JPH0717446B2 - Method for manufacturing zirconia ceramics - Google Patents

Method for manufacturing zirconia ceramics

Info

Publication number
JPH0717446B2
JPH0717446B2 JP1279297A JP27929789A JPH0717446B2 JP H0717446 B2 JPH0717446 B2 JP H0717446B2 JP 1279297 A JP1279297 A JP 1279297A JP 27929789 A JP27929789 A JP 27929789A JP H0717446 B2 JPH0717446 B2 JP H0717446B2
Authority
JP
Japan
Prior art keywords
mol
superplastic
zirconia
less
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1279297A
Other languages
Japanese (ja)
Other versions
JPH03141156A (en
Inventor
良智 新谷
卓二 吉村
一男 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Original Assignee
Ishikawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture filed Critical Ishikawa Prefecture
Priority to JP1279297A priority Critical patent/JPH0717446B2/en
Publication of JPH03141156A publication Critical patent/JPH03141156A/en
Publication of JPH0717446B2 publication Critical patent/JPH0717446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃料電池用固体電解質、電気化学式酸素ポン
プ、酸素センサー等に好適な酸素イオン導電性に優れた
複雑形状でかつ寸法精度のよいジルコニアセラミックス
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is suitable for solid electrolytes for fuel cells, electrochemical oxygen pumps, oxygen sensors, etc., and has a complicated shape and excellent dimensional accuracy with excellent oxygen ion conductivity. The present invention relates to a method for manufacturing ceramics.

(従来の技術) ジルコニアセラミックスにおいて、超塑性現象が見出さ
れて以来、複雑な形状のジルコニアセラミックス部材を
超塑性加工法を用いて寸法精度よく製造しようとする試
みやセラミックス同志の接合を行なう試みがなされてい
る。この超塑性現象はジルコニアセラミックスを構成す
る結晶粒子の粒子径が小さく且つ均一であってはじめて
生起するものである。現在この超塑性加工法が適用され
ている素材としては、構造材料用セラミックスとして用
いられるY2O3成分を2.5乃至3モル%含有する部分安定
化ジルコニア(PSZ)又は正方晶系ジルコニア多結晶体
(TZP)と称せられるものに限定されている。これら
は、いずれも正方晶系ジルコニアを主要構成結晶とする
ものである。その理由は、本組成範囲とする事によりジ
ルコニア粒子の焼成過程での粒子成長が小さく、前記の
超塑性加工条件を満足するからである。
(Prior Art) Since the superplastic phenomenon was found in zirconia ceramics, an attempt to manufacture zirconia ceramic members with complicated shapes using superplastic forming method with dimensional accuracy and an attempt to join ceramics Has been done. This superplasticity phenomenon occurs only when the crystal grains constituting the zirconia ceramics have a small and uniform grain size. The material to which this superplastic forming method is currently applied is partially stabilized zirconia (PSZ) or tetragonal zirconia polycrystal containing 2.5 to 3 mol% of Y 2 O 3 component used as a ceramic for structural materials. Limited to what is called (TZP). All of these have tetragonal zirconia as a main constituent crystal. The reason for this is that when the content is within this range, the particle growth in the firing process of zirconia particles is small and the above superplastic working conditions are satisfied.

ジルコニアセラミックスは前記の構造材料用セラミック
ス用途以外に、その酸素イオン導電性を利用して、酸素
センサー等の機能性セラミックスとしても多用されてい
る。一般にジルコニアセラミックスの酸素イオン導電性
は添加する安定化剤の量と共に増加し、最大値を経て、
次いで減少するという傾向を示す。更に安定化剤の種類
として、MgO,CaO及びY2O3が一般的に使用されている
が、これらのうち、Y2O3が最も高いイオン導電率を有す
る。以上の理由より酸素イオン電導性を利用するジルコ
ニアセラミックスとして、最も導電率の高いY2O3を4乃
至8モル%含有する組成物が多用されるがこの組成範囲
では立方晶系ジルコニアが主要構成結晶であり、前述の
正方晶系ジルコニアとは異なり焼成工程での粒子成長が
極めて著しい。その為酸素イオン導電性を利用するジル
コニアセラミックスに超塑性加工は適用できなかった。
Zirconia ceramics are widely used as functional ceramics for oxygen sensors and the like, in addition to the above-mentioned applications for ceramics for structural materials, by utilizing their oxygen ion conductivity. Generally, the oxygen ion conductivity of zirconia ceramics increases with the amount of stabilizer added, and after reaching the maximum value,
Then, it shows a tendency to decrease. Further, MgO, CaO and Y 2 O 3 are generally used as the stabilizers, and among these, Y 2 O 3 has the highest ionic conductivity. For the above reasons, a composition containing 4 to 8 mol% of Y 2 O 3 having the highest conductivity is often used as a zirconia ceramic utilizing oxygen ion conductivity. In this composition range, cubic zirconia is the main constituent. It is a crystal, and unlike the above-mentioned tetragonal zirconia, the particle growth in the firing step is extremely remarkable. Therefore, superplastic working cannot be applied to zirconia ceramics that utilize oxygen ion conductivity.

(発明が解決しようとする問題点) 本発明者らは、上記問題点に鑑み鋭意研究を重ねた結
果、Y2O3を安定化剤とするジルコニアセラミックスにお
いて、酸素イオン導電性を利用する部材を超塑性加工法
を用いて製造する際に必要な焼成工程での粒子成長を抑
制し、且つ優れた酸素イオン導電率を確保する方法を見
い出し本発明を完成したものである。
(Problems to be Solved by the Invention) As a result of intensive studies conducted by the present inventors in view of the above problems, in the zirconia ceramics containing Y 2 O 3 as a stabilizer, a member utilizing oxygen ion conductivity. The present invention has been completed by finding a method for suppressing the particle growth in the firing step necessary for manufacturing the above-mentioned material by using the superplastic working method and ensuring an excellent oxygen ion conductivity.

本発明の目的は酸素イオン導電性に優れた立方晶系を主
体とするジルコニアセラミックスの製造方法を提供する
にある。
An object of the present invention is to provide a method for producing zirconia ceramics mainly composed of a cubic system having excellent oxygen ion conductivity.

(問題を解決する為の手段) 上記の目的はZrO2換算で92〜96モル%の酸化ジルコニウ
ムと、Y2O3換算で4〜8モル%の酸化イットリウムとこ
れらに対し、Al2O3換算で0.5〜15重量%の酸化アルミニ
ウムとを含有する水性溶液から分離した沈澱物を仮焼し
て得られた原料粉末を焼成して気孔率40%以下、粒子径
3μ以下の焼成体と成し、次いで超塑性加工処理を施こ
すことを特徴とするジルコニアセラミックスの製造方法
により達成される。
(Means for Solving the Problem) The above-mentioned purpose is 92 to 96 mol% zirconium oxide in terms of ZrO 2 and 4 to 8 mol% yttrium oxide in terms of Y 2 O 3 and Al 2 O 3 for these. A raw material powder obtained by calcining a precipitate separated from an aqueous solution containing 0.5 to 15% by weight of aluminum oxide is calcined to form a calcined body having a porosity of 40% or less and a particle diameter of 3 μm or less. And then subject to superplastic working treatment to achieve a zirconia ceramics manufacturing method.

本発明のジルコニアセラミックスの製造方法は、次の
(1)〜(4)に記載の工程から達成される。即ち、 (1) 水系湿式法により所定量比のジルコニウム,イ
ットリウム及びアルミニウムを含有する沈澱物を得る工
程。
The method for producing zirconia ceramics of the present invention is achieved by the steps (1) to (4) described below. That is, (1) a step of obtaining a precipitate containing zirconium, yttrium and aluminum in a predetermined quantitative ratio by an aqueous wet method.

(2) 沈澱物を仮焼して原料粉末を得る工程。(2) A step of calcining the precipitate to obtain a raw material powder.

(3) 原料粉末を成型し、焼成する工程。(3) A step of molding and firing the raw material powder.

(4) 焼成体を所定の形状に超塑性加工を行なう工
程。
(4) A step of superplastic working the fired body into a predetermined shape.

本発明において、ZrO2の含有量が96モル%を越える、換
言すればY2O3の含有量が4モル%未満であると酸素イオ
ン導電性が大巾に低下し、更に単斜晶系及び正方晶系の
ジルコニアの構成比率が多くなるため、長期に亘る機械
的強度の安定性が損なわれる。一方、ZrO2の含有量が92
モル%未満、換言すればY2O3の含有量が8モル%を越え
ると立方晶系のジルコニアが主要構成結晶となるが、ジ
ルコニア粒子の粒子成長が著しくなり、超塑性変形性が
低下し超塑性加工が事実上不可能となる。従ってZrO2
含有量は92〜96モル%、好ましくは93.5〜95モル%であ
り、Y2O3の含有量は4〜8モル%、好ましくは5〜6.5
モル%である。
In the present invention, when the content of ZrO 2 exceeds 96 mol%, in other words, the content of Y 2 O 3 is less than 4 mol%, the oxygen ion conductivity is significantly lowered, and further monoclinic system is used. In addition, since the composition ratio of tetragonal zirconia increases, the stability of mechanical strength for a long time is impaired. On the other hand, the content of ZrO 2 is 92
If the content of Y 2 O 3 is less than 8 mol%, the cubic zirconia becomes the main constituent crystals, but the zirconia particles grow remarkably and the superplastic deformability deteriorates. Superplastic working becomes virtually impossible. Therefore, the content of ZrO 2 is 92 to 96 mol%, preferably 93.5 to 95 mol%, and the content of Y 2 O 3 is 4 to 8 mol%, preferably 5 to 6.5 mol%.
Mol%.

Al2O3はイオン導電性を低下させずにジルコニア粒子の
粒子成長を抑制する効果を目的として添加される。Al2O
3がZrO2とY2O3の総量に対して0.5重量%未満であると粒
子成長抑制効果が小さく、一方15重量%を越えると緻密
な焼結体が得られない。Al2O3の添加量がZrO2とY2O3
総量に対して、0.5〜15重量%、好ましくは1〜7重量
%である。
Al 2 O 3 is added for the purpose of suppressing the particle growth of zirconia particles without lowering the ionic conductivity. Al 2 O
If 3 is less than 0.5% by weight with respect to the total amount of ZrO 2 and Y 2 O 3 , the grain growth suppressing effect is small, while if it exceeds 15% by weight, a dense sintered body cannot be obtained. The amount of Al 2 O 3 added is 0.5 to 15% by weight, preferably 1 to 7% by weight, based on the total amount of ZrO 2 and Y 2 O 3 .

本発明において、重要な事はY2O3及びZrO2成分とAl2O3
成分とは水性溶液より沈澱させ、極めて微粒子で且つ化
学的に均一に混合せしめて、はじめて目的とする効果を
発揮できるものであり、全く同一の化学組成であっても
単なるY2O3安定化ZrO2微粒子とAl2O3微粒子とのボール
ミル混合等の後混合では良好な特性は得られない。
In the present invention, the important thing is that Y 2 O 3 and ZrO 2 components and Al 2 O 3
The component is the one that can achieve the intended effect for the first time by precipitating it from an aqueous solution, mixing it with extremely fine particles and chemically uniformly, and even if it has the exact same chemical composition, it is just Y 2 O 3 stabilization. Good characteristics cannot be obtained by post-mixing such as ball mill mixing of ZrO 2 fine particles and Al 2 O 3 fine particles.

沈澱物はジルコニウム,イットリウム及びアルミニウム
を含有する無機塩又はアルコキシド等の混合水性液を用
い、酸化物,水酸化物,ポリアクリル酸金属塩等の形で
析出させる公知の方法、即ち、共沈法,加水分解法,ゾ
ルゲル法等の方法もしくはこれらの方法を併用して製造
される。無機塩としては例えば酸塩化物,塩化物,硫酸
塩,硝酸塩等が挙げられる。アルコキシドとしては例え
ばメトキシド,エトキシド,プロポキシド,イソプロポ
キシド,ブトキシド等が挙げられる。本発明のジルコニ
アセラミックスは基本的にZrO2,Y2O3及びAl2O3より構
成されるものであるが、工業的製造に不可避的に混入す
る不純物として、又は焼結助剤等を本発明の目的を妨げ
ない範囲で5重量%以下、好ましくは3重量%以下添加
してもよい。これら不純物又は焼結助剤等としてはアル
カリ金属,アルカル土類金属,希土類金属,クロム,マ
ンガン,鉄,コバルト,ニッケル,亜鉛,銅,錫,チタ
ニウム,ニオビウム,珪素等の酸化物、化合物あるいは
これらの混合物等を挙げる事が出来る。
The precipitate is a known method of precipitating in the form of an oxide, a hydroxide, a polyacrylic acid metal salt, etc., using a mixed aqueous liquid of an inorganic salt containing zirconium, yttrium and aluminum or an alkoxide, that is, a coprecipitation , A hydrolysis method, a sol-gel method, or a combination of these methods. Examples of the inorganic salt include acid chlorides, chlorides, sulfates and nitrates. Examples of the alkoxide include methoxide, ethoxide, propoxide, isopropoxide, butoxide and the like. Although zirconia ceramics of the present invention is basically being composed of ZrO 2, Y 2 O 3 and Al 2 O 3, present as impurities inevitably mixed in the industrial production, or the sintering agent It may be added in an amount of 5% by weight or less, preferably 3% by weight or less as long as the object of the invention is not impaired. As these impurities or sintering aids, alkali metals, alcal earth metals, rare earth metals, chromium, manganese, iron, cobalt, nickel, zinc, copper, tin, titanium, niobium, silicon oxides, compounds, etc. And the like.

本発明において、沈澱物は別し、必要に応じて水洗
浄,溶剤洗浄,共沸脱水処理等を行なった後、仮焼し必
要に応じて粉砕を行ないこれを原料粉末とする。原料粉
末の粒子径は0.1μ以下が好ましく仮焼温度は650〜1200
℃が好ましい。
In the present invention, the precipitate is separated, washed with water, washed with a solvent, azeotropically dehydrated, and the like, if necessary, and then calcined and pulverized as necessary to obtain a raw material powder. The particle size of the raw material powder is preferably 0.1 μ or less, and the calcination temperature is 650 to 1200.
C is preferred.

原料粉末は例えば鋳込成型,プレス成型,押出成型,射
出成型,テープ成型等適宜の公知の方法により適宜形状
に成型できる。得られた成型体はガス炉,電気炉等を用
いて、適宜雰囲気で焼成される。バインダー成分の多い
成型体については、予め緩和な昇温による脱脂工程を別
途設けるのが好ましい。
The raw material powder can be formed into an appropriate shape by an appropriate known method such as cast molding, press molding, extrusion molding, injection molding, or tape molding. The obtained molded body is fired in an appropriate atmosphere using a gas furnace, an electric furnace or the like. For a molded body containing a large amount of binder component, it is preferable to separately provide a degreasing step by gentle temperature increase in advance.

本発明において、原料粉末の成型体を加熱して焼成体と
成すが、その焼成体の気孔率換言すれば緻密度及び構成
する粒子の粒径は厳密に制御する必要がある。即ち気孔
率が大き過ぎる、即ち緻密度が低いとその生強度が低く
ハンドリングが困難となる。更に引続き実施する超塑性
加工時に亀裂が発生する等の問題を生起する。焼成体の
気孔率は40%以下、好ましくは20%以下、更に好ましく
は10%以下である。一方、焼成体の構成粒子の粒径が大
き過ぎると超塑性変形性が極めて劣り、事実上、超塑性
加工が不可能となる。構成粒子の粒径は3μ以下、好ま
しくは1μ以下である。焼成体の気孔率及び構成粒子の
粒径は焼成条件により決定される。焼成温度が高い程、
一方焼成時間が長い程、気孔率は小さくなり、構成粒子
の粒径は大きくなる。焼成条件は目的とする焼成体の物
性を勘案して、適宜決定されるが、焼成温度は通常1500
℃以下とすると好ましい結果が得られる。
In the present invention, the molded body of the raw material powder is heated to form a fired body. In other words, the porosity of the fired body needs to be strictly controlled in terms of the density and the particle diameter of the constituent particles. That is, if the porosity is too large, that is, if the density is low, the green strength is low and handling becomes difficult. Further, it causes problems such as cracks occurring during superplastic working that is continuously performed. The porosity of the fired body is 40% or less, preferably 20% or less, more preferably 10% or less. On the other hand, if the particle size of the constituent particles of the fired body is too large, the superplastic deformability is extremely poor, and superplastic working is practically impossible. The particle diameter of the constituent particles is 3 μm or less, preferably 1 μm or less. The porosity of the fired body and the particle size of the constituent particles are determined by the firing conditions. The higher the firing temperature,
On the other hand, the longer the firing time, the smaller the porosity and the larger the particle size of the constituent particles. The firing conditions are appropriately determined in consideration of the physical properties of the desired fired product, but the firing temperature is usually 1500.
When the temperature is lower than or equal to ℃, preferable results are obtained.

焼成体は引き続き超塑性加工を施こし複雑な形状物とな
す。超塑性加工温度は1350〜1500℃が好ましい。加工温
度が低過ぎると最適塑性加工速度が大巾に小さくなり、
事実上、超塑性加工が不可能となる。一方、加工温度が
高過ぎると超塑性加工工程中に超塑性加工性が低下す
る。超塑性加工法を適用した一例として、バルジ加工,
深絞り加工,鍛造,他のセラミックス部材との接合加工
等を挙げることが出来るが、これらに限定されるもので
はない。
The fired body is subsequently subjected to superplastic working to form a complicated shape. The superplastic working temperature is preferably 1350 to 1500 ° C. If the processing temperature is too low, the optimum plastic processing speed will decrease significantly,
Virtually no superplastic working is possible. On the other hand, if the working temperature is too high, the superplastic workability is deteriorated during the superplastic working process. As an example of applying the superplastic forming method, bulge forming,
Examples include, but are not limited to, deep drawing, forging, and joining with other ceramic members.

本発明において、超塑性加工を終えた焼成体は再度高温
処理を施こしその緻密性を増大せしめる等の後加工を施
してもよい。
In the present invention, the fired body that has been subjected to superplastic working may be subjected to post-processing such as high temperature treatment again to increase its denseness.

本発明は前記の通り立方晶系のジルコニアを主体とする
ものでなくてはならない。立方晶系ジルコニアの構成比
率は好ましくは60体積%以上更に好ましくは90体積%以
上、更に好ましくは95体積%以上である。
The present invention must be based on cubic zirconia as described above. The composition ratio of cubic zirconia is preferably 60% by volume or more, more preferably 90% by volume or more, and further preferably 95% by volume or more.

(発明の効果) 本発明方法によれば従来不可能とされて来た酸素イオン
導電性を利用した立方晶を主要構成相とするジルコニア
セラミックスに超塑性加工を適用することが可能なり、
複雑形状を有し、且つ寸法精度に優れたジルコニア質電
子部材を製造することが出来る。
(Effect of the Invention) According to the method of the present invention, it becomes possible to apply superplastic working to zirconia ceramics having a cubic crystal as a main constituent phase utilizing oxygen ion conductivity, which has been conventionally considered impossible.
A zirconia-based electronic member having a complicated shape and excellent in dimensional accuracy can be manufactured.

以下実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to examples.

実施例1 ZrO2,Y2O3及びAl2O3換算で第1表に示す組成から成
る、酸塩化ジルコニウム,塩化イットリウム及び塩化ア
ルミニウムの水溶液を撹拌しながら28%のアンモニア水
を滴下し、pHを約9.5に調整した。生成した沈澱物の
過洗浄を繰返し、液に塩素イオンが検出されない事が
確認した後、沈澱物をアセトンにて洗浄し、乾燥した。
沈澱物を950℃で5時間仮焼した後、エタノール中でボ
ールミル粉砕を行ない、乾燥して、原料粉末を得た。原
料粉末の電子顕微鏡観察より、その平均粒子径は0.05μ
であった。原料粉末に所定量のメチルセルロース及び水
を添加した後、押出成型機を用いて円筒状グリーン体を
得た。グリーン体を乾燥後、1450℃で2時間焼成して、
外径30mm,内径25mmの円筒状の焼結体を得た。
Example 1 28% ammonia water was added dropwise while stirring an aqueous solution of zirconium oxychloride, yttrium chloride and aluminum chloride having the composition shown in Table 1 in terms of ZrO 2 , Y 2 O 3 and Al 2 O 3 , The pH was adjusted to about 9.5. The precipitate thus formed was repeatedly washed excessively, and after it was confirmed that chlorine ions were not detected in the liquid, the precipitate was washed with acetone and dried.
The precipitate was calcined at 950 ° C. for 5 hours, then ball-milled in ethanol and dried to obtain a raw material powder. The average particle size of the raw powder was 0.05μ as observed by electron microscopy.
Met. After adding a predetermined amount of methyl cellulose and water to the raw material powder, a cylindrical green body was obtained using an extruder. After drying the green body, bake at 1450 ℃ for 2 hours,
A cylindrical sintered body with an outer diameter of 30 mm and an inner diameter of 25 mm was obtained.

円筒状焼結体を1450℃のホットプレス機に設置した炭化
珪素製治具に装着し、円筒内に平均粒径0.2μの炭化珪
素粉末を充填した。炭化珪素粉末を加圧圧縮する事によ
り、外径45mmのリング状突起部をバルジ加工により形成
せしめた。結果を第1表に示す。
The cylindrical sintered body was mounted on a silicon carbide jig installed in a hot press machine at 1450 ° C., and silicon carbide powder having an average particle size of 0.2 μ was filled in the cylinder. By pressing the silicon carbide powder under pressure, ring-shaped protrusions having an outer diameter of 45 mm were formed by bulging. The results are shown in Table 1.

尚、超塑性加工性は超塑性加工後の外観評価により以下
の通り評価した。
The superplastic workability was evaluated as follows by the appearance evaluation after the superplastic working.

判定 亀裂なし……………◎ 僅に亀裂有り………○ 亀裂発生………△ 破壊…………………× 第1表に示す様に、ZrO2が96モル%を越えると、即ち、
Y2O3が4モル%未満であると立方晶系ジルコニアの構成
比率が少なくなり、導電性及び長期安定性の観点より工
業的に使用できないことがわかる。一方、ZrO2が92モル
%未満、即ちY2O3が7モル%を越えると超塑性加工性が
劣化した。
Judgment No cracks ………… ◎◎ Slight cracks ………… ○ Cracks ……… △ Fracture …………… × × As shown in Table 1, when ZrO 2 exceeds 96 mol%, That is,
If Y 2 O 3 is less than 4 mol%, the composition ratio of cubic zirconia decreases, and it can be seen that it cannot be industrially used from the viewpoint of conductivity and long-term stability. On the other hand, when ZrO 2 is less than 92 mol%, that is, when Y 2 O 3 exceeds 7 mol%, the superplastic workability is deteriorated.

実施例2 ZrO2,Y2O3及びAl2O3換算で第2表に示す組成からな
る、酸塩化ジルコニウム,塩化イットリウム及び塩化ア
ルミニウムの水溶液に所定量の尿素を加え、95℃に加熱
する事によりpHを約8.5に調整する事と円筒状グリーン
体をアクリル系樹脂バインダーを含有する水系スラリー
にて鋳込成型法にて作製する事以外は全て実施例1に準
じて評価した。尚イオン導電性は5×5×3mm寸法の試
料を切断、研磨により作成し、これに白金電極を設置
し、800℃での直流導電率より評価した。結果を表2に
示す。
Example 2 A predetermined amount of urea was added to an aqueous solution of zirconium oxychloride, yttrium chloride and aluminum chloride having the compositions shown in Table 2 in terms of ZrO 2 , Y 2 O 3 and Al 2 O 3 and heated to 95 ° C. All were evaluated in accordance with Example 1 except that the pH was adjusted to about 8.5 and the cylindrical green body was made by a casting method using an aqueous slurry containing an acrylic resin binder. The ionic conductivity was evaluated by cutting a sample of 5 × 5 × 3 mm and cutting it and polishing it, setting a platinum electrode on it, and measuring the direct current conductivity at 800 ° C. The results are shown in Table 2.

第2表に示す様に、Al2O3の添加量が0.5重量%未満であ
ると超塑性加工が事実上不可能であった。一方Al2O3
添加量が15重量%を越えると、焼結体の緻密性が劣り、
その為超塑性加工性も低下する。更にAl2O3の添加は、
導電性の向上に寄与することが判る。
As shown in Table 2, if the amount of Al 2 O 3 added is less than 0.5% by weight, superplastic working was practically impossible. On the other hand, if the added amount of Al 2 O 3 exceeds 15% by weight, the compactness of the sintered body becomes poor,
Therefore, superplastic workability is also reduced. Further addition of Al 2 O 3
It can be seen that it contributes to improvement of conductivity.

実施例3 ZrO2が94.5モル%、Y2O3が5.5モル%より成る組成物に
対し、Al2O3が5.5重量%添加された組成となる様に、ジ
ルコニウムプロポキシド,イットリウムイソプロポキシ
ド及びアルミニウムイソプロポキシドを無水イソプロピ
ルアルコールに80℃にて溶解した後、50℃にて大過剰の
3%アンモニア水中に滴下攪拌して、アルコキシドを加
水分解した。生成したゲル状粒子の沈澱物をメタノール
にて洗浄し、乾燥した。沈澱物を850℃で3時間仮焼し
た後、メタノール中でボールミル粉砕を行ない乾燥して
原料粉末を得た。その平均粒子径は0.07μであった。原
料粉末に所定量の水、解膠剤及びアクリル径水溶性バイ
ンダーを加えて、ボールミルにて分散し、スラリーを作
製した後、ドクターブレード法にて厚さ2mmのグリーン
シートを作製した。グリーンシートを乾燥後、第3表に
示す条件で焼成し、板状の焼結体を得た。板状焼結体を
1400℃のホットプレス機に設置した炭化珪素質の内径30
mm、深さ20mmのメス型と、直径20mm、長さ10mmのオス型
との間に装着した後、加圧し、超塑性加工を行なう事に
より凸型突起物を有する板状体を作製して、その超塑性
加工性を評価した。結果を第3表に示す。
Example 3 Zirconium propoxide and yttrium isopropoxide were added so that 5.5 wt% of Al 2 O 3 was added to a composition of 94.5 mol% ZrO 2 and 5.5 mol% Y 2 O 3. The aluminum alkoxide and aluminum isopropoxide were dissolved in anhydrous isopropyl alcohol at 80 ° C., and the mixture was added dropwise to a large excess of 3% ammonia water at 50 ° C. and stirred to hydrolyze the alkoxide. The formed gel particle precipitate was washed with methanol and dried. The precipitate was calcined at 850 ° C. for 3 hours, ball-milled in methanol and dried to obtain a raw material powder. The average particle size was 0.07μ. A predetermined amount of water, a deflocculant and a water-soluble acrylic diameter binder were added to the raw material powder and dispersed by a ball mill to prepare a slurry, and then a 2 mm thick green sheet was prepared by the doctor blade method. After drying the green sheet, it was fired under the conditions shown in Table 3 to obtain a plate-shaped sintered body. A plate-shaped sintered body
Silicon carbide-based inner diameter 30 installed in a 1400 ° C hot press machine
mm, depth 20 mm female mold and diameter 20 mm, length 10 mm male mold, and then pressurized to perform superplastic working to produce a plate-shaped body with convex protrusions. , Its superplastic workability was evaluated. The results are shown in Table 3.

比較例1 実施例1に示すNo.4組成と同一組成となる様に東ソー製
ZrO2粉末TZ6Y(Y2O3=6モル%含有,平均粒子径0.3
μ)及び昭和電工製 Al2O3粉末AL160SG−1(Al2O3純分99.9%,平均粒子径
0.4μ)を配合し、実施例1に準じて評価した。結果を
第4表に示す。
Comparative Example 1 Tosoh manufactured the same composition as No. 4 composition shown in Example 1.
ZrO 2 powder TZ6Y (Y 2 O 3 = 6 mol% content, average particle size 0.3
μ) and Showa Denko Al 2 O 3 powder AL160SG-1 (Al 2 O 3 pure content 99.9%, average particle size
0.4 μ) was added and evaluated according to Example 1. The results are shown in Table 4.

第4表に示す様に、通常の粉体の後混合では、No.4と同
一組成であっても、Al2O3の粒子成長防止効果は見られ
ず、焼結体の粒子径は極めて大きくなり、その為、超塑
性加工は不可能であった。
As shown in Table 4, in the normal powder post-mixing, even if the composition is the same as that of No. 4, the grain growth preventing effect of Al 2 O 3 is not seen, and the grain size of the sintered body is extremely small. However, superplastic working was impossible.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ZrO2換算で92〜96モル%の酸化ジルコニウ
ムと、Y2O3換算で4〜8モル%の酸化イットリウムとよ
りなる組成物に対し、Al2O3換算で0.5〜15重量%の酸化
アルミニウムとを含有する水性溶液から分離した沈澱物
を仮焼して得られた原料粉末を焼成して気孔率40%以
下、粒子径3μ以下の焼成体と成し、次いで超塑性加工
処理を施こすことを特徴とするジルコニアセラミックス
の製造方法。
1. A composition comprising 92 to 96 mol% zirconium oxide in terms of ZrO 2 and 4 to 8 mol% yttrium oxide in terms of Y 2 O 3 , and 0.5 to 15 in terms of Al 2 O 3. A raw material powder obtained by calcining a precipitate separated from an aqueous solution containing aluminum oxide by weight% is fired to form a fired body having a porosity of 40% or less and a particle diameter of 3μ or less, and then superplasticity. A method for producing zirconia ceramics, which comprises subjecting the material to processing.
JP1279297A 1989-10-26 1989-10-26 Method for manufacturing zirconia ceramics Expired - Lifetime JPH0717446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1279297A JPH0717446B2 (en) 1989-10-26 1989-10-26 Method for manufacturing zirconia ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1279297A JPH0717446B2 (en) 1989-10-26 1989-10-26 Method for manufacturing zirconia ceramics

Publications (2)

Publication Number Publication Date
JPH03141156A JPH03141156A (en) 1991-06-17
JPH0717446B2 true JPH0717446B2 (en) 1995-03-01

Family

ID=17609206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1279297A Expired - Lifetime JPH0717446B2 (en) 1989-10-26 1989-10-26 Method for manufacturing zirconia ceramics

Country Status (1)

Country Link
JP (1) JPH0717446B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458863B2 (en) * 1993-06-17 2003-10-20 東邦瓦斯株式会社 Solid electrolyte sintered body for solid oxide fuel cell
JP5405591B2 (en) * 2008-12-17 2014-02-05 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Co-doped YSZ electrolyte for solid oxide fuel cell stack
EP2885259B1 (en) * 2012-08-20 2020-10-07 CeramTec GmbH Zirconium oxide-based composite material
CN103756397B (en) * 2013-12-27 2015-02-11 淄博广通化工有限责任公司 Zirconia composite nano-powder material and preparation method thereof

Also Published As

Publication number Publication date
JPH03141156A (en) 1991-06-17

Similar Documents

Publication Publication Date Title
KR101323697B1 (en) Zirconium oxide and method for the production thereof
JP7308814B2 (en) Ceramic powders, sintered bodies and batteries
US20070179041A1 (en) Zirconia Ceramic
JPH0733257B2 (en) Lanthanum chromite particularly suitable for low temperature firing
US3825653A (en) Process for preparing sinterable aluminum titanate powder
US4113928A (en) Method of preparing dense, high strength, and electrically conductive ceramics containing β"-alumina
JP2016034883A (en) Lithium ion conductive inorganic compound surface coated llz-based lithium ion conductive oxide
JP2013209244A (en) Member for firing consisting of zirconia quality sintered body
JPH0717446B2 (en) Method for manufacturing zirconia ceramics
CN104528823B (en) A kind of Zirconium powder, its product and preparation method
US11462760B2 (en) Scandia-stabilized zirconia powder for solid oxide fuel cells, method for producing same, scandia-stabilized zirconia sintered body for solid oxide fuel cells, method for producing said scandia-stabilized zirconia sintered body for solid oxide fuel cells, and solid oxide fuel cell
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JP2941038B2 (en) Polycrystalline sintered solid electrolyte
JP6818411B2 (en) Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production
JP3323923B2 (en) Zirconia polycrystalline thin film and method for producing the same
JP2762508B2 (en) Zirconia sintered body and method for producing the same
JP6554733B2 (en) Cerium oxide-stabilized zirconium oxide composition and method for producing the same
JP4612358B2 (en) Alumina / zirconia ceramics and production method thereof
JP3586556B2 (en) Method for producing beta alumina electrolyte
JPH1149562A (en) Production of beta-alumina ceramic
JPH0515666B2 (en)
JPH11154414A (en) Beta-alumina electrolyte and manufacture thereof
JP2541726B2 (en) Ceramic composite conductive heat resistant material composition
JPH0511063B2 (en)