obtained by a volatile silicon compound is hydrolyzed in an oxyhydrogen flame At the time, it is an extremely lightweight silica fine powder that is collected in a bag filter through a duct or is an extremely fine powder that is difficult to handle and is formed when pulverizing silica.
Finely divided silicas having a specific surface area of 0.2 to 2 μm and a specific surface area of 30 m 2 / g or more are included.

【0010】このような極微細状シリカ粉は、まず水に
接触させ懸濁させてスラリ−に形成される。次いで、こ
のシリカスラリ−は媒体水を分離除去してケ−キに形成
されるが、懸濁シリカ粒子は極めて微細なため、通常の
濾過分離は困難であり、例えば、5kgf/cm2 の加圧濾過
を施しても、濾布が直ぐに目詰まりを生じて実質的に濾
過が停止し、濾過によるケ−キの形成はできないし、た
とえ時間をかけて濾過したとしてしても水洗浄は不可能
である。従って、このスラリ−は、好ましくは遠心分離
等によってある程度水を分離し、次いで、通常、放置乾
燥、あるいは多少加熱して乾燥,凝固させることにより
適度の硬さのシリカケ−キにすることができる。
Such an ultrafine silica powder is first contacted with water and suspended to form a slurry. Next, this silica slurry is formed into a cake by separating and removing the medium water, but since the suspended silica particles are extremely fine, it is difficult to carry out ordinary separation by filtration. For example, a pressure of 5 kgf / cm 2 is applied. Even if filtration is performed, the filter cloth immediately becomes clogged and the filtration is substantially stopped, and cake cannot be formed by filtration. Even if filtration is performed for a long time, washing with water is impossible. Is. Therefore, this slurry can be made into a silica cake having an appropriate hardness by separating water to some extent, preferably by centrifugation or the like, and then usually drying by standing or by heating and drying for a while to solidify. .

【0011】このケ−キの硬さは、スラリ−中のシリカ
粉体と媒体水の割合と乾燥速度に大きく影響され、例え
ば、水の量が多いほど、また乾燥速度が遅いほど硬いケ
−キが形成される。それ故、シリカ微粉の水懸濁スラリ
−の形成においては、得ようとする乾燥ケ−キの所望硬
さに応じて、その懸濁用水の量が選択使用される。水の
量があまり多すぎては脱水乾燥に時間を要するので不利
であり、また、少なすぎては取扱いやケ−キの硬さをコ
ントロ−ルすることが困難となるので好ましくない。実
用的には、例えば、シリカ微粉の重量に対して1〜2重
量倍程度の範囲量のスラリ−用水が使用される。乾燥速
度は、乾燥温度によって調整することができるが、通
常、乾燥温度は 100℃前後が工業的に有利に採用され
る。
The hardness of the cake is greatly influenced by the ratio of the silica powder and the medium water in the slurry and the drying rate. For example, the greater the amount of water and the slower the drying rate, the harder the cake. Ki is formed. Therefore, in forming a silica fine powder water suspension slurry, the amount of suspending water is selected and used according to the desired hardness of the dry cake to be obtained. If the amount of water is too large, it takes time to dehydrate and dry, which is disadvantageous, and if it is too small, it becomes difficult to handle and control the hardness of the cake, which is not preferable. Practically, for example, the slurry water is used in an amount of about 1 to 2 times the weight of the silica fine powder. The drying speed can be adjusted by the drying temperature, but normally, a drying temperature of about 100 ° C. is industrially advantageously adopted.

