JP4831945B2 - Zirconia-alumina ceramics and process for producing the same - Google Patents

Zirconia-alumina ceramics and process for producing the same Download PDF

Info

Publication number
JP4831945B2
JP4831945B2 JP2004249080A JP2004249080A JP4831945B2 JP 4831945 B2 JP4831945 B2 JP 4831945B2 JP 2004249080 A JP2004249080 A JP 2004249080A JP 2004249080 A JP2004249080 A JP 2004249080A JP 4831945 B2 JP4831945 B2 JP 4831945B2
Authority
JP
Japan
Prior art keywords
zirconia
alumina
powder
crystal phase
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004249080A
Other languages
Japanese (ja)
Other versions
JP2006062918A (en
Inventor
邦英 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004249080A priority Critical patent/JP4831945B2/en
Publication of JP2006062918A publication Critical patent/JP2006062918A/en
Application granted granted Critical
Publication of JP4831945B2 publication Critical patent/JP4831945B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ジルコニア−アルミナ系セラミックスおよびその製法に関し、特に、構造用部品などに好適な高強度、高靭性でかつ耐磨耗性の高いジルコニア−アルミナ系セラミックスおよびその製法に関する。   The present invention relates to a zirconia-alumina ceramic and a method for producing the same, and more particularly to a zirconia-alumina ceramic having a high strength, high toughness and high wear resistance suitable for structural parts and the like, and a method for producing the same.

近年、セラミックスは、その優れた機械的特性並びに耐腐食性などの理由から種々の構造用部品に適用されている。例えば、種々の刃物類や工具類、あるいは軸受けなどの機構部品や生体関連部材等である。こうした用途に適用させるために、下記の特許文献1では、ジルコニア系の複合セラミックスが選ばれ、このようなセラミックス中にジルコニア結晶相のうち正方晶を安定化させる添加剤(CeO)を含有させることにより、その機械的特性や熱劣化試験などの耐候性を高めることができることについて記載されている。
特公平5−35103号公報
In recent years, ceramics have been applied to various structural parts for reasons such as excellent mechanical properties and corrosion resistance. For example, there are various blades and tools, mechanical parts such as bearings, and biological members. In order to apply to such applications, in Patent Document 1 below, zirconia-based composite ceramics are selected, and such ceramics contain an additive (CeO 2 ) that stabilizes tetragonal crystals in the zirconia crystal phase. It is described that the weather resistance such as the mechanical properties and the heat deterioration test can be improved.
Japanese Examined Patent Publication No. 5-35103

しかしながら、上記特許文献1に記載されたジルコニア系の複合セラミックスでは、上述のように機械的強度や靭性は高いものの、この複合セラミックスが1500〜1600℃と比較的高温で焼成されていることからジルコニア結晶相が粒成長し、当該結晶粒径のばらつきが大きくなり、このため上記の複合セラミックスについて耐摩耗性試験を行った場合、結晶粒子が欠落しやすく、しかもこの欠落した部分が大きい体積であるために摩耗する速さが急速に高まるという問題があった。   However, in the zirconia-based composite ceramic described in Patent Document 1, although the mechanical strength and toughness are high as described above, the composite ceramic is fired at a relatively high temperature of 1500 to 1600 ° C., so zirconia. The crystal phase grows and the variation of the crystal grain size becomes large. For this reason, when the wear resistance test is performed on the above composite ceramic, the crystal particles are likely to be missing, and the missing part has a large volume. Therefore, there is a problem that the speed of wear increases rapidly.

従って、本発明は、高強度、高靭性に加えて耐摩耗性に優れたジルコニア−アルミナ系セラミックスおよびその製法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a zirconia-alumina ceramic having excellent wear resistance in addition to high strength and high toughness, and a method for producing the same.

本発明によれば、8〜12モル%のCeOを含むジルコニア67〜89.5質量%と、アルミナ10〜30質量%と、酸化亜鉛0.5〜3質量%とからなるとともに、前記アルミナ前記CeO 酸化亜鉛化合した針状晶とジルコニア結晶相と、アルミナ結晶を有し、かつ前記ジルコニア結晶相の平均結晶径が0.65〜1μmおよび前記アルミナ結晶相の平均結晶径が0.4〜0.7μmであるとともに、前記ジルコニア結晶相および前記アルミナ結晶相の最大結晶径が2μm以下であることを特徴とするジルコニア−アルミナ系セラミックスが提供される。
According to the present invention, the zirconia from 67 to 89.5 wt% including 8-12 mol% of CeO 2, and 10 to 30 wt% alumina, with of zinc 0.5 to 3 wt% and the oxide, the alumina and needles of the CeO 2 and the zinc oxide is combined with a zirconia crystal phase, and a-alumina crystal phase, and the average crystal size of the zirconia crystal phase of 0.65~1μm and the alumina crystal phase alumina-based ceramics is provided - with an average crystal size of 0.4 to 0.7 mu m, a maximum crystal size of the zirconia crystal phase and the alumina crystal phase of zirconia, characterized in that it is 2μm or less.

本発明のジルコニア−アルミナ系セラミックスにおいては、前記針状晶がZnCeAl1119であることが好ましい。
Zirconia present invention - in the alumina-based ceramics, it is preferable that the needles are ZnCeAl 11 O 19.

また、本発明によれば、平均粒径が0.1〜0.6μmでるCe安定化ジルコニア粉末、アルミナ粉末および酸化亜鉛粉末とを用意する工程、前記Ce安定化ジルコニア粉末と前記アルミナ粉末と前記酸化亜鉛粉末とを、下記の条件(a)、(b)の条件:(a)前記Ce安定化ジルコニア粉末67〜89.5質量%、前記アルミナ粉末10〜30質量%、前記酸化亜鉛粉末を0.5〜3質量%、(b)Ce安定化ジルコニア粉末中のCeO濃度が8〜12モル%であること、を満足するように混合して成形用混合粉末を調製する工程、前記成形用混合粉末を所定形状に成形する工程、及び得られた成形体を1450℃以下の大気雰囲気中で焼成する工程、を具備することを特徴とするジルコニア−アルミナ系セラミックスの製法が提供される。さらに、前記大気中での焼成後に1400℃以下の温度で熱間静水圧焼成を行うこと、前記大気中での焼成後または前記熱間静水圧焼成後に大気中にて1100℃〜1250℃の温度で熱処理を行うことが好ましい。
Further, according to the present invention, C e stabilized zirconia powder Rights Hitoshitsubu diameter Ru Ah at 0.1 to 0.6 mu m, a step of preparing the alumina powder and zinc oxide powder, the Ce-stabilized zirconia powder and said alumina powder and the zinc oxide powder, the conditions of the following conditions (a), (b): (a) the Ce-stabilized zirconia powder from 67 to 89.5 wt%, the alumina powder 10-30 mass%, the zinc oxide powder 0.5 to 3 wt%, for molding were mixed so as to satisfy, it is C eO 2 concentration of 8-12 mol% in (b) Ce-stabilized zirconia powder A zirconia-alumina comprising a step of preparing a mixed powder, a step of forming the powder mixture for molding into a predetermined shape, and a step of firing the obtained molded body in an air atmosphere at 1450 ° C. or lower. Of ceramics Is provided. Furthermore, after the baking in the air, performing hot isostatic baking at a temperature of 1400 ° C. or less, after the baking in the air or after the hot isostatic baking , in the atmosphere at 1100 ° C. to 1250 ° C. It is preferable to perform the heat treatment at a temperature.

本発明のジルコニア−アルミナ系セラミックスは、ジルコニアリッチのジルコニア−アルミナ系セラミックスであり、ジルコニア含有量が多いため、抗折強度が高く、優れた破壊靱性値を示すばかりか、かかるセラミックスを構成するジルコニア結晶相の平均結晶径が0.65〜1μm、アルミナ結晶相の平均結晶径が0.4〜0.7μmであるとともに、前記ジルコニア結晶相および前記アルミナ結晶相の最大結晶径が2μm以下に抑制されているために、ジルコニア増量に起因する抗折強度の低下を有効に回避し、抗折強度をさらに高めることができる。
The zirconia-alumina ceramic of the present invention is a zirconia-rich zirconia-alumina ceramic, and since it has a high zirconia content, it has a high bending strength and an excellent fracture toughness value. The average crystal diameter of the crystal phase is 0.65 to 1 μm, the average crystal diameter of the alumina crystal phase is 0.4 to 0.7 μm , and the maximum crystal diameter of the zirconia crystal phase and the alumina crystal phase is 2 μm or less. since it is suppressed to avoid effectively the deterioration of bending strength due to the zirconia extenders, bending strength can further enhance Rukoto a.

また、本発明によれば、ジルコニア結晶相がCe成分を固溶させた結晶相である点においても抗折強度を高めることができ、かつCeを添加したジルコニア結晶相によれば、その結合性の強化のより粒子の欠落を抑制でき耐摩耗性を向上できる。   Further, according to the present invention, the bending strength can be increased even in the point that the zirconia crystal phase is a crystal phase in which the Ce component is dissolved, and according to the zirconia crystal phase to which Ce is added, Further, the omission of particles can be suppressed and the wear resistance can be improved.

さらに本発明にかかるセラミックスでは、アルミナ相にCeOおよび酸化亜鉛の一部が固溶し析出した針状晶が形成されるために破壊靱性を向上できる。 Furthermore, in the ceramic according to the present invention, since a needle-like crystal in which a part of CeO 2 and zinc oxide is dissolved and precipitated in the alumina phase is formed, the fracture toughness can be improved.

特に前記針状晶がZnCeAl1119であれば、この針状晶の扁平晶強化:クラックボウイング効果のために、さらに破壊靱性を高めることができる。 In particular, if the needle-like crystal is ZnCeAl 11 O 19 , the fracture toughness can be further increased due to the flat crystal strengthening: crack bowing effect of the needle-like crystal.

このように、本発明のジルコニア−アルミナ系セラミックスは、高強度、高靭性でかつ硬度が高く、耐摩耗性に優れており、しかも耐熱水劣化性にも優れていることから、種々の構造用部品や、種々の刃物類や工具類、あるいは軸受けなどの構造用部品、生体関連部材などの用途に極めて有用となる。   As described above, the zirconia-alumina ceramic of the present invention has high strength, high toughness, high hardness, excellent wear resistance, and excellent hot water deterioration resistance. This is extremely useful for applications such as parts, various cutting tools and tools, structural parts such as bearings, and biological members.

図1は、本発明のジルコニア−アルミナ系セラミックスの内部組織を示す模式図である。   FIG. 1 is a schematic view showing the internal structure of the zirconia-alumina ceramic of the present invention.

本発明のジルコニア−アルミナ系セラミックスは、結晶相として、ジルコニア結晶相1とアルミナ相3と針状晶5とを有し、ジルコニアリッチの基本組成を有している。即ち、CeOを含むジルコニアとアルミナと酸化亜鉛化合物とから構成され、特に本発明によれば、針状晶5がアルミナにCeO、酸化亜鉛が固溶し析出して形成されたものであることを特徴とするものであるが、その組成として、CeOを8〜12モル%の範囲で含むジルコニアを67〜89.5質量%と、アルミナを10〜30質量%、酸化亜鉛を0.5〜3質量%とからなることが重要である。 The zirconia-alumina ceramic of the present invention has a zirconia crystal phase 1, an alumina phase 3, and an acicular crystal 5 as crystal phases, and has a zirconia-rich basic composition. That is, it is composed of zirconia containing CeO 2 , alumina, and a zinc oxide compound. In particular, according to the present invention, the needle-like crystal 5 is formed by solid solution of CeO 2 and zinc oxide on alumina and precipitation. As its composition, 67 to 89.5% by mass of zirconia containing CeO 2 in the range of 8 to 12% by mol, 10 to 30% by mass of alumina, and 0.8% of zinc oxide. It is important to consist of 5 to 3% by mass.

本発明にかかるジルコニア結晶相中に含まれるCeOの含有量は、このジルコニア結晶相を正方晶として安定化させ、単斜晶および立方晶の析出を抑制させるために、9〜10モル%であることが望ましく、前記針状晶がZnCeAl1119であることが靭性を一層向上させるという点で望ましい。 The content of CeO 2 contained in the zirconia crystal phase according to the present invention is 9 to 10 mol% in order to stabilize this zirconia crystal phase as a tetragonal crystal and suppress the precipitation of monoclinic crystals and cubic crystals. It is desirable that the needle-like crystal is ZnCeAl 11 O 19 from the viewpoint of further improving toughness.

本発明のジルコニア−アルミナ系セラミックスの主成分であるジルコニア結晶相中に含まれるCeOは8モル%より少ない場合には準安定相である単斜晶が析出しやすくなり、一方、12モル%より多い場合には立方晶が増加し抗折強度、靭性、硬度が低下する。 When CeO 2 contained in the zirconia crystal phase, which is the main component of the zirconia-alumina ceramic of the present invention, is less than 8 mol%, a monoclinic crystal which is a metastable phase tends to precipitate, whereas 12 mol%. When the amount is larger, cubic crystals increase and bending strength, toughness, and hardness decrease.

また、本発明のジルコニア−アルミナ系セラミックスを構成するジルコニア結晶相の割合が67質量%よりも少なく、アルミナ結晶相の割合が30質量%よりも多い場合には機械的特性のうち特に靭性が低下する。
Further, when the proportion of the zirconia crystal phase constituting the zirconia-alumina ceramic of the present invention is less than 67% by mass and the proportion of the alumina crystal phase is more than 30% by mass, the toughness is particularly lowered among the mechanical properties. To do.

一方、ジルコニア結晶相の割合が89.5質量%よりも多く、アルミナ相の割合が10質量%よりも少ない場合には、機械的特性のうち特に抗折強度およびビッカース硬度が低下する。さらに酸化亜鉛の量が0.5%より少ないと靭性が低くなり、一方、3%を越えると強度が低下する。酸化亜鉛の量は、特に高強度化という点で0.5〜1.5質量%が好ましい。   On the other hand, when the proportion of the zirconia crystal phase is more than 89.5% by mass and the proportion of the alumina phase is less than 10% by mass, the bending strength and Vickers hardness among mechanical properties are lowered. Further, when the amount of zinc oxide is less than 0.5%, the toughness is lowered, while when it exceeds 3%, the strength is lowered. The amount of zinc oxide is preferably 0.5 to 1.5% by mass, particularly in terms of increasing strength.

また、本発明のジルコニア−アルミナ系セラミックスでは、アルミナ結晶相3の高い硬度による耐摩耗性を高められるという点で、アルミナ結晶相3はジルコニア結晶相1の粒界7に存在することが好ましい。
Further, the zirconia of the present invention - in alumina-based ceramics, in that enhances the wear resistance by high-alumina crystal phase 3 hardness, alumina crystal phase 3 is preferably present in the grain boundaries 7 of the zirconia crystal phase 1.

また、本発明のジルコニア−アルミナ系セラミックスは、ジルコニア結晶相1の平均結晶径が0.65〜1μmであり、アルミナ結晶相3平均結晶径が0.4〜0.7μmであることが重要であ
Further, the zirconia of the present invention - that alumina ceramics, the average crystal diameter of the zirconia crystal phase 1 is 0.65~1Myuemu, the average crystal diameter of alumina crystal phase 3 is 0.4 to 0.7 mu m is Ru important.

ジルコニア結晶相1の平均結晶径が1μmよりも大きく、かつアルミナ結晶相3の平均結晶径が0.7μmよりも大きい場合には、ジルコニア結晶相1が正方晶系から単斜晶系に変り靭性が低下する。かかるセラミックス中に、ときに粒径の大きな結晶が存在する場合、耐磨耗性試験時にジルコニア結晶相若しくはアルミナ相の粒子の欠落が発生しやすくなり耐磨耗性が低下する。このためジルコニア結晶相1およびアルミナ結晶相3の最大結晶径2μm以下であるのがよい。
The average crystal diameter of the zirconia crystal phase 1 is much larger than the 1 [mu] m, and when the average crystal diameter of alumina crystal phase 3 is greater than 0.7μm, the zirconia crystal phase 1 is the monoclinic system from tetragonal Change toughness decreases. When crystals having a large particle size are sometimes present in such ceramics, the lack of zirconia crystal phase or alumina phase particles tends to occur during the wear resistance test, resulting in a decrease in wear resistance. Thus the maximum crystal diameter zirconia crystal phase 1 and alumina crystalline phase 3 have good that is 2μm or less.

そして、上記構成の本発明にかかるジルコニア−アルミナ系セラミックスによれば、抗折強度が1000MPa以上、ビッカース硬度が1200以上、破壊靭性値が8以上、および比磨耗量が0.3×10−10mm/N以下にすることができる。 And according to the zirconia-alumina ceramic according to the present invention having the above configuration, the bending strength is 1000 MPa or more, the Vickers hardness is 1200 or more, the fracture toughness value is 8 or more, and the specific wear amount is 0.3 × 10 −10. mm 2 / N or less.

次に、本発明のジルコニア−アルミナ系セラミックスの製法について説明する。   Next, a method for producing the zirconia-alumina ceramic of the present invention will be described.

本発明では、まず、Ceを8〜12モル%含むジルコニア粉末とアルミナ粉末とを混合したジルコニア系混合粉末を調製した後、このジルコニア系混合粉末と酸化亜鉛粉末とを混合した混合粉末を調製し、次いで、この混合粉末を所望の形状に成形する。この場合調合組成は、上記ジルコニア粉末67〜89.5質量%とアルミナ粉末を10〜30質量%、酸化亜鉛粉末を0.5〜3質量%の割合で混合して用いることを特徴とする。特に、ジルコニア粉末74〜85質量%とアルミナ粉末を15〜24質量%、酸化亜鉛粉末を1〜2質量%とすることが好ましい。 In the present invention, first, after preparing a zirconia-based mixed powder obtained by mixing zirconia powder containing 8 to 12 mol% of Ce 2 O 3 and alumina powder, mixed powder obtained by mixing this zirconia-based mixed powder and zinc oxide powder. Then, this mixed powder is formed into a desired shape. In this case, the composition is characterized by mixing 67 to 89.5% by mass of the zirconia powder and 10 to 30% by mass of alumina powder and 0.5 to 3% by mass of zinc oxide powder. In particular, it is preferable that 74 to 85% by mass of zirconia powder, 15 to 24% by mass of alumina powder, and 1 to 2% by mass of zinc oxide powder.

つまり、上記ジルコニア粉末およびアルミナ粉末は、焼成後に得られる上記セラミックスの高靭性化を図るという理由から設定されるものであり、また、酸化亜鉛の量は、この酸化亜鉛を含み析出する針状晶の析出量を規定するものである。この針状晶が多量に析出するとかかるセラミックスの硬度低下につながるからである。   That is, the zirconia powder and the alumina powder are set for the purpose of increasing the toughness of the ceramic obtained after firing, and the amount of zinc oxide is acicular crystals that contain and precipitate this zinc oxide. This defines the amount of precipitation. This is because a large amount of these acicular crystals precipitates leads to a decrease in the hardness of the ceramic.

また本発明に用いるジルコニア粉末ならびにアルミナ粉末の平均粒径はともに0.1〜0.6μmであることが重要であ。平均粒径がこれよりも大きいものを用いた場合には焼結後のジルコニア−アルミナ系セラミックスを構成するジルコニア結晶相およびアルミナ結晶相の平均粒径が大きくなり抗折強度の低下につながる。
The average particle diameter of the zirconia powder and alumina powder used in the present invention is it is important both 0.1 to 0.6 mu m. When a material having an average particle size larger than this is used, the average particle size of the zirconia crystal phase and the alumina crystal phase constituting the sintered zirconia-alumina ceramic is increased, leading to a decrease in bending strength.

また、本発明に用いるジルコニア粉末およびアルミナ粉末の純度は99.9%以上が望ましい。さらに、ジルコニア粉末についてはCeOとジルコニア粉末とを個々に添加したもの、または、CeOとジルコニア粉末とを混合した後に仮焼して得られたもの、あるいは、Ceおよびジルコニアの金属塩やアルコキシドをpH調整した水溶液中で混合(加水分解法)して得られたもののいずれでも好適に用いることができるが、より均一な粒子径を有しかつより安定化したジルコニアが得られるという点で加水分解法で合成した粉末がより好ましい。 The purity of the zirconia powder and alumina powder used in the present invention is desirably 99.9% or more. Further, as for zirconia powder, CeO 2 and zirconia powder added individually, or obtained by calcination after mixing CeO 2 and zirconia powder, or a metal salt or alkoxide of Ce and zirconia Any of those obtained by mixing (hydrolysis method) in a pH-adjusted aqueous solution can be suitably used, but water is added in that a more stable zirconia having a more uniform particle size can be obtained. A powder synthesized by a decomposition method is more preferable.

さらに、本発明にかかる上記セラミックスでは焼結性を高めるために必要によりアルカリ土類金属の酸化物などの粉末を焼結助剤として用いることができる。これらの焼結助剤は酸化物に限定されるものではなく焼成により酸化物を形成する炭酸塩などの化合物の形態として用いることもできる。これらの焼結助剤の粉末の平均粒径もまた、主原料と同様、1μm以下であることが好ましい。このような焼結助剤量としては、抗折強度や破壊靱性を高く維持するという点で主原料であるジルコニア粉末、アルミナ粉末および酸化亜鉛粉末の混合粉末100質量部あたり2質量部以下とするのがよい。   Furthermore, in the ceramics according to the present invention, powders such as alkaline earth metal oxides can be used as a sintering aid as necessary in order to enhance the sinterability. These sintering aids are not limited to oxides, and can also be used in the form of compounds such as carbonates that form oxides upon firing. The average particle size of the powder of these sintering aids is also preferably 1 μm or less, like the main raw material. The amount of such a sintering aid is 2 parts by mass or less per 100 parts by mass of the mixed powder of zirconia powder, alumina powder, and zinc oxide powder, which are main raw materials, in terms of maintaining high bending strength and fracture toughness. It is good.

次に本発明にかかるセラミックスの製法では成形体を1450℃以下の大気雰囲気中で焼成することを特徴とする。これは1450℃よりも高い温度で焼成を行うとジルコニア結晶相1およびアルミナ結晶相3が粒成長し、本発明で規定する平均結晶径よりも大きくなり、ジルコニア結晶相1が正方晶から単斜晶に転移し靭性が低下しやすくなり、特に耐磨耗性が低下するからである。下限としては焼結性を高めるという理由から1300℃以上が好ましい。
Next, the method for producing a ceramic according to the present invention is characterized in that the compact is fired in an air atmosphere at 1450 ° C. or lower. This is because when calcination is performed at a temperature higher than 1450 ° C., the zirconia crystal phase 1 and the alumina crystal phase 3 grow and become larger than the average crystal diameter defined in the present invention, and the zirconia crystal phase 1 is converted from tetragonal to monoclinic. This is because it transitions to crystals and the toughness tends to decrease, and in particular, the wear resistance decreases. As a minimum, 1300 degreeC or more is preferable from the reason of improving sinterability.

さらに本発明では、上記焼成後に1100℃〜1250℃の大気中で熱処理を行うことが望ましく、このような熱処理を付加することにより、特に硬度および耐磨耗性を高めることができる。   Furthermore, in the present invention, it is desirable to perform heat treatment in the air at 1100 ° C. to 1250 ° C. after the firing, and by adding such heat treatment, particularly hardness and wear resistance can be enhanced.

また、本発明では、前記常圧焼成後の上記熱処理前に、酸化雰囲気中にて1400℃以下の熱間静水圧焼成を行うことが望ましい。これによりジルコニア−アルミナ系セラミックスを構成するジルコニア結晶相およびアルミナ結晶相の粒成長を抑制しつつ高密度化できる。尚、本発明では、熱間静水圧焼成前の予備焼結体の相対密度は95%以上であること好ましく、特に97%以上が好ましい。この熱間静水圧加圧焼成の場合の雰囲気は酸素濃度が15%〜20%が好ましい。
In the present invention, it is desirable to perform hot isostatic firing at 1400 ° C. or lower in an oxidizing atmosphere before the heat treatment after the atmospheric firing. Thereby, it is possible to increase the density while suppressing the grain growth of the zirconia crystal phase and the alumina crystal phase constituting the zirconia-alumina ceramic. In the present invention, the relative density of the pre-sintered body before hot isostatic firing is preferably 95% or more, particularly preferably 97% or more. The atmosphere in the case of this hot isostatic pressing is preferably an oxygen concentration of 15% to 20%.

まず、加水分解法により調製したCeOを含む部分安定化したジルコニア粉末(純度99.9%、平均粒径0.2μm)、およびアルミナ粉末(平均粒径0.3μm、純度99.9%)を表1に示す組成になるように配合した。混合は高純度耐摩耗アルミナボールとポリエチレン容器を用い、IPAを溶媒として24時間湿式ボールミルを用いて行った。その後乾燥して得られた混合粉末をプレス成形し、大気中にて1300〜1550℃、2時間の焼成を行い、棒状の一次焼結体を作製した。次に、表1に示すように上記作製した試料を大気中1200℃の温度で熱処理を行った。 First, partially stabilized zirconia powder containing CeO 2 prepared by a hydrolysis method (purity 99.9%, average particle size 0.2 μm), and alumina powder (average particle size 0.3 μm, purity 99.9%) Were blended so as to have the composition shown in Table 1. The mixing was performed using a high-purity wear-resistant alumina ball and a polyethylene container, and using a wet ball mill for 24 hours with IPA as a solvent. Thereafter, the mixed powder obtained by drying was press-molded and fired at 1300 to 1550 ° C. for 2 hours in the air to produce a rod-shaped primary sintered body. Next, as shown in Table 1, the prepared sample was heat-treated at a temperature of 1200 ° C. in the atmosphere.

また、一部の焼結体(相対密度が95%以上のもの)について、酸素分圧20%にて最高温度1350℃で熱間静水圧焼成を行った。この処理後の相対密度は99.5%以上であった。   Some sintered bodies (those having a relative density of 95% or more) were subjected to hot isostatic firing at a maximum temperature of 1350 ° C. with an oxygen partial pressure of 20%. The relative density after this treatment was 99.5% or more.

次に、得られた焼結体を研削加工して、4×3×35mmの試料を作製した。結晶組織観察は電子顕微鏡を用いて行った。ジルコニア結晶相およびアルミナ結晶相の平均結晶径および最大結晶径は得られた電子顕微鏡写真の対角線上に沿って存在するものについて平均結晶径とそのばらつきを測定顕微鏡を用いて求めた。測定箇所は各10点とした。また、JIS−R1601による室温における抗折強度、及びJIS−R1607によるSEPB法により破壊靱性値を測定した。なお、本発明では、配合したジルコニア粉末およびアルミナ粉末組成が結晶相組成として反映されていた。さらに、ピンオンディスク試験法(JIS−T0303)を用いて耐摩耗性を評価した。なお本発明の酸化亜鉛を含む試料
は針状晶が確認された。得られた結果を表1に示す。

Figure 0004831945
Next, the obtained sintered body was ground to produce a 4 × 3 × 35 mm sample. The crystal structure was observed using an electron microscope. The average crystal diameter and the maximum crystal diameter of the zirconia crystal phase and the alumina crystal phase were determined along the diagonal line of the obtained electron micrograph, and the average crystal diameter and its variation were determined using a measuring microscope. Measurement points were 10 points each. Moreover, the bending strength at room temperature according to JIS-R1601 and the fracture toughness value were measured by the SEPB method according to JIS-R1607. In the present invention, the blended zirconia powder and alumina powder composition was reflected as the crystal phase composition. Furthermore, abrasion resistance was evaluated using a pin-on-disk test method (JIS-T0303). In addition, needle-like crystals were confirmed in the sample containing zinc oxide of the present invention. The obtained results are shown in Table 1.
Figure 0004831945

表1の結果から、本発明のジルコニア−アルミナ系セラミックスである試料No.2〜5、8〜10、13〜15、17、18、20〜27では、ジルコニア結晶相およびアルミナ相のそれぞれの平均結晶径が1μm以下、最大結晶径が2μm以下となり、抗折強度が1030MPa以上、破壊靭性値が8.1以上、ビッカース硬度が1210以上、耐摩耗性試験における比磨耗量が0.3mm/N(×10−10)以上であった。特に、最大結晶径が2μm以下で、且つ、かかるセラミックスに酸化亜鉛を0.5〜1.5質量%含み針状晶のZnCeAl1119が形成されたものでは、抗折強度が1120MPa以上であった。 From the results of Table 1, sample No. which is the zirconia-alumina ceramic of the present invention. In 2 to 5, 8 to 10, 13 to 15, 17, 18, and 20 to 27, the average crystal diameter of each of the zirconia crystal phase and the alumina phase is 1 μm or less, the maximum crystal diameter is 2 μm or less, and the bending strength is 1030 MPa. As described above, the fracture toughness value was 8.1 or more, the Vickers hardness was 1210 or more, and the specific wear amount in the wear resistance test was 0.3 mm 2 / N (× 10 −10 ) or more. In particular, in the case where the maximum crystal diameter is 2 μm or less and the ceramic is formed with acicular ZnCeAl 11 O 19 containing 0.5 to 1.5 mass% of zinc oxide, the bending strength is 1120 MPa or more. there were.

一方、本発明外の試料No.1、6、7、11、12、16、19では、抗折強度、破壊靭性値、ビッカース硬度、および耐摩耗性試験における比磨耗量のうちいずれかが本発明品より低い値であった。   On the other hand, sample No. In 1, 6, 7, 11, 12, 16, and 19, any one of the bending strength, fracture toughness value, Vickers hardness, and specific wear amount in the abrasion resistance test was lower than the product of the present invention.

本発明のジルコニア−アルミナ系セラミックスの内部組織を示す模式図である。It is a schematic diagram which shows the internal structure of the zirconia-alumina ceramic of this invention.

符号の説明Explanation of symbols

1 ジルコニア結晶相
3 アルミナ相
5 針状晶
1 Zirconia crystal phase 3 Alumina phase 5 Acicular crystals

Claims (5)

8〜12モル%のCeOを含むジルコニア67〜89.5質量%と、アルミナ10〜30質量%と、酸化亜鉛0.5〜3質量%とからなるとともに、前記アルミナ前記CeO 酸化亜鉛化合した針状晶とジルコニア結晶相と、アルミナ結晶を有し、かつ前記ジルコニア結晶相の平均結晶径が0.65〜1μmおよび前記アルミナ結晶相の平均結晶径が0.4〜0.7μmであるとともに、前記ジルコニア結晶相および前記アルミナ結晶相の最大結晶径が2μm以下であることを特徴とするジルコニア−アルミナ系セラミックス。 Zirconia 67 to 89.5 wt% including 8-12 mol% of CeO 2, and 10 to 30 wt% alumina, with consists of zinc oxide 0.5-3 wt%, and the alumina and the CeO 2 oxide and needles of the is compounds of zinc, zirconia crystalline phase, and a-alumina crystal phase, and the average crystal size of the zirconia crystal phase is an average crystal size of 0.65~1μm and the alumina crystal phase 0. 4 to 0.7 with a mu m, zirconia and wherein the maximum crystal diameter of the zirconia crystal phase and the alumina crystal phase is 2μm or less - alumina ceramics. 前記針状晶がZnCeAl1119であることを特徴とする請求項1に記載のジルコ
ニア−アルミナ系セラミックス。
2. The zirconia-alumina ceramic according to claim 1, wherein the needle-like crystal is ZnCeAl 11 O 19 .
均粒径が0.1〜0.6μmでるCe安定化ジルコニア粉末、アルミナ粉末および酸化亜鉛粉末とを用意する工程、前記Ce安定化ジルコニア粉末と前記アルミナ粉末と前記酸化亜鉛粉末とを、下記の条件(a)、(b)の条件:(a)前記Ce安定化ジルコニア粉末67〜89.5質量%、前記アルミナ粉末10〜30質量%、前記酸化亜鉛粉末を0.5〜3質量%、(b)Ce安定化ジルコニア粉末中のCeO濃度が8〜12モル%であること、を満足するように混合して成形用混合粉末を調製する工程、前記成形用混合粉末を所定形状に成形する工程、及び得られた成形体を1450℃以下の大気雰囲気中で焼成する工程、を具備することを特徴とするジルコニア−アルミナ系セラミックスの製法。 Rights Hitoshitsubu diameter Ah Ru C e stabilized zirconia powder in 0.1 to 0.6 mu m, a step of preparing the alumina powder and zinc oxide powder, the zinc oxide and the Ce-stabilized zirconia powder and the alumina powder a powder, the following conditions (a), condition (b): (a) a said Ce-stabilized zirconia powder from 67 to 89.5 wt%, 10 to 30 wt% of the alumina powder, the zinc oxide powder 0.5 to 3 wt%, (b) Ce stabilization step of zirconia powder C eO 2 concentration in the preparing mixed to molding mixed powder so as to satisfy, it is 8 to 12 mol%, the A method for producing a zirconia-alumina ceramic, comprising a step of forming a mixed powder for forming into a predetermined shape, and a step of firing the obtained formed body in an air atmosphere at 1450 ° C. or lower. 前記大気雰囲気中での焼成後に1400℃以下の温度で熱間静水圧焼成を行うことを特徴とする請求項3に記載のジルコニア−アルミナ系セラミックスの製法。 The method for producing a zirconia-alumina ceramic according to claim 3 , wherein hot isostatic firing is performed at a temperature of 1400 ° C or lower after firing in the air atmosphere . 前記大気雰囲気中での焼成後または前記熱間静水圧焼成後に大気中にて1100℃〜1250℃の温度で熱処理を行う請求項またはに記載のジルコニア−アルミナ系セラミックスの製法。 Preparation of alumina-based ceramics - zirconia according to claim 3 or 4 subjected to heat treatment at a temperature of 1100 ° C. to 1250 ° C. in air after sintering or after the hot isostatic firing in the atmosphere.
JP2004249080A 2004-08-27 2004-08-27 Zirconia-alumina ceramics and process for producing the same Expired - Fee Related JP4831945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249080A JP4831945B2 (en) 2004-08-27 2004-08-27 Zirconia-alumina ceramics and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249080A JP4831945B2 (en) 2004-08-27 2004-08-27 Zirconia-alumina ceramics and process for producing the same

Publications (2)

Publication Number Publication Date
JP2006062918A JP2006062918A (en) 2006-03-09
JP4831945B2 true JP4831945B2 (en) 2011-12-07

Family

ID=36109715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249080A Expired - Fee Related JP4831945B2 (en) 2004-08-27 2004-08-27 Zirconia-alumina ceramics and process for producing the same

Country Status (1)

Country Link
JP (1) JP4831945B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121902A (en) * 2019-01-30 2020-08-13 京セラ株式会社 Member for medical device
CN113518766A (en) * 2019-03-11 2021-10-19 京瓷株式会社 Ceramic sintered body and ceramic powder
CN115536385B (en) * 2022-01-28 2023-09-29 上海晶石陶瓷有限公司 Zirconia ceramic and preparation method and application thereof
CN115448596A (en) * 2022-08-09 2022-12-09 新化柏盛陶瓷科技有限公司 Zirconia-based bathroom ceramic and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627667A (en) * 1985-07-03 1987-01-14 第一稀元素化学工業株式会社 Alumina-containing partially stabilized zirconia sintered body and manufacture
JP2000154058A (en) * 1998-11-16 2000-06-06 Kobe Steel Ltd High strength ceramics and method for evaluating defect in ceramics
JP2004075532A (en) * 2002-08-01 2004-03-11 Kobe Steel Ltd High strength / high toughness zirconia sintered material and biomaterial using the same

Also Published As

Publication number Publication date
JP2006062918A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP5366398B2 (en) Composite ceramics and manufacturing method thereof
US7399722B2 (en) Alumina/zirconia ceramics and method of producing the same
US20070179041A1 (en) Zirconia Ceramic
JP4470378B2 (en) Zirconia sintered body and manufacturing method thereof
CN100436373C (en) Zirconium oxide ceramic material of ytterbium oxide and yttrium oxide costabilize
EP1510509A2 (en) Alumina/zirconia ceramics and method of producing the same
US20140011661A1 (en) Method of making high toughness high strength zirconia bodies
JP2003034572A (en) Alumina ceramic sintered body, its manufacturing method and cutting tool
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JP2005075659A (en) Ceramic sintered compact, method for producing the same, and biomaterial
JP4383099B2 (en) Manufacturing method of composite ceramics
JP4589642B2 (en) Alumina / zirconia ceramics and process for producing the same
JPH0553751B2 (en)
JP2002154873A (en) Zirconia sintered compact excellent in durability
JP2006248858A (en) Yttria-stabilized zirconia sintered compact and its manufacturing method
JP4612358B2 (en) Alumina / zirconia ceramics and production method thereof
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
CN100347130C (en) Ytterbium oxide and yttrium oxide co-stabilized zirconia ceramic material and its prepn process
JP4514563B2 (en) Alumina / zirconia ceramics and process for producing the same
JP2517249B2 (en) High-strength zirconia-based HIP sintered body
JP4243514B2 (en) Composite ceramics and manufacturing method thereof
JP4601304B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4601303B2 (en) Alumina / zirconia ceramics and process for producing the same
Sivakumar et al. The Effect of Copper Oxide on the Mechanical Properties of Y-TZP Ceramics
WO2022202710A1 (en) Ceramic sintered body and ceramic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees