JPH07176301A - Electrode for secondary battery and manufacture thereof - Google Patents

Electrode for secondary battery and manufacture thereof

Info

Publication number
JPH07176301A
JPH07176301A JP5344949A JP34494993A JPH07176301A JP H07176301 A JPH07176301 A JP H07176301A JP 5344949 A JP5344949 A JP 5344949A JP 34494993 A JP34494993 A JP 34494993A JP H07176301 A JPH07176301 A JP H07176301A
Authority
JP
Japan
Prior art keywords
electrode
active material
current collector
secondary battery
metal fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5344949A
Other languages
Japanese (ja)
Inventor
Nobuo Katagiri
伸夫 片桐
Toshiyuki Osawa
利幸 大澤
Okitoshi Kimura
興利 木村
Toshiyuki Kahata
利幸 加幡
Toshishige Fujii
俊茂 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5344949A priority Critical patent/JPH07176301A/en
Publication of JPH07176301A publication Critical patent/JPH07176301A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an electrode excellent in workability, lightweight, and having a high volume energy density and large strength by using a metal fiber sintered porous sheet for a current collector forming the electrode for a battery together with an electrode active material. CONSTITUTION:An electrode for a secondary battery is formed with at least an electrode active material and a current collector. A metal fiber sintered porous sheet having the porosity of 30-70% and the fiber diameter of 50mum is used for the current collector. The electrode active material homogeneously dispersed with one or more kinds of inorganic active materials having the average grain size of 10mum or below and the maximum grain size of 30mum or below in at least one kind of conducting polymer matrix having an electrochemical oxidation reduction property is used. The electrode for the secondary battery excellent in workability, lightweight, and having a high volume energy density and large strength is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、二次電池用電極および該電極の
製造法に関する。
TECHNICAL FIELD The present invention relates to an electrode for a secondary battery and a method for producing the electrode.

【0002】[0002]

【従来技術】近年、リチウムを負極活物質として用いる
二次電池が、高エネルギー密度を有する二次電池として
注目されている。リチウム電池の二次電池化には正極材
料のサイクル特性、成形加工性、高エネルギー密度化が
重要な課題となる。一般に、正極活物質としては、遷移
金属カルコゲン化合物、導電性高分子を挙げることがで
きる。しかし、遷移金属カルコゲン化合物などの無機活
物質のみでは導電性が悪く、また自己成形性がないた
め、導電助剤、バインダーを大量に添加する必要があ
る。そのために期待されるエネルギー密度を得ることが
困難である。このため、軽量性、加工性などの利点を持
つ導電性高分子を材料とする正極電極の開発が進められ
ている。導電性高分子の例としては、ポリアセチレン
(例えば、特開昭56−136489)、ポリピロール
(例えば、第25回電池討論会、講演要旨集、P256
1・1984)、ポリアニリン(例えば、電気科学協会
第50回大会、講演要旨集、P2281・1984)な
どが報告されている。これらの導電性高分子は、100
%の放電深度に対しても高いサイクル特性を示すなどの
利点があるが、密度が低いため体積当りのエネルギー密
度が低いという欠点を持つ。無機活物質、導電性高分子
の互いの欠点を補い、利点を生かす方法として、導電性
高分子と無機活物質の複合体電極が提案されている(例
えば、特開昭63−102162)。この複合体電極の
作製法としては、(1)粉体状導電性高分子と粉体状無
機活物質を適量ずつ採取し、バインダーを添加して混合
し、集電体上に加圧成形する方法、(2)粉体状無機活
物質存在下で導電性高分子を化学的、あるいは電気的に
重合し複合体とする方法等が提案されている。しかし、
上記方法(1)においては、粉体状質の混合物であるた
め、細部にいたるまで十分均一な複合体電極にすること
ができず、十分な強度を持ち、しかもフレキシブルなシ
ート状電極の作製が困難である。さらに大量のバインダ
ーを加える必要があるため、期待される体積エネルギー
密度を達成することができない。また上記方法(2)に
おいては、複合体に取り込むことができる無機酸化物の
量が限られており、十分な体積エネルギーを得ることが
できない。電極集電体として平滑な金属フォイルを用い
ることが一般的であるが、その体積、重量により電極の
エネルギー密度の低下は避けられない。また、平滑な集
電体と導電性高分子活物質の密着性は良くないため、集
電体から導電性高分子膜が脱離しやすくサイクル特性な
どに問題がある。この問題点を改善するために、電極の
作製に多孔質の集電体を用いることによって電極の軽量
化、及び集電体と導電性高分子活物質の密着性を高める
工夫が特開平1−132046に提示されている。しか
し、この中では、電極の作製には電解重合法を用いてい
るため、集電体孔内に導電性高分子を成長させるために
は孔径が50μm以上が好ましいとあり、これでは多孔
質集電体の効果が十分に発揮されず、集電体と導電性高
分子活物質の密着が十分とは言えない。また、電解重合
法は生産性が悪く実用的ではない。上記のように、目的
とする体積及び重量エネルギー密度が高く、かつ集電体
と導電性高分子活物質の密着性が良好な二次電池用電極
の作成は、従来の方法では非常に困難であった。
2. Description of the Related Art In recent years, secondary batteries using lithium as a negative electrode active material have attracted attention as secondary batteries having high energy density. Cycle characteristics, molding processability, and high energy density of positive electrode materials are important issues for making lithium batteries into secondary batteries. Generally, examples of the positive electrode active material include transition metal chalcogen compounds and conductive polymers. However, since only a inorganic active material such as a transition metal chalcogen compound has poor conductivity and has no self-forming property, it is necessary to add a large amount of a conductive aid and a binder. Therefore, it is difficult to obtain the expected energy density. Therefore, development of a positive electrode made of a conductive polymer, which has advantages such as light weight and workability, is under way. Examples of the conductive polymer include polyacetylene (for example, JP-A-56-136489), polypyrrole (for example, 25th Battery Symposium, Proceedings, P256).
1, 1984), polyaniline (for example, the 50th convention of the Institute of Electrical Science, Proceedings, P2281, 1984) and the like. These conductive polymers are 100
Although it has an advantage that it exhibits high cycle characteristics even with respect to a discharge depth of%, it has a drawback that the energy density per volume is low because of its low density. A composite electrode of a conductive polymer and an inorganic active material has been proposed as a method of compensating for the disadvantages of the inorganic active material and the conductive polymer and making the most of their advantages (for example, JP-A-63-102162). As the method for producing this composite electrode, (1) an appropriate amount of powdery conductive polymer and powdery inorganic active material are sampled, a binder is added and mixed, and pressure molding is performed on a current collector. A method, (2) a method of chemically or electrically polymerizing a conductive polymer in the presence of a powdery inorganic active material to form a composite, and the like have been proposed. But,
In the above method (1), since it is a powdery mixture, it is not possible to form a composite electrode that is sufficiently uniform down to the details, and it is possible to prepare a flexible sheet-like electrode having sufficient strength. Have difficulty. The expected volumetric energy density cannot be achieved due to the need to add even more binder. Further, in the above method (2), the amount of the inorganic oxide that can be incorporated into the composite is limited, and sufficient volume energy cannot be obtained. Although it is common to use a smooth metal foil as the electrode current collector, a decrease in the energy density of the electrode cannot be avoided due to its volume and weight. Further, since the adhesion between the smooth current collector and the conductive polymer active material is not good, the conductive polymer film is easily detached from the current collector, which causes a problem in cycle characteristics and the like. In order to solve this problem, a device for reducing the weight of the electrode and increasing the adhesion between the current collector and the conductive polymer active material by using a porous current collector for the production of the electrode has been proposed. 132046. However, among these, since the electrolytic polymerization method is used for producing the electrode, it is said that the pore diameter is preferably 50 μm or more in order to grow the conductive polymer in the current collector holes. The effect of the current collector is not sufficiently exerted, and the close contact between the current collector and the conductive polymer active material cannot be said to be sufficient. Further, the electrolytic polymerization method has poor productivity and is not practical. As described above, the production of a secondary battery electrode having a high target volume and weight energy density and good adhesion between the current collector and the conductive polymer active material is very difficult by the conventional method. there were.

【0003】[0003]

【目的】本発明は、前記従来技術の問題点を解消し、加
工性に優れ、軽量で体積エネルギー密度が高く、強度が
十分に大きい二次電池用電極の提供を目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art, to provide an electrode for a secondary battery, which has excellent workability, is lightweight, has a high volume energy density, and has a sufficiently large strength.

【0004】[0004]

【構成】本発明者らは、少なくとも電極活物質、集電体
からなる二次電池用電極において、集電体として金属繊
維焼結多孔質シートを用いることにより、前記従来技術
の問題点が解消されることを見い出した。すなわち、本
発明は少なくとも1種類の電極活物質層および集電体か
らなる二次電池用電極において、集電体として金属繊維
多孔質シートを用いたことを特徴とする二次電池用電極
および該電極の製造法に関する。本発明の二次電池用電
極は、金属繊維多孔質シート集電体に少なくとも1種類
の電極活物質および溶媒よりなる塗料溶液、好ましくは
少なくとも1種類の電気化学的に酸化還元性を示す導電
性高分子(以下、活物質1という)および溶媒を含む塗
料溶液に少なくとも1種類の粒子状の無機活物質(以
下、活物質2という)を均質に分散させた塗料液を製膜
して作製することができる。特に、前記塗料液を金属繊
維焼結多孔質シート集電体上に連続的に塗布することに
より、活物質(1)中に活物質(2)が均一に分散され
ており、軽量でエネルギー密度が高く高強度の電極フィ
ルムを容易に作製することができる。前記塗料溶液の組
成は、溶媒に対する重量比において固形分が20%以上
含まれることが望ましい。
[Structure] The present inventors solve the above-mentioned problems of the prior art by using a metal fiber sintered porous sheet as a current collector in a secondary battery electrode including at least an electrode active material and a current collector. I was found to be done. That is, the present invention is a secondary battery electrode comprising at least one kind of electrode active material layer and a current collector, wherein a metal fiber porous sheet is used as the current collector, and The present invention relates to a method for manufacturing an electrode. The secondary battery electrode of the present invention is a coating solution comprising a metal fiber porous sheet current collector and at least one kind of electrode active material and a solvent, preferably at least one kind of electrochemically redox-conductive conductive material. It is prepared by forming a coating solution in which at least one kind of particulate inorganic active material (hereinafter referred to as active material 2) is homogeneously dispersed in a coating solution containing a polymer (hereinafter referred to as active material 1) and a solvent. be able to. In particular, by continuously applying the coating liquid onto a metal fiber sintered porous sheet current collector, the active material (2) is uniformly dispersed in the active material (1), which is lightweight and has an energy density. A high-strength and high-strength electrode film can be easily produced. The composition of the coating solution preferably has a solid content of 20% or more in the weight ratio with respect to the solvent.

【0005】前記塗料液の作製に際して、固形分の溶媒
に対する分散方法としては、ボールミル、バレンミルな
どを用いる方法があげられる。また、ポリアニリンの濃
度は8%〜11%が特に好ましく、この濃度範囲では、
粘度は1000cp〜10000cpである。粘度が1
000cp以下においては、活物質(2)のフィラーが
溶液中で沈降し、均一な塗料液が得られない。また粘度
が10000cp以上では、粘度が大き過ぎて塗料液と
して用いることができない。また、塗料液が金属繊維焼
結多孔質シート集電体に十分浸透し、かつシートから流
れ出ない粘度としても1000cp〜10000cpが
適当である。
As a method for dispersing the solid content in the solvent in the preparation of the coating liquid, a method using a ball mill, a barren mill or the like can be mentioned. Further, the concentration of polyaniline is particularly preferably 8% to 11%, and in this concentration range,
The viscosity is 1000 cp to 10000 cp. Viscosity 1
At 000 cp or less, the filler of the active material (2) precipitates in the solution and a uniform coating liquid cannot be obtained. When the viscosity is 10,000 cp or more, the viscosity is too high to be used as a coating liquid. Also, the viscosity of 1000 cp to 10000 cp is suitable for the coating liquid to sufficiently permeate the metal fiber sintered porous sheet current collector and not flow out from the sheet.

【0006】本発明で使用する金属繊維焼結多孔質シー
ト集電体は、金属繊維、好ましくは強度の高い金属繊
維、例えばステンレス鋼、ニッケル等の金属繊維で形成
されたシートを、焼結、多孔化して作製されたものであ
る。前記の焼結、多孔化される金属繊維のシート状物と
しては、織布、不織布状物等が挙げられる。前記のよう
にして得られた金属繊維多孔質シートは、空隙率が30
%〜70%のものが好ましい。本発明における電極は、
この均質な塗料液を集電体である金属繊維焼結シートに
塗布、乾燥することにより作製され、その効果として以
下の点で性能が改善される。金属繊維焼結集電体の空隙
率としては、30%〜70%が好ましい。空隙率が30
%以下では集電体の軽量化の効果が小さく重量エネルギ
ー密度の向上を妨げ、70%以上では集電体としての強
度が十分にとれない。集電体を軽量化しかつ十分な強度
を得るために、更に好ましくは空隙率が40%〜60%
である。金属繊維径としては50μm以下が好ましい。
金属繊維径が50μm以上であると、集電体全体が厚く
なり電極の体積エネルギー密度を低下させる。更に、集
電体と電極活物質の密着を十分にとり、集電効率や接着
性を高めるためには、金属繊維の径を小さくし、集電体
の表面積を大きくする方が有利である。よって金属繊維
径は、更に好ましくは20μm以下である。金属繊維焼
結集電体の材質としては、強度の高いものが望ましく、
ステンレス鋼、ニッケルなどが好ましいがこれらに限定
されるものではない。上記のような金属繊維を焼結した
多孔質で軽量かつ高強度の集電体に、活物質と溶媒から
なる塗料液、特に均質な塗料液を塗布することにより、
金属繊維間の空隙の細部にいたるまで塗料液が浸透しそ
の空隙を満たす。それを乾燥することにより、金属繊維
を骨格とし活物質がそれを補強する形になるためさらに
高強度の、しかも無駄な空間が少なくエネルギー密度の
高い電極を得ることができる。しかも、一般に用いられ
る平滑な集電体よりはるかに柔軟性のある金属繊維集電
体を用いているため電極全体の柔軟性も高い。また、活
物質と集電体の接着面積が大きいため、活物質と集電体
の密着性の高い電極が得られる。
The metal fiber sintered porous sheet current collector used in the present invention is obtained by sintering a sheet formed of metal fibers, preferably high strength metal fibers such as stainless steel and nickel. It is made by making it porous. Examples of the sheet-shaped material of the metal fiber to be sintered and made porous include woven cloth and non-woven cloth. The metal fiber porous sheet obtained as described above has a porosity of 30.
% To 70% is preferable. The electrode in the present invention is
This homogeneous coating solution is applied to a metal fiber sintered sheet as a current collector and dried, and the effect is to improve the performance in the following points. The porosity of the sintered metal fiber current collector is preferably 30% to 70%. Porosity is 30
% Or less, the effect of reducing the weight of the current collector is small and the improvement of the weight energy density is hindered, and if 70% or more, the strength as the current collector cannot be sufficiently obtained. In order to reduce the weight of the current collector and obtain sufficient strength, the porosity is more preferably 40% to 60%.
Is. The metal fiber diameter is preferably 50 μm or less.
When the metal fiber diameter is 50 μm or more, the entire current collector becomes thick and the volume energy density of the electrode is lowered. Further, in order to sufficiently bring the current collector and the electrode active material into close contact with each other and improve current collection efficiency and adhesiveness, it is advantageous to reduce the diameter of the metal fiber and increase the surface area of the current collector. Therefore, the metal fiber diameter is more preferably 20 μm or less. As a material for the sintered metal fiber current collector, one having high strength is desirable,
Stainless steel, nickel and the like are preferable, but not limited to these. A porous, lightweight and high-strength current collector obtained by sintering the metal fibers as described above, by applying a coating liquid comprising an active material and a solvent, particularly a homogeneous coating liquid,
The coating liquid permeates even the details of the voids between the metal fibers and fills the voids. By drying it, an active material having a skeleton made of metal fibers to reinforce the skeleton is formed, and thus an electrode having higher strength and less wasteful space and high energy density can be obtained. Moreover, since the metal fiber current collector, which is much more flexible than the generally used smooth current collector, is used, the flexibility of the entire electrode is high. Moreover, since the adhesion area between the active material and the current collector is large, an electrode having high adhesion between the active material and the current collector can be obtained.

【0007】活物質(1)としては、例えば、ポリアニ
リン類、ポリアニリノアニリン類、ポリピロール類、ポ
リアセチレン類等導電性高分子材料を例示できる。これ
らの中でも、重量当りの電気容量が比較的大きく、さら
に比較的安定に充放電を行うことができるポリアニリン
類が特に好ましい。これら高分子材料は、ジメチルホル
ムアミド、N−メチルピロリドン、テトラヒドロフラン
等の溶媒に溶解して使用される。活物質(2)について
は、電極の体積エネルギー密度を高めるために密度が
2.5g/cm3以上であるものが望ましい。例えば、
二酸化マンガン、バナジウム酸化物、コバルト酸化物、
ニッケル酸化物等を例示できるが、この条件を満たし、
さらに上記導電性高分子の電気化学的酸化還元反応を起
こす電位付近に放電曲線の平坦部を持つ、五酸化バナジ
ウムが好ましい。また、活物質(1)と十分な密着を持
たせエネルギー密度を高めると共に、均質性を高めるた
めに、サイズは平均粒子径、最大粒子径がそれぞれ3μ
m以下、10μm以下、好ましくはそれぞれ1μm以
下、3μm以下である。
Examples of the active material (1) include conductive polymer materials such as polyanilines, polyanilinoanilines, polypyrroles and polyacetylenes. Among these, polyanilines having a relatively large electric capacity per weight and capable of relatively stable charging and discharging are particularly preferable. These polymer materials are used after being dissolved in a solvent such as dimethylformamide, N-methylpyrrolidone and tetrahydrofuran. The active material (2) preferably has a density of 2.5 g / cm 3 or more in order to increase the volume energy density of the electrode. For example,
Manganese dioxide, vanadium oxide, cobalt oxide,
Nickel oxide etc. can be exemplified, but satisfying this condition,
Further, vanadium pentoxide having a flat portion of the discharge curve in the vicinity of the potential for causing the electrochemical redox reaction of the conductive polymer is preferable. Further, in order to have sufficient adhesion to the active material (1) to increase energy density and homogeneity, the average particle diameter and the maximum particle diameter are 3 μm, respectively.
m or less and 10 μm or less, preferably 1 μm or less and 3 μm or less, respectively.

【0008】さらに、本発明の前記電極活物質には、必
要に応じて導電助剤を添加することができる。このよう
な導電助剤としては、アセチレンブラック、アニリンブ
ラック、活性炭、グラファイト粉末などの導電性炭素粉
末、PAN、ピッチ、セルロース、フェノールなどを出
発原料とした炭素体、炭素繊維、Ti、Sn、Inなど
の金属酸化物粉末、ステンレス、ニッケルなどの金属粉
末、繊維等が挙げられる。これらの導電助剤に要求され
る特性として高い電気伝導度に加え少ない添加量での効
果が要求される。正極の厚みとしては1〜1000μ
m、好ましくは5〜500μmである。1μm以下では
エネルギー密度的に不利であり、1000μm以上では
集電効率の点で不利である。コーティングにおいては基
板上に数10μm以内の厚みで成膜すればフレキシブル
な層として得られる。
Further, a conductive auxiliary agent can be added to the electrode active material of the present invention, if necessary. Examples of the conductive aid include conductive carbon powder such as acetylene black, aniline black, activated carbon, and graphite powder, carbon materials starting from PAN, pitch, cellulose, phenol, etc., carbon fiber, Ti, Sn, In. Examples thereof include metal oxide powders such as, metal powders such as stainless steel and nickel, and fibers. As the properties required for these conductive aids, in addition to high electrical conductivity, an effect with a small addition amount is required. The thickness of the positive electrode is 1 to 1000 μ
m, preferably 5 to 500 μm. If it is 1 μm or less, it is disadvantageous in terms of energy density, and if it is 1000 μm or more, it is disadvantageous in terms of current collection efficiency. In coating, a flexible layer can be obtained by forming a film on the substrate with a thickness of several tens of μm.

【0009】また、本発明における前記活物質(1)と活
物質(2)よりなる電極は加工性に優れ、フレキシブルな
ため、シート状電極を作製するのに適しており、ペーパ
ー状の電池を造る際の電極として優れた性能を発揮する
ことが確認された。
Further, the electrode composed of the active material (1) and the active material (2) in the present invention is excellent in workability and is flexible, so that it is suitable for producing a sheet electrode, and a paper battery is used. It was confirmed that it exhibits excellent performance as an electrode for manufacturing.

【0010】次に前記電極を用いた二次電池について述
べる。本発明の二次電池は基本的には正極、負極、電解
質より構成される。正極には前記電極が用いられる。負
極としては前記電極のほか、Li、Na、K等のアルカ
リ金属、LiとAl、Mn、Pb等の合金、炭素体等を
使用することができる。電解質としては、以下に示す陰
イオンまたは陽イオンが用いられる。陰イオンとして
は、例えばPF6 -,SbF6 -,AsF6 -等のVa族の元
素のハロゲン化物アニオン、BF4 -,BR4 -(Rはフェ
ニル基、アルキル基)等のllla族元素のアニオン、C
-,Br-,I-等のハロゲンアニオン、過塩素酸アニ
オン、トリフルオロメタンスルホン酸アニオン等が挙げ
られる。陽イオンとしては例えばLi+,Na+,K+
のアルカリ金属カチオン、(R4N)+(Rは炭素数1〜
20の炭化水素基)等が挙げられる。前記電解質を与え
る化合物としては、例えばLiPF6,LiSbF6,L
iAsF6,LiBF4,LiClO4,LiCF3
3,LiI,KPF6,KClO 4,NaPF6,〔(n
−Bu)4N〕BF4,〔(n−Bu)4N〕ClO4,L
iAlCl4等を例示することができるが特にこれらに
限定されるものではない。
Next, a secondary battery using the above electrode will be described.
Bell. The secondary battery of the present invention is basically a positive electrode, a negative electrode, an electrolytic
Composed of quality. The electrode is used as the positive electrode. negative
As the electrode, in addition to the above electrodes, an alkali such as Li, Na, K, etc.
Li metal, alloys of Li and Al, Mn, Pb, etc., carbon bodies, etc.
Can be used. As the electrolyte,
Ions or cations are used. As anion
Is, for example, PF6 -, SbF6 -, AsF6 -The origin of the Va family such as
Elementary halide anion, BFFour -, BRFour -(R is fe
Anions of llla group elements such as nyl groups and alkyl groups, C
l-, Br-, I-Halogen anions such as perchloric acid ani
ON, trifluoromethanesulfonic acid anion, etc.
To be Examples of cations include Li+, Na+, K+etc
Alkali metal cation of (RFourN)+(R is a carbon number 1 to
20 hydrocarbon groups) and the like. Give the electrolyte
Examples of the compound include LiPF6, LiSbF6, L
iAsF6, LiBFFour, LiClOFour, LiCF3S
O3, LiI, KPF6, KClO Four, NaPF6, [(N
-Bu)FourN] BFFour, [(N-Bu)FourN] ClOFour, L
iAlClFourEtc. can be exemplified, but especially to these
It is not limited.

【0011】電解質溶液を構成する溶媒は特に限定する
ものではないが、比較的、極性の大きい溶媒が好適に用
いられる。具体的には、プロピレンカーボネート、エチ
レンカーボネート、ベンゾニトリル、アセトニトリル、
テトラヒドロフラン、2−メチルテトラヒドロフラン、
γ−ブチルラクトン、ジオキソラン、トリエチルホスフ
ァイト、ジメチルホルムアミド、ジメチルアセトアミ
ド、ジメチルスルホキシド、ジオキサン、ジメトキシエ
タン、ポリエチレングリコール、スルホラン、ジクロロ
エタン、クロルベンゼン、ニトロベンゼン、ジエチルカ
ーボネート等の有機溶媒の1種又は2種以上の混合液が
挙げられる。
The solvent constituting the electrolyte solution is not particularly limited, but a solvent having a relatively large polarity is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile,
Tetrahydrofuran, 2-methyltetrahydrofuran,
One or more organic solvents such as γ-butyl lactone, dioxolane, triethyl phosphite, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane, dichloroethane, chlorobenzene, nitrobenzene and diethyl carbonate. A mixed solution of.

【0012】セパレータとしては、電解質溶液のイオン
移動に対して低抵抗であり、かつ、溶液保持性に優れた
ものが用いられる。例えば、ガラス繊維フィルタ、ポリ
エステル、テフロン、ポリフロン、ポリプロピレン等の
高分子ポアフィルタ不織布、あるいは、ガラス繊維とこ
れらの高分子からなる不織布等が挙げられる。
As the separator, one having a low resistance to the movement of ions of the electrolyte solution and an excellent solution holding property is used. Examples thereof include glass fiber filters, polymeric pore filter non-woven fabrics such as polyester, Teflon, polyflon and polypropylene, or non-woven fabrics made of glass fibers and these polymers.

【0013】また、これら電解液、セパレータのかわり
に用いられるものとして、固体電解質が挙げられる。例
えば、無機系では、AgCl,AgBr,AgI,Li
Iなどの金属ハロゲン化物、RbAg45,RbAg4
4CN等が挙げられる。また、有機系では、ポリエチ
レンオキサイド、ポリプロピレンオキサイド、ポリフッ
化ビニリデン、ポリアクリルアミドなどをポリマーマト
リクスとし、前記の電解質塩をポリマーマトリクス中に
溶解した複合体、あるいはこれらのゲル架橋体、低分子
量ポリエチレンオキサイド、クラウンエーテルなどのイ
オン解離基をポリマー主鎖にグラフト化した高分子固体
電解質、あるいは高分子量重合体に前記電解液を含有さ
せたゲル状高分子固体電解質が挙げられる。本発明の電
極を使用した電池の形態は特に限定するものではない
が、コイン型、シート型、円筒型、ガム型等の各種電池
に実装することができる。
A solid electrolyte is used as a substitute for the electrolytic solution and the separator. For example, in an inorganic system, AgCl, AgBr, AgI, Li
Metal halides such as I, RbAg 4 I 5 , RbAg 4
I 4 CN and the like can be mentioned. Further, in the organic system, polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, polyacrylamide and the like as a polymer matrix, a complex in which the electrolyte salt is dissolved in the polymer matrix, or a gel cross-linked product thereof, a low molecular weight polyethylene oxide, Examples thereof include a polymer solid electrolyte in which an ionic dissociative group such as crown ether is grafted on the polymer main chain, or a gel polymer solid electrolyte in which the electrolyte solution is contained in a high molecular weight polymer. The form of the battery using the electrode of the present invention is not particularly limited, but it can be mounted on various batteries such as a coin type, a sheet type, a cylindrical type, and a gum type.

【0014】[0014]

【実施例】以下に実施例を示して、本発明をさらに詳細
に説明する。 実施例1 硫酸、酸化剤として過硫酸アンモニウムを用いて化学重
合で合成したポリアニリン13g、N−メチルピロリド
ン87gを、ロールミル法を用いて不活性ガス雰囲気中
で混合、分散し、塗料溶液とする。この塗料溶液をスプ
レーを用いて150μmの厚さで集電体上に塗布し、こ
れを大気中で100℃の温度で15分間乾燥させ、30
μmの厚さの電極を得る。集電体としては、ステンレス
繊維焼結シート〔(株)巴川製紙所製トミーファイレッ
クスSS8−75H(商品名)、厚さ22μm、空隙率
50%、繊維径8μm〕を用いた。この電極を正極とし
て、負極にLi板を用い、電解液には、プロピレンカー
ボネイト:DME=7:3の混合液1リットルに対しL
iBF4を3モルの割合で溶解したものを用いて、充放
電特性を測定した。測定方法は、北斗電工(株)製HJ
−201B型の充放電測定装置を用い、まず充電方向か
ら0.2mA/cm2の電流で、電池電圧が3.7Vに
なるまで充電し、1時間の休止時間の後、0.2mA/
cm2の電流で電池電圧が2.8Vになるまで放電し、
以下、充放電の繰返しを行い、電池特性を評価し、10
サイクル後の放電容量を表1に示した。
The present invention will be described in more detail with reference to the following examples. Example 1 13 g of polyaniline synthesized by chemical polymerization using sulfuric acid and ammonium persulfate as an oxidizing agent and 87 g of N-methylpyrrolidone were mixed and dispersed in an inert gas atmosphere by a roll mill method to prepare a coating solution. This coating solution was applied onto a current collector with a sprayer to a thickness of 150 μm, and this was dried in the atmosphere at a temperature of 100 ° C. for 15 minutes,
An electrode with a thickness of μm is obtained. As the current collector, a stainless fiber sintered sheet [Tomy Pyrex SS8-75H (trade name) manufactured by Tomoegawa Paper Co., Ltd., thickness 22 μm, porosity 50%, fiber diameter 8 μm] was used. This electrode was used as a positive electrode, a Li plate was used as a negative electrode, and the electrolyte solution was L for 1 liter of a mixed solution of propylene carbonate: DME = 7: 3.
Charge / discharge characteristics were measured using a solution of iBF 4 dissolved in a proportion of 3 mol. The measuring method is HJ manufactured by Hokuto Denko KK
Using a −201B type charge / discharge measuring device, first charge the battery at a current of 0.2 mA / cm 2 from the charging direction until the battery voltage reaches 3.7 V, and after 1 hour of rest, 0.2 mA / cm 2.
Discharge until the battery voltage reaches 2.8V with a current of cm 2 .
Hereinafter, charge and discharge were repeated to evaluate battery characteristics, and 10
The discharge capacity after cycling is shown in Table 1.

【0015】実施例2 硫酸、酸化剤として過硫酸アンモニウムを用いて化学重
合で合成したポリアニリン13g、平均粒径が2.5μ
m、最大粒径が8μmの結晶五酸化バナジウム30.3
g、N−メチルピロリドン87gを、ロールミル法を用
いて不活性ガス雰囲気中で混合、分散し、塗料溶液とし
て用いる以外は実施例1と同様にして電極を作製し、電
池特性を評価した。
Example 2 13 g of polyaniline synthesized by chemical polymerization using sulfuric acid and ammonium persulfate as an oxidizing agent, and the average particle size is 2.5 μm.
m, the maximum particle size is 8 μm, crystalline vanadium pentoxide 30.3
87 g of N-methylpyrrolidone and 87 g of N-methylpyrrolidone were mixed and dispersed in an inert gas atmosphere using a roll mill method, and an electrode was prepared in the same manner as in Example 1 except that it was used as a coating solution, and the battery characteristics were evaluated.

【0016】実施例3 五酸化バナジウムのかわりに、二酸化マンガン粉末(平
均粒径2μm、最大粒径8μm)を用いた以外は実施例
2と同様にして電極を作製し、電池特性を評価した。
Example 3 An electrode was prepared in the same manner as in Example 2 except that manganese dioxide powder (average particle size 2 μm, maximum particle size 8 μm) was used instead of vanadium pentoxide, and the battery characteristics were evaluated.

【0017】実施例4 五酸化バナジウムとして、平均粒径が0.8μm、最大
粒径が1.5μmの五酸化バナジウムを使用する以外は
実施例2と同様にして電極を作製し、電池特性を評価し
た。
Example 4 An electrode was prepared in the same manner as in Example 2 except that vanadium pentoxide having an average particle size of 0.8 μm and a maximum particle size of 1.5 μm was used as vanadium pentoxide, and the battery characteristics were evaluated. evaluated.

【0018】比較例1 集電体として、厚さ20μmのステンレスフォイルを用
いる以外は、実施例2と同様にして電池特性を評価し
た。
Comparative Example 1 Battery characteristics were evaluated in the same manner as in Example 2 except that a 20 μm thick stainless foil was used as the current collector.

【0019】比較例2 集電体として、厚さ100μm、空隙率78%、線径が
55μmのステンレスメッシュを用いる以外は、実施例
2と同様にして電池特性を評価した。
Comparative Example 2 The battery characteristics were evaluated in the same manner as in Example 2 except that a stainless mesh having a thickness of 100 μm, a porosity of 78% and a wire diameter of 55 μm was used as the current collector.

【0020】比較例3 五酸化バイジウムとして、平均粒径が5μm、最大粒径
が20μmの五酸化バナジウムを使用する以外は、実施
例2と同様にして電池特性を評価した。
Comparative Example 3 The battery characteristics were evaluated in the same manner as in Example 2 except that vanadium pentoxide having an average particle size of 5 μm and a maximum particle size of 20 μm was used as the bidium pentoxide.

【0021】[0021]

【表1】 *1 集電体を含む正極全体積当りのエネルギー容量 *2 集電体を含む正極全重量当りのエネルギー容量 *3 90゜の耐折試験により、膜が破壊されるのに要
する回数 *4 90゜の耐折試験を100回行い、曲折部分の集
電体と膜の密着性
[Table 1] * 1 Energy capacity per total volume of positive electrode including current collector * 2 Energy capacity per total weight of positive electrode including current collector * 3 Number of times required for membrane destruction by 90 ° folding endurance test * 4 90 Fold endurance test at 100 ° was performed 100 times, and the adhesion between the current collector and the film at the bent portion

【0022】[0022]

【効果】本発明によると、集電体と電極の密着性が良
く、かつ軽量で高エネルギー密度の電極が提供される。
According to the present invention, an electrode having good adhesion between the current collector and the electrode, light weight, and high energy density is provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加幡 利幸 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 藤井 俊茂 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshiyuki Kabata 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd. (72) Toshige Fujii 1-3-6 Nakamagome, Ota-ku, Tokyo Stock company Ricoh

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも電極活物質層および集電体か
らなる電池用電極において、集電体として金属繊維焼結
多孔質シートを用いたことを特徴とする二次電池用電
極。
1. An electrode for a secondary battery, comprising at least an electrode active material layer and a current collector, wherein a metal fiber sintered porous sheet is used as the current collector.
【請求項2】 電極活物質層が、少なくとも1種類の電
気化学的に酸化還元性を示す導電性高分子マトリックス
中に、少なくとも1種類の粒子状の無機活物質が均質に
分散されているものである請求項1記載の二次電池用電
極。
2. An electrode active material layer in which at least one kind of particulate inorganic active material is homogeneously dispersed in at least one kind of electrochemically redox-reducing conductive polymer matrix. The secondary battery electrode according to claim 1.
【請求項3】 粒子状の無機活物質のサイズが平均粒子
径10μm以下、最大粒子径30μm以下である請求項
2記載の二次電池用電極。
3. The secondary battery electrode according to claim 2, wherein the size of the particulate inorganic active material is 10 μm or less in average particle diameter and 30 μm or less in maximum particle diameter.
【請求項4】 金属繊維焼結多孔質シートの空隙率が3
0〜70%である請求項1、2または3記載の二次電池
用電極。
4. The porosity of the sintered metal fiber porous sheet is 3
It is 0 to 70%, The electrode for secondary batteries of Claim 1, 2 or 3.
【請求項5】 金属繊維焼結多孔質シートの繊維径が5
0μm以下である請求項1、2、3または4記載の二次
電池用電極。
5. The fiber diameter of the sintered metal fiber porous sheet is 5
The secondary battery electrode according to claim 1, which has a thickness of 0 μm or less.
【請求項6】 金属繊維焼結多孔質シート集電体に少な
くとも1種類の電極活物質および溶媒よりなる塗料溶液
を塗布、乾燥させることによって形成することを特徴と
する請求項1、2、3、4または5記載の二次電池用電
極の製造法。
6. The metal fiber sintered porous sheet is formed by applying a coating solution containing at least one kind of electrode active material and a solvent to a current collector and drying it. 4. The method for producing an electrode for a secondary battery according to 4 or 5.
【請求項7】 塗料溶液が、均質に分散された少なくと
も1種類の粒子状の無機活物質を有するものである請求
項6記載の二次電池用電極の製造法。
7. The method for producing an electrode for a secondary battery according to claim 6, wherein the coating solution has at least one kind of particulate inorganic active material uniformly dispersed.
JP5344949A 1993-12-20 1993-12-20 Electrode for secondary battery and manufacture thereof Pending JPH07176301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344949A JPH07176301A (en) 1993-12-20 1993-12-20 Electrode for secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344949A JPH07176301A (en) 1993-12-20 1993-12-20 Electrode for secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07176301A true JPH07176301A (en) 1995-07-14

Family

ID=18373246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344949A Pending JPH07176301A (en) 1993-12-20 1993-12-20 Electrode for secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07176301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025542A (en) * 2000-07-12 2002-01-25 Mitsubishi Heavy Ind Ltd Manufacturing method of electrode for lithium secondary battery and electrode for lithium secondary battery as well as lithium secondary battery
WO2002061863A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
JPWO2013073526A1 (en) * 2011-11-14 2015-04-02 住友電気工業株式会社 Electrode for electricity storage device, electricity storage device, and method for producing electrode for electricity storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025542A (en) * 2000-07-12 2002-01-25 Mitsubishi Heavy Ind Ltd Manufacturing method of electrode for lithium secondary battery and electrode for lithium secondary battery as well as lithium secondary battery
WO2002061863A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
JPWO2013073526A1 (en) * 2011-11-14 2015-04-02 住友電気工業株式会社 Electrode for electricity storage device, electricity storage device, and method for producing electrode for electricity storage device

Similar Documents

Publication Publication Date Title
US5437943A (en) Positive electrode and secondary battery using the same
US5176969A (en) Electrode for secondary battery
US5489492A (en) Composite sheet electrode
DE3829541A1 (en) LEAF-SHAPED ELECTRODE, METHOD FOR PRODUCING THE SAME AND SECONDARY BATTERY CONTAINING THIS
WO2010029901A1 (en) Battery separator and method for producing same, and lithium ion secondary battery and method for producing same
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
US5202202A (en) Cell comprising polyaniline positive electrode and method for producing polyaniline powder therefor
JPH08153514A (en) Film-shaped negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same
CN115298852A (en) Negative electrode and secondary battery comprising same
JPH07302586A (en) Battery electrode and its manufacture
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JP2000123825A (en) High polymer electrode
JPH07176301A (en) Electrode for secondary battery and manufacture thereof
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JP2908822B2 (en) Electrode
JPH0850893A (en) Electrode for secondary battery
JP2542221B2 (en) Battery using polyaniline composite electrode
JPH1197026A (en) Electrode for li cell
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JPH0864200A (en) Electrode for secondary battery and secondary battery using this electrode
JP3452943B2 (en) Intercalate material / soluble conductive polymer material composite and electrode for secondary battery using the same
JP3409093B2 (en) Electrode for secondary battery and battery using the same