【0012】このようにして形成された硬い多孔質体の
ケ−キは、これを粉砕して、望ましくは、粒径が10μm
〜1mm程度の範囲の顆粒状の多孔質シリカ粉体に調整さ
れ、アンモニア化処理に供される。その分級は、用途や
目的によって更に狭い粒度範囲に調整することができ
る。粉砕はどのような手段を用いてもよいが、ボ−ルミ
ルが実用的である。また使用するボ−ルは、アルミナボ
−ルミルでは混入するアルミナの除去が非常に困難なた
め、例えば、ポリエチレンやテフロン等が好都合に使用
できるが、石英ガラス製のボ−ルが極めて有利である。
それらのボ−ル類は、通常、ケ−キの硬さによって適切
なものが選択使用される。更に、この粉砕は、上記のよ
うな粒径範囲の顆粒状粉粒体に調整されることが好まし
い。
The cake of the hard porous body thus formed is crushed to have a particle size of preferably 10 μm.
It is adjusted to a granular porous silica powder in the range of about 1 mm and subjected to an ammonification treatment. The classification can be adjusted to a narrower particle size range depending on the use and purpose. Any means may be used for crushing, but a ball mill is practical. As for the ball to be used, since it is very difficult to remove alumina mixed in with an alumina ball mill, for example, polyethylene, Teflon, etc. can be conveniently used, but a ball made of quartz glass is extremely advantageous.
Suitable balls are usually selected and used depending on the hardness of the cake. Further, this pulverization is preferably adjusted to a granular powder or granule having a particle size range as described above.

【0013】形成された顆粒状のシリカ粉粒体は、原料
超微粉粒子の凝集体であって、径が大幅に増大した取扱
いの容易な粉粒体である。この粉粒体は、原料シリカ微
粉に比べてその非表面積が僅かに低減する程度の優れた
多孔性を有する多孔質体であり、シリカガラスの変性に
極めて好都合に利用することができる。本発明方法にお
いては、このように粉砕し調整された顆粒状シリカ粉粒
体は 800〜1300℃の範囲内の温度に加熱して仮焼結れ
る。得られた仮焼結体も高い多孔性を保持するので、こ
れをアンモニア雰囲気中で加熱することにより、極めて
効果的にアンモニアと反応させることができる。
The formed granular silica powder is an agglomerate of raw ultrafine powder particles, and is a powder that has a significantly increased diameter and is easy to handle. This granular material is a porous material having excellent porosity such that its non-surface area is slightly reduced as compared with the raw silica fine powder, and can be used very conveniently for modification of silica glass. In the method of the present invention, the granular silica powder thus pulverized and adjusted is heated to a temperature in the range of 800 to 1300 ° C. to be pre-sintered. Since the obtained pre-sintered body also has high porosity, it can be reacted with ammonia very effectively by heating it in an ammonia atmosphere.

【0014】上記仮焼結温度とアンモニア化反応温度
は、その温度領域がほゞ同じであるから仮焼結と、これ
に続くアンモニア化反応を連続して行うことができる
が、共通温度領域を利用して仮焼結をアンモニア雰囲気
中で行うことにより、仮焼結と同時にアンモニア化反応
を行わせることができるので、この同時処理は工業的に
極めて望ましい。仮焼結されアンモニア化された多孔質
シリカ粉粒体は、次いで、所望の成形型に入れ、1400℃
以上の温度に加熱溶融することにより、シリカ粉粒体を
相互に融着一体化すると共にアンモニア基の分解,ガス
化発泡により、成形型の形状の石英ガラス発泡体成形物
を効率良く製造することができる。
Since the above-mentioned temporary sintering temperature and the ammoniating reaction temperature are almost the same in temperature range, the temporary sintering and the subsequent ammoniating reaction can be continuously carried out, but the common temperature range is By carrying out the preliminary sintering in an ammonia atmosphere by utilizing it, the simultaneous ammonia conversion reaction can be carried out at the same time, so this simultaneous treatment is industrially extremely desirable. The calcined and ammoniated porous silica powder is then placed in the desired mold and placed at 1400 ° C.
Efficiently manufacturing a quartz glass foam molded product in the shape of a molding die by melting and integrating silica powder particles with each other by heating and melting at the above temperature and by decomposing ammonia group and gasifying and foaming. You can

【0015】上記のアンモニア化処理された仮焼結粉粒
体の発泡化処理においては、そのアンモニア化粉粒体に
他のアンモニア化処理を施さないシリカ微粉末を加えて
発泡体の発泡度をコントロ−ルすることができる。その
場合、好ましくは、例えば、粒径が 100〜700 μmの範
囲のアンモニア化された多孔質シリカ粉粒体に、その10
0重量部に対し、10m2/g〜400 m2/gの比表面積を有
するアンモニア化処理されていないシリカ微粉末 0.5〜
50重量部を混合することにより、より低い所望密度の発
泡体を得ることができる。
In the foaming treatment of the above-mentioned ammoniated tentatively-sintered powder, the degree of foaming of the foam is increased by adding another silica fine powder which has not been subjected to the ammoniating treatment to the ammoniated powder. It can be controlled. In that case, preferably, for example, the ammoniated porous silica powder having a particle size in the range of 100 to 700 μm is
To 0 parts by weight of silica fine powder 0.5 not treated ammoniated having a specific surface area of 10m 2 / g~400 m 2 / g
By mixing 50 parts by weight, a foam having a lower desired density can be obtained.

【0016】[0016]

【作用】本発明の石英ガラス発泡体の製造方法は、廃棄
処分されていた超微細合成シリカ粉を原料に用いて、容
易なハンドリングで所望発泡度の石英ガラス発泡体を効
率良く製造することができる。
In the method for producing a quartz glass foam of the present invention, the discarded ultrafine synthetic silica powder is used as a raw material, and a quartz glass foam having a desired degree of foaming can be efficiently produced by easy handling. it can.

【0017】[0017]

【実施例】次に、本発明を具体例により、更に詳細に説
明する。 実施例 1 四塩化珪素を酸水素バ−ナ−火炎中に導入し、微細シリ
カ粉を基体上に堆積させてス−ト体を形成させると共
に、堆積されずにダクトを経て排出される極微細なシリ
カ粉をフィルタ−で捕集した。得られた微細なシリカ粉
の粒径は 0.1〜3μmで、BET法によって測定された
比表面積は約50m2/gの極めて軽いものであった。この
微粉体1kgを純水1.5 kg中に入れて良く混合し均一なス
ラリ−を形成させ、次いで、このスラリ−を遠心分離機
である程度の水を分離させ、得られた比較的粘度の高い
どろどろした濃縮スラリ−をバットにあけて全体に広
げ、80℃の温度で24時間乾燥してシリカケ−キを形成さ
せた。
Next, the present invention will be described in more detail by way of specific examples. Example 1 Introducing silicon tetrachloride into an oxyhydrogen burner flame to deposit fine silica powder on a substrate to form soot body, and at the same time, ultrafine particles not discharged but discharged through a duct. Silica powder was collected by a filter. The obtained fine silica powder had a particle size of 0.1 to 3 μm and a specific surface area measured by the BET method of about 50 m 2 / g, which was extremely light. 1 kg of this fine powder was put in 1.5 kg of pure water and mixed well to form a uniform slurry, and then this slurry was separated into a certain amount of water with a centrifuge to obtain a thick mud having a relatively high viscosity. The concentrated slurry was placed in a vat, spread over the whole, and dried at a temperature of 80 ° C. for 24 hours to form a silica cake.

【0018】この硬い多孔質シリカケ−キをネット間隙
約1mmのトロンメルふるいに入れ、石英ガラスビ−ズを
用いて50rpm の速度で回転させながら粉砕と予備分級を
行った。このふるいを通過した粉砕シリカ粉を 700μm
にかけ、このふるい目を通ったものについて更に 100μ
mのふるいにかけ、これを通った微細粒子を除外して10
0〜700 μmの粒径範囲の多孔質シリカ粉を調製した。
得られた顆粒状シリカ粉粒体は、約600gで、BET法
によるその比表面積値は35m2/gであった。これを石英ガ
ラス製ボ−トに入れ、横型の石英ガラス製炉芯管を載置
した電気炉内でアンモニアガスと窒素ガスの1:1容量
割合の混合ガスを毎分10リットルの速度で雰囲気中に流
しながら、1100℃の温度条件下に5時間アンモニア化処
理を行った。
This hard porous silica cake was put into a trommel sieve having a net gap of about 1 mm, and crushed and preclassified while rotating at a speed of 50 rpm using a quartz glass bead. 700 μm of crushed silica powder that has passed through this sieve
And then 100 μm for those that passed through this sieve.
sieving of m and excluding fine particles passing through it is 10
Porous silica powder with a particle size range of 0-700 μm was prepared.
The obtained granular silica powder was about 600 g, and the specific surface area value by the BET method was 35 m 2 / g. This was put in a quartz glass boat, and an atmosphere of a mixed gas of ammonia gas and nitrogen gas at a ratio of 1: 1 by volume was 10 liters per minute in an electric furnace equipped with a horizontal quartz glass furnace core tube. While flowing in, the ammoniating treatment was carried out for 5 hours under the temperature condition of 1100 ° C.

【0019】アンモニア処理を行った顆粒状石英ガラス
粉 gを、グラファイト製の内容が15cm×15cm×20cmの
型に入れ、真空炉内で1650℃の温度に1時間加熱溶融処
理した。冷却後、型から15cm×15cm×6cmの発泡体が取
出された。その多孔質直方体状発泡体の密度は、0.4g/
ccであった。
Ammonia-treated granular quartz glass powder g was put into a mold having a graphite content of 15 cm × 15 cm × 20 cm, and heated and melted at a temperature of 1650 ° C. for 1 hour in a vacuum furnace. After cooling, a 15 cm x 15 cm x 6 cm foam was removed from the mold. The density of the porous rectangular parallelepiped foam is 0.4 g /
It was cc.

【0020】実施例 2 四塩化珪素を酸水素バ−ナ−火炎中に導入し、生成する
微細シリカ粉をバッグフィルタ−で捕集した。得られた
微細なシリカ粉の粒径は 0.1〜3μmで、BET法によ
って測定された比表面積は約50m2/gであった。この微
粉体1kgを純水1.5 kg中に入れて良く混合し均一なスラ
リ−を形成させ、次いで、このスラリ−を遠心分離機で
ある程度の水を分離した後、得られた比較的粘度の高い
どろどろした濃縮スラリ−をバットにあけて全体に広
げ、80℃の温度で24時間乾燥してシリカケ−キを形成得
た。
Example 2 Silicon tetrachloride was introduced into an oxyhydrogen burner flame, and the fine silica powder produced was collected by a bag filter. The particle size of the obtained fine silica powder was 0.1 to 3 μm, and the specific surface area measured by the BET method was about 50 m 2 / g. 1 kg of this fine powder was put into 1.5 kg of pure water and mixed well to form a uniform slurry. Then, this slurry was separated with a centrifuge to some extent to obtain a relatively high viscosity. The thickened slurry was put into a vat, spread over the whole, and dried at a temperature of 80 ° C. for 24 hours to obtain a silica cake.

【0021】得られたシリカケ−キを石英ガラスビ−ズ
入りトロンメルふるいに入れ、50rpm の速度で回転させ
ながら扮し予備分級を行った。得られた分級粉を 100μ
m目のふるい及び 700μm目のふるいで 100〜700 μm
の粒径範囲の顆粒状多孔質シリカ粉に調製した。BET
法によって測定された比表面積値35m2/gの顆粒状シリカ
粉粒体約600gが得られた。これを石英ガラス製ボ−ト
に入れ、横型の石英ガラス製炉芯管を載置した電気炉内
でアンモニアガスと窒素ガスの1:1容量割合の混合ガ
スを毎分10リットルの速度で雰囲気中に流しながら、11
00℃の温度条件下に5時間アンモニア処理を行った。
The silica cake thus obtained was put into a trommel sieve containing quartz glass beads and dressed while rotating at a speed of 50 rpm for preliminary classification. 100 μ of the obtained classified powder
100-700 μm with m-th sieve and 700-μm sieve
A granular porous silica powder having a particle size range of was prepared. BET
About 600 g of granular silica powder having a specific surface area value of 35 m 2 / g measured by the method was obtained. This was put in a quartz glass boat, and an atmosphere of a mixed gas of ammonia gas and nitrogen gas at a ratio of 1: 1 by volume was 10 liters per minute in an electric furnace equipped with a horizontal quartz glass furnace core tube. While pouring in, 11
Ammonia treatment was performed for 5 hours under the temperature condition of 00 ° C.

【0022】アンモニア化処理された顆粒状石英ガラス
多孔質体300gと四塩化珪素を酸水素バ−ナ−火炎中に導
入して作製したBET法による比表面積値50m2/gの微細
シリカ粉100gを混合し、実施例1で用いた同じグラファ
イト製型内に入れて同様の条件で発泡体を作製した。得
られた発泡体は、密度が0.27g/ccの比較的低密度の多孔
質直方体(15cm×15cm×10cm)であった。この発泡体
は、低密度であるにもかかわらず極めて均一な泡分布が
認められた。
100 g of a fine silica powder having a specific surface area of 50 m 2 / g by the BET method, which was prepared by introducing 300 g of an ammonium-treated porous silica glass particle and silicon tetrachloride into an oxyhydrogen burner flame. Were mixed and put in the same graphite mold used in Example 1 to prepare a foam under the same conditions. The obtained foam was a relatively low-density porous rectangular parallelepiped (15 cm × 15 cm × 10 cm) having a density of 0.27 g / cc. This foam had a very uniform foam distribution despite its low density.

【0023】[0023]

【発明の効果】本発明の方法によれば、これまで合成石
英ガラス製造時に不可避的に形成されている取扱いが困
難で廃棄処理されていた極微細なシリカ粉から極めて高
純度の石英ガラス発泡体を効率良く製造することができ
るので、本発明は、産業上の絶大な有利性を有するのみ
ならず、環境衛生上の見地からも優れた実用的価値を有
する。
EFFECTS OF THE INVENTION According to the method of the present invention, an extremely high-purity quartz glass foam is produced from the extremely fine silica powder which has been inevitably formed during the production of synthetic quartz glass and which has been difficult to handle and discarded. Since it can be produced efficiently, the present invention has not only great industrial advantages, but also excellent practical value from an environmental hygiene standpoint.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 博至 福井県武生市北府2丁目13番60号 信越石 英株式会社武生工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kimura 2-13-60 Kitafu, Takefu City, Fukui Prefecture Shin-Etsuishi Ei Takefu Factory Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】比表面積10m2/g〜400 m2/gを有するシ
リカ微粉末を水に分散させ、その分散スラリ−を脱水,
乾燥させて塊状の多孔質のシリカケ−キを作り、該シリ
カケ−キを粉砕して得られた顆粒状の多孔質シリカガラ
ス粉粒体を 800〜1300℃の範囲内の温度で加熱仮焼結さ
せた後、又は該仮焼結時に同範囲内の温度でアンモニア
雰囲気中にてアンモニアと反応させ、次いで、この仮焼
結された粉粒体を型に入れて1400℃以上の温度に加熱し
て発泡させることを特徴とする石英ガラス発泡体の製造
方法。
[Claim 1] The fine silica powder having a specific surface area of 10m 2 / g~400 m 2 / g were dispersed in water, the dispersion slurry - dehydration,
Granular porous silica glass powder obtained by drying to make a lumpy porous silica cake and crushing the silica cake is heated and pre-sintered at a temperature in the range of 800 to 1300 ° C. Or after reacting with ammonia in an ammonia atmosphere at a temperature within the same range at the time of the calcination, and then the calcinated powder is put into a mold and heated to a temperature of 1400 ° C or higher. A method for producing a quartz glass foam, which comprises:
【請求項2】シリカ微粉末が、揮発性珪素化合物を酸素
水素火炎で加水分解して得られる比表面積が15〜80m2/
gの合成石英ガラス微粉末である請求項1に記載の石英
ガラス発泡体の製造方法。
2. A silica fine powder has a specific surface area of 15 to 80 m 2 / which is obtained by hydrolyzing a volatile silicon compound with an oxygen-hydrogen flame.
The method for producing a quartz glass foam according to claim 1, which is g of synthetic quartz glass fine powder.
【請求項3】比表面積10m2/g〜400 m2/gを有するシ
リカ微粉末を水に分散させ、形成されたスラリ−を脱
水,乾燥させて塊状の多孔質のシリカケ−キを作り、該
シリカケ−キを粉砕して得られた顆粒状の多孔質シリカ
ガラスの粉粒体を 800〜1300℃の範囲内の温度で加熱仮
焼結させた後、又は該仮焼結時に同範囲内の温度でアン
モニア雰囲気中にてアンモニアと反応させ、その多孔質
シリカ粉粒体を分級して得られた粒径が 100〜700 μm
の範囲の該粉粒体に、10m2/g〜400 m2/gの比表面積
を有するアンモニア化されていないシリカ微粉体を前記
仮焼結された多孔質シリカ粉粒体 100重量部に対し 0.5
〜50重量部の範囲割合で混合し、次いで、この混合物を
型に入れて1400℃以上の温度に加熱して発泡させること
を特徴とする石英ガラス発泡体の製造方法。
3. A fine silica powder having a specific surface area of 10m 2 / g~400 m 2 / g was dispersed in water, the formed slurry - dehydrated and dried to a porous bulk Shirikake - make key, After the powdery particles of granular porous silica glass obtained by crushing the silica cake are heated and pre-sintered at a temperature in the range of 800 to 1300 ° C, or within the same range at the time of the pre-sintering. The particle size is 100-700 μm, which is obtained by reacting with ammonia in ammonia atmosphere at
The powder or granular material ranging in respect 10m 2 / g~400 m 2 / porous silica powder granules 100 parts by weight of silica fine powder which has not been ammoniated is the preliminary sintering has a specific surface area of g 0.5
A method for producing a quartz glass foam, characterized in that the mixture is mixed in a range ratio of 50 parts by weight to 50 parts by weight, and then the mixture is put into a mold and heated to a temperature of 1400 ° C. or higher for foaming.
JP16547293A 1993-07-05 1993-07-05 Method for producing quartz glass foam Expired - Fee Related JP2820865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16547293A JP2820865B2 (en) 1993-07-05 1993-07-05 Method for producing quartz glass foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16547293A JP2820865B2 (en) 1993-07-05 1993-07-05 Method for producing quartz glass foam

Publications (2)

Publication Number Publication Date
JPH0717731A true JPH0717731A (en) 1995-01-20
JP2820865B2 JP2820865B2 (en) 1998-11-05

Family

ID=15813064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16547293A Expired - Fee Related JP2820865B2 (en) 1993-07-05 1993-07-05 Method for producing quartz glass foam

Country Status (1)

Country Link
JP (1) JP2820865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180955A (en) * 1999-12-22 2001-07-03 Shinetsu Quartz Prod Co Ltd Manufacturing method for opaque quartz glass
RU2634321C1 (en) * 2016-08-04 2017-10-25 Акционерное общество "Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова" (АО "НИТИОМ ВНЦ "ГОИ им. С.И. Вавилова") Method of producing optical quartz glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180955A (en) * 1999-12-22 2001-07-03 Shinetsu Quartz Prod Co Ltd Manufacturing method for opaque quartz glass
RU2634321C1 (en) * 2016-08-04 2017-10-25 Акционерное общество "Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова" (АО "НИТИОМ ВНЦ "ГОИ им. С.И. Вавилова") Method of producing optical quartz glass

Also Published As

Publication number Publication date
JP2820865B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
EP1088789A2 (en) Porous silica granule, its method of production and its use in a method for producing quartz glass
US11180375B2 (en) Porous halloysite powder and method for producing halloysite powder
US5643347A (en) Process for manufacture of silica granules
JPH02500972A (en) Improvements in and related to vitreous silica
US3532473A (en) Process for producing a spherical granulated silica material
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JP2001089125A (en) Porous silica granule, its production and production of synthetic quartz glass powder using the porous silica granule
US4073729A (en) Filtering process using inorganic synthetically prepared filter sand
CN106477538B (en) Beta-silicon nitride nanowire preparation method, beta-silicon nitride nanowire, beta-silicon nitride powder and silicon nitride submicron powder
JPH0717731A (en) Production of quartz glass foame
JPH09124376A (en) Particulate material
JPH0717706A (en) Production of quartz glass powder
JPH02286B2 (en)
TW202208277A (en) Silica granules for thermal treatment
JP3436024B2 (en) Continuous production method of alumina
WO1996020128A1 (en) Process for producing synthetic quartz powder
JP4061902B2 (en) Method for producing porous potassium carbonate
JP2733860B2 (en) Manufacturing method of wear-resistant silica media
JP3784144B2 (en) Method for producing low uranium spherical silica powder
JPH0138042B2 (en)
JPH0118005B2 (en)
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
EP0434762B1 (en) Nonpigmentary titanium dioxide powders
WO1999029623A1 (en) Precipitated amorphous silicas having improved physical properties
JPH0343205B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090828

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090828

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100828

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees