JPH07173603A - High strength steel part excellent in fatigue strength - Google Patents

High strength steel part excellent in fatigue strength

Info

Publication number
JPH07173603A
JPH07173603A JP31784993A JP31784993A JPH07173603A JP H07173603 A JPH07173603 A JP H07173603A JP 31784993 A JP31784993 A JP 31784993A JP 31784993 A JP31784993 A JP 31784993A JP H07173603 A JPH07173603 A JP H07173603A
Authority
JP
Japan
Prior art keywords
residual
steel part
carburizing
treatment
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31784993A
Other languages
Japanese (ja)
Inventor
Atsushi Inada
淳 稲田
Hiroshi Kakou
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31784993A priority Critical patent/JPH07173603A/en
Publication of JPH07173603A publication Critical patent/JPH07173603A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the resistance to fatigue fracture by applying a specific surface treatment on a steel part, reducing the residual austenite (residual gamma) near the most surface and increasing the residual austenite in the inside so as to suppress occurrence/propagation of cracking. CONSTITUTION:The high strength steel part is formed as follows, for example, after a steel part is carburized/hardened to have much residual gamma, rapidly subjecting to subzero treatment, by transforming the residual gamma only near the most surface only, etc., a carbon atom and/or nitrogen atom are introduced in the steel part. Further, the residual gamma quantity at any place down to 40mum depth from the most surface is <=15vol%. Together with the above, the maximum depth of slack quenching produced with oxidizing the surface layer of steel part under the condition of surface treatment is <=10mum. Also, the residual gammain the region from the most surface to <=150-350mum is 20-40vol%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車,建設機械およ
び産業機械等の歯車や各種シャフト類として用いられる
高強度鋼部品に関するものであり、詳細には上記鋼部品
の使用性能、特に疲労破壊に対する抵抗力を高めた高強
度鋼部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-strength steel parts used as gears and various shafts for automobiles, construction machines, industrial machines, and the like. It relates to high-strength steel parts with increased resistance to

【0002】[0002]

【従来の技術】自動車,建設機械および産業機械等の歯
車や各種シャフト類の様に、高い繰り返し応力や面圧の
かかる機械構造用部品に対しては、浸炭や浸炭浸窒或は
窒化等の表面強化処理がその寿命を延ばすのに有効であ
るとされ、広く適用されている。ところで鋼部品内の残
留オーステナイト(以下、残留γと略称する)相が材料
の疲労寿命に対してどの様な影響をおよぼすのかについ
ては、未だ明らかにされていない点が多いものの、それ
が亀裂伝播の抵抗になり得ることが数多く報告されてい
る。しかしながら、軟質相である残留γ相は亀裂の発生
に関してはこれを助長するといわれている。
2. Description of the Related Art For mechanical structural parts such as gears and various shafts of automobiles, construction machines and industrial machines, which are subjected to high cyclic stress and surface pressure, carburizing, carburizing, nitriding, etc. The surface strengthening treatment is said to be effective in extending its life and is widely applied. By the way, the effect of the retained austenite (hereinafter abbreviated as γ) phase in steel parts on the fatigue life of materials has not been clarified yet, but it is the crack propagation. There are many reports that it can be a resistance to. However, it is said that the residual γ phase, which is a soft phase, promotes crack initiation.

【0003】上記の様な知見に基づき、本発明者らは曲
げ疲労や面疲労等の様に表面から内部に向かって破壊が
進行する様な鋼部品に対しては、亀裂発生の起こりやす
い最表面付近は残留γを少なくし、亀裂伝播と関わりの
深い材料内部では残留γを多くすることによって、材料
寿命を向上できると考えた。しかしながら、通常の浸炭
や浸炭浸窒或は窒化等の表面処理によれば、炭素・窒素
濃度は表面ほど多量となるのでこれに対応して残留γ量
も表面に近づくほど増え、上記の考え方と逆の分布をと
ることになる。
Based on the above knowledge, the present inventors have found that cracks are most likely to occur in steel parts whose fracture progresses from the surface to the inside such as bending fatigue and surface fatigue. It is considered that the life of the material can be improved by reducing the residual γ near the surface and increasing the residual γ inside the material that is deeply involved in crack propagation. However, according to the usual surface treatment such as carburizing, carburizing and nitriding, or nitriding, the concentration of carbon and nitrogen becomes larger on the surface, and the amount of residual γ also increases correspondingly to the surface. It will have the opposite distribution.

【0004】一方、浸炭等の表面処理後にショットピー
ニング処理を施せば、最表面付近の残留γは加工誘起変
態を起こしてマルテンサイト相に変化するため、希望す
る疲労強度を発揮する様な残留γ分布に近づくことにな
ることが予想される。しかしながら、後記実施例に示す
様に、通常の浸炭や浸炭浸窒或は窒化等を施した表面処
理材にハードショットピーニング処理を施した程度で
は、目的とする残留γ分布にはならず、希望する疲労強
度が得られないことが分かった。
On the other hand, if shot peening is applied after the surface treatment such as carburizing, the residual γ near the outermost surface undergoes a work-induced transformation to change to a martensite phase, so that the residual γ that exhibits a desired fatigue strength is obtained. It is expected that it will approach the distribution. However, as shown in the examples below, the degree of hard shot peening applied to a surface-treated material that has been subjected to normal carburizing, carburizing, nitriding, or nitriding does not give the desired residual γ distribution. It was found that the fatigue strength to be obtained could not be obtained.

【0005】ところで特開昭62−185826号公報
には、浸炭時の炭素ポテンシャルを通常より高めに設定
して全体の残留γ量を増やしておき、その後ハードショ
ットピーニングなどの強加工を施す技術も提案されてい
る。しかしながら、単に浸炭のポテンシャルを高めただ
けでは、内部残留γが増えるにつれて最表面の残留γ量
も更に多くなるため、ショットピーニングでその一部分
を変態させても、最表面には尚数10%の残留γが残存
してしまう。この様な残留γ分布を有する鋼部品では、
圧縮残留応力の増加は認められるが、本発明の目的であ
る亀裂発生の抑制という効果は達成されず、疲労強度の
向上効果は十分でない。これは上記技術の目的が圧縮残
留応力の増加にあり、最表面の残留γ量について何ら考
慮されていない為である。また浸炭ポテンシャルの増加
は、浸炭処理中に粗大炭化物を析出させ、却って疲労強
度低下を招く恐れがある。逆にポテンシャルを低くして
浸炭(浸炭浸窒)処理を行った後ショットピーニングを
施した場合は、当然最表面付近の残留γは非常に少なく
なるが、同時に内部の残留γ量も少なくなっているた
め、残留γによる耐亀裂伝播性の効果が得られない。
By the way, Japanese Patent Laid-Open No. 62-185826 discloses a technique in which the carbon potential at the time of carburizing is set to be higher than usual to increase the total amount of residual γ, and then hard working such as hard shot peening is performed. Proposed. However, simply increasing the carburizing potential increases the amount of residual γ on the outermost surface as the internal residual γ increases. Therefore, even if a portion of the residual γ is transformed by shot peening, the maximum tens of percent still remains on the outermost surface. The residual γ remains. In steel parts having such a residual γ distribution,
Although an increase in compressive residual stress is recognized, the effect of suppressing crack initiation, which is the object of the present invention, is not achieved, and the effect of improving fatigue strength is not sufficient. This is because the purpose of the above technique is to increase the compressive residual stress and no consideration is given to the residual γ amount on the outermost surface. Further, an increase in carburizing potential may cause coarse carbides to precipitate during the carburizing process, which may rather reduce the fatigue strength. On the contrary, when shot peening is performed after carburizing (carburizing and nitrifying) treatment with a low potential, the residual γ near the outermost surface is naturally very small, but at the same time, the amount of residual γ inside is also small. Therefore, the effect of crack propagation resistance due to residual γ cannot be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明はこうした状況
のもとになされたものであって、その目的は、亀裂の発
生・伝播の両方を抑制できる残留γ分布を達成すること
によって、優れた疲労強度を示す高強度鋼部品を提供す
ることにある。
The present invention has been made under these circumstances, and an object thereof is to achieve excellent residual γ distribution which can suppress both the initiation and propagation of cracks. It is to provide a high-strength steel part exhibiting fatigue strength.

【0007】[0007]

【課題を解決するための手段】上記目的を達成し得た本
発明の高強度鋼部品とは、炭素原子および/または窒素
原子の鋼部品内への導入を伴う表面処理をその製造工程
の一つまたはそれ以上として含んで製造されたものであ
り、最表面から40μm深さまでの残留オーステナイト
量が15体積%以下であると共に、前記表面処理の条件
下で前記鋼部品表層が酸化されることにより生じる不完
全焼入れ組織の最大深さが10μm以内であり、且つ最
表面から150μmの位置と同350μmの位置の間の
領域内における残留オーステナイト量が20〜40体積
%である点に要旨を有するものである。
The high-strength steel part of the present invention which has achieved the above object is a surface treatment involving the introduction of carbon atoms and / or nitrogen atoms into a steel part. The amount of retained austenite from the outermost surface to a depth of 40 μm is 15% by volume or less, and the surface layer of the steel part is oxidized under the conditions of the surface treatment. The point is that the maximum depth of the resulting incompletely quenched structure is within 10 μm, and the amount of retained austenite in the region between the position of 150 μm and the position of 350 μm from the outermost surface is 20 to 40% by volume. Is.

【0008】[0008]

【作用】本発明者らは、亀裂の発生・伝播の両方を抑制
できる様な鋼部品の残留γ分布について様々な角度から
検討した。その結果、最表面から40μm深さまでの残
留γ量を15体積%以下に抑えた上で、最表面から15
0〜350μm深さでの残留γ量を20〜40体積%と
したとき、最も両者の効果が相乗的に発揮されて良好な
疲労強度を示すことを見出した。またこうした構成を採
用して亀裂の発生・伝播が抑制された結果、鋼部品にし
ばしば見られる表層の不完全焼入れ組織の存在が、疲労
強度に従来以上に大きな影響を与えることも見出した。
ここで、「最表面から40μm深さまでの残留γ量が1
5体積%以下である」とは、最表面から40μm深さま
でのいずれの部分においても、残留γ量が常に15体積
%以下であることを意味する。また上記鋼部品のいずれ
の領域においても、残留γ組織以外は、マルテンサイト
組織やベイナイト組織を主体とするものである。
The present inventors have studied from various angles the residual γ distribution of steel parts that can suppress both the generation and propagation of cracks. As a result, the residual γ amount from the outermost surface to a depth of 40 μm was suppressed to 15% by volume or less, and
It has been found that when the residual γ amount at a depth of 0 to 350 μm is set to 20 to 40% by volume, the effects of the both are most synergistically exerted and good fatigue strength is exhibited. In addition, as a result of suppressing the generation and propagation of cracks by adopting such a configuration, it was also found that the presence of an incompletely hardened microstructure in the surface often found in steel parts has a greater effect on fatigue strength than before.
Here, “the residual γ amount from the outermost surface to a depth of 40 μm is 1
The expression "5% by volume or less" means that the residual γ amount is always 15% by volume or less in any portion from the outermost surface to a depth of 40 µm. Further, in any of the regions of the above-mentioned steel parts, a martensite structure and a bainite structure are mainly contained in addition to the residual γ structure.

【0009】本発明の高強度鋼部品において、残留γ分
布を上述の様に規定した詳細は、下記の通りである。即
ち、疲労による初期段階亀裂の発生範囲は、最表面から
50μm深さまで、特に40μm深さまでであり、この
部分における残留γ量が15体積%を超えると基地組織
よりも軟質な残留γに歪が集中し、亀裂の発生を促進す
るからである。また鋼部品の疲労亀裂伝播は、最表面か
ら150μmの位置と同350μmの位置の間の領域内
における残留γ量が重要であり、この領域内の残留γ量
を20〜40体積%としたとき、疲労亀裂伝播抑制作用
が最も効果的に発揮されるからである。
Details of defining the residual γ distribution in the high-strength steel part of the present invention as described above are as follows. That is, the generation range of the initial stage crack due to fatigue is from the outermost surface to a depth of 50 μm, especially to a depth of 40 μm, and when the residual γ amount in this portion exceeds 15% by volume, the residual γ softer than the matrix has a strain. This is because they concentrate and promote the generation of cracks. Further, regarding the fatigue crack propagation of steel parts, the residual γ amount in the region between the position of 150 μm and the position of 350 μm from the outermost surface is important, and when the residual γ amount in this region is set to 20 to 40% by volume. This is because the effect of suppressing fatigue crack propagation is most effectively exhibited.

【0010】また本発明の高強度鋼部品において、不完
全焼入れ組織の最大深さを上述の様に規定した詳細は、
下記の通りである。即ち、10μmを超える様な不完全
焼入れ組織が繰り返し応力の負荷される領域に一部でも
存在すると、これ自体に早期に亀裂が発生し、鋼部品の
寿命を著しく縮める原因となるからである。
Further, in the high-strength steel part of the present invention, the maximum depth of the incompletely hardened structure is defined as described above.
It is as follows. That is, if an incompletely hardened structure having a size of more than 10 μm is present even in a part where repeated stress is applied, cracks may occur in the early part of the structure, resulting in a marked shortening of the life of the steel part.

【0011】本発明の高強度鋼部品は、上記の様な残留
γ分布および表層組織の状態が達成されれば本発明の効
果が発揮され、その製造方法については、特に制限され
るものではないが、例えば下記(1)〜(4)の各方法
によって製造することができる。尚下記の各製造方法の
構成から明らかな様に、本発明の高強度鋼部品を製造す
るためには、炭素原子および/または窒素原子の鋼部品
内への導入を伴う表面処理をその製造工程の一つまたは
それ以上として含んで、鋼部品表層部の炭素や窒素濃度
を高めてやる必要があり、これを表面処理によらずに部
品全体の炭素濃度や窒素濃度を高める方法では、靭性が
損なわれて却って寿命を縮める上、加工性も損なわれる
ことになる。
The high-strength steel part of the present invention exhibits the effects of the present invention if the above-mentioned residual γ distribution and surface layer structure are achieved, and the manufacturing method thereof is not particularly limited. Can be produced, for example, by the following methods (1) to (4). As will be apparent from the configurations of the respective manufacturing methods below, in order to manufacture the high-strength steel part of the present invention, a surface treatment involving the introduction of carbon atoms and / or nitrogen atoms into the steel part is performed in the manufacturing process. It is necessary to increase the carbon and nitrogen concentrations in the surface layer of steel parts by including them as one or more of the above. If it is damaged, the life will be shortened and the workability will be deteriorated.

【0012】(1)まず浸炭浸窒処理によって鋼部品内
への炭素原子および窒素原子を多量に導入しておき、引
き続き浸炭処理により侵入原子の内部への拡散を促すと
同時に、最表面近傍の侵入原子のポテンシャルを低めに
調整し、更にその後ショットピーニング等の強加工を施
して表面近傍の残留γを変態させる方法。 (2)(1)の方法において、2段階の熱処理を段階を
分けずに連続的に行なう方法、即ち温度の上昇またはポ
テンシャルの低減を徐々に行なう方法。 (3)鋼部品に窒化処理(塩浴等の方法を用い、Feや
その他の合金元素の窒化物の形成を主目的とする処理)
を施した後、窒化物が分解する程度の高温で浸炭処理等
を行ない、固溶窒素を内部に拡散させるとともに、最表
面付近の窒素や炭素の濃度を調整し、その後ショットピ
ーニング等の強加工を施す方法。 (4)残留γ量が比較的多量となる様に浸炭焼入れを行
なった鋼部品に対し、急速にサブゼロ処理および室温ま
での加熱を行い、最表面近傍のみの残留γのみを変態さ
せる方法。
(1) First, a large amount of carbon atoms and nitrogen atoms are introduced into a steel part by carburizing and nitrifying treatment, and then, by carburizing treatment, diffusion of invading atoms into the inside is promoted, and at the same time, the vicinity of the outermost surface is promoted. A method in which the potential of penetrating atoms is adjusted to a low level, and then strong processing such as shot peening is performed to transform residual γ near the surface. (2) In the method of (1), the two-step heat treatment is continuously performed without dividing the steps, that is, the temperature is gradually increased or the potential is gradually decreased. (3) Nitriding treatment on steel parts (treatment using a salt bath or the like, the main purpose of which is to form nitrides of Fe and other alloying elements)
After performing the carburizing, perform carburizing at a temperature high enough to decompose the nitride, diffuse the solid solution nitrogen into the interior, adjust the concentration of nitrogen and carbon near the outermost surface, and then perform strong processing such as shot peening. How to apply. (4) A method in which a steel part that has been carburized and quenched so that the amount of residual γ is relatively large is rapidly subjected to subzero treatment and heated to room temperature to transform only the residual γ only near the outermost surface.

【0013】ところで残留γ量の定量には、X線回折に
よる測定が利用できる。このとき内部方向への微小範囲
での分布が必要になるので、測定は被処理面に対して行
ない、化学研摩等によって表層を適宜除去することによ
って、所定深さの残留γ量を測定する。その他、エッチ
ングにより金属組織を露出させ、格子点数法や画像処理
解析等で定量化する方法も有効である。いずれの方法で
行なう場合であっても、同一のサンプル内での組織のば
らつきの影響が無くなる程度に十分に広い領域での測定
結果を用いる必要がある。
Incidentally, measurement by X-ray diffraction can be used to quantify the residual γ amount. At this time, since a distribution in a minute range inward is required, the measurement is performed on the surface to be treated, and the surface layer is appropriately removed by chemical polishing or the like to measure the residual γ amount at a predetermined depth. In addition, a method of exposing the metallographic structure by etching and quantifying it by a lattice point number method or image processing analysis is also effective. Whichever method is used, it is necessary to use the measurement results in a sufficiently wide area so that the influence of the variation of the tissue in the same sample is eliminated.

【0014】不完全焼入れ組織を低減するための方法と
しては、下記の様な対策が考えられる。例えば、鋼部品
の成分的には酸化されやすいCr,Si,Mn等の合金
元素の減少、およびこうした元素が酸化物として使用さ
れた残りのマトリクスの焼入れ性を上げるために、M
o,Ni,B等の非酸化性の焼き入れ性向上元素の増量
添加が有効である。また処理的には、ガス浸炭時間や雰
囲気の適正化や、真空浸炭やプラズマ浸炭等による酸化
雰囲気の低い環境での熱処理を利用すること、或は浸炭
後の不完全焼入れ組織を含む表層の物理的除去(但し、
本発明で規定する残留γ分布を損なわない程度)または
低減(例えば、研削やハードピーニング)等が有効であ
る。
As a method for reducing the incompletely quenched structure, the following measures can be considered. For example, in order to reduce the alloying elements such as Cr, Si, and Mn that are apt to be oxidized in the composition of steel parts, and to improve the hardenability of the remaining matrix in which these elements are used as oxides, M
It is effective to add increasing amounts of non-oxidizing hardenability improving elements such as o, Ni, and B. In terms of processing, the gas carburizing time and atmosphere should be optimized, and heat treatment in an environment with a low oxidizing atmosphere such as vacuum carburizing or plasma carburizing should be used, or the physical properties of the surface layer including the incompletely hardened structure after carburizing should be used. Removal (however,
It is effective to reduce the residual γ distribution defined in the present invention) or reduce (for example, grinding or hard peening).

【0015】また不完全焼入れ組織の測定は、下記の手
順に従えば良い。測定すべき面の垂直断面を鏡面研摩し
た後ナイタール溶液等で腐食し、走査型電子顕微鏡等を
利用して観察することによって、主に粒界に沿う様に生
成した非マルテンサイト組織(フェライト、パーライ
ト、ベイナイト等の組織や、酸化層そのもの等)である
不完全焼入れ組織を識別できるので、そのうち内部方向
への深さの一番深いものの長さを測定する。断面観察で
あるので、対象部位の全体を観察することは不可能に近
いので、断面と表面硬化処理面との交線長さにして2.
0mm分に当たる領域を任意に選び、その領域での最大
深さでもって代用する。小さな部材であって一断面では
2.0mm分長さ分測定できない場合は、複数断面を取
って合計が2.0mmとなる様な領域を観察すれば良
い。尚2.0mm分とした理由は、様々な処理材におけ
るこの様な不完全焼入れ組織深さの分布状態について発
明者らが種々検討した結果、測定領域を2.0mm分と
ることによってその処理材全体における最大級の不完全
焼入れ組織に近い大きさのものが少なくとも一つは観察
できることが明らかになったからであり、それより小さ
い領域ではそうした最大級の不完全焼入れ組織を見逃す
可能性があるからである。
The measurement of the incompletely hardened structure may be carried out according to the following procedure. After the vertical cross section of the surface to be measured is mirror-polished and then corroded with a Nital solution or the like, and observed by using a scanning electron microscope or the like, a non-martensite structure mainly formed along the grain boundaries (ferrite, Since a structure such as pearlite or bainite or an incompletely hardened structure such as an oxide layer itself) can be identified, the length of the deepest inward direction is measured. Since it is a cross-sectional observation, it is almost impossible to observe the entire target site. Therefore, the line length of intersection between the cross-section and the surface-hardened surface is set to 2.
A region corresponding to 0 mm is arbitrarily selected, and the maximum depth in that region is used as a substitute. If it is a small member and the length of one section cannot be measured by 2.0 mm, it is sufficient to take a plurality of sections and observe a region where the total is 2.0 mm. The reason for setting 2.0 mm is because the inventors of the present invention have variously studied the distribution state of such an incompletely quenched structure depth in various processed materials, and the measured area is set to 2.0 mm. Because it was revealed that at least one of the sizes close to the largest incompletely hardened structure in the whole was observable, and there was a possibility of missing such a largest incompletely hardened structure in a smaller region. Is.

【0016】その他、好ましい条件としては、材料内の
介在物や偏析等の材料欠陥はできるだけ少ない方が好ま
しい。これは不完全焼入れ組織の有害な理由と同じく、
本発明においては亀裂発生および伝播を抑制するべく組
織が調整されてるので、疲労強度律速要因がそうした材
料欠陥に移行しやすくなるからである。またショットピ
ーニング等の圧縮残留応力を増加させる処理は本発明の
効果をより一層大きくするという観点からして効果的で
ある。これは、残留圧縮応力が亀裂発生・伝播ともに制
御する効果を有するからである 以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
In addition, as a preferable condition, it is preferable that the number of material defects such as inclusions and segregation in the material be as small as possible. This is the same as the harmful reason of incompletely hardened structure,
This is because, in the present invention, the structure is adjusted to suppress the generation and propagation of cracks, so that the fatigue strength rate-determining factor easily transfers to such material defects. Further, the treatment of increasing the compressive residual stress such as shot peening is effective from the viewpoint of further increasing the effect of the present invention. This is because the residual compressive stress has the effect of controlling both crack generation and propagation. The present invention will be described in more detail below with reference to Examples, but the following Examples are not of a nature limiting the present invention.・
Any design changes made within the spirit of the later description are included in the technical scope of the present invention.

【0017】[0017]

【実施例】【Example】

実施例1 供試材として、A〜Cの3種の鋼種を用い、各鋼種につ
いて様々な熱処理を行なった。使用した鋼種のうちB鋼
は、JIS規格のSCM420鋼に相当するものであ
り、A鋼およびC鋼の夫々は、合金組成を調整すること
によって、不完全焼入れの組織を生成し易くしたもの
(A鋼)、および生成しにくくしたもの(C鋼)であ
る。具体的には、A鋼においては、Siを0.5%に増
量し、ガス浸炭中の酸化量を増大させたものである。但
し、母材の性質をB鋼に揃えるために、Mo量を低減し
て焼入れ性をB鋼と同等とした。一方C鋼においては、
Siを0.03%に低減すると共に、Mo量を0.8%
に増加させ、酸化によりMnおよびCrが欠乏する付近
の焼入れ性を高めた。また全体の焼入れ性をA鋼および
B鋼と揃えるために、Mn量およびCr量を低減した
が、これによって不完全焼入れ組織は更に低減されてい
ると考えられる。
Example 1 Three types of steel, A to C, were used as test materials, and various heat treatments were performed on each of the steel types. Of the steel types used, steel B corresponds to JIS standard SCM420 steel, and steels A and C each have a composition that facilitates the formation of an incompletely hardened structure by adjusting the alloy composition ( A steel) and a material that is difficult to generate (C steel). Specifically, in steel A, Si was increased to 0.5% to increase the amount of oxidation during gas carburization. However, in order to make the properties of the base material equal to those of the B steel, the amount of Mo was reduced and the hardenability was made equal to that of the B steel. On the other hand, in C steel,
Si is reduced to 0.03% and Mo content is 0.8%
To increase the hardenability in the vicinity of Mn and Cr deficiency due to oxidation. Further, the Mn content and the Cr content were reduced in order to make the overall hardenability equal to that of the A steel and the B steel, but it is considered that the incomplete hardened structure is further reduced by this.

【0018】上記3種の供試材を用いて回転曲げ疲労試
験片(応力集中係数=1.45)を作成し、各供試材に
ついて、夫々下記〜に示す5通りの条件の熱処理
(表面強化処理)を施し、更にハードショットピーニン
グを施した。尚下記の熱処理において、浸炭のポテンシ
ャルはいずれも約0.8%とし、またいずれも引き続き
180℃で2時間の焼戻しを施した。 (熱処理条件) 浸炭:925 ℃(3時間)→850 ℃(10分)→油焼入
れ 浸炭浸窒:850 ℃(5時間)→油焼入れ 残留γ分布調整処理:浸炭浸窒(850℃で3時間)→浸
炭(925℃で1時間) 残留γ分布調整処理:浸炭浸窒(850℃で5時間)→浸
炭(940℃で1.2時間) 残留γ分布調整処理:プラズマ浸炭利用(上記に準
ずる)
A rotating bending fatigue test piece (stress concentration factor = 1.45) was prepared using the above-mentioned three kinds of test materials, and each test material was subjected to heat treatment (surface treatment) under the five conditions shown below. (Strengthening treatment), and further hard shot peening. In the heat treatment described below, the carburizing potentials were both set to about 0.8%, and both were subsequently tempered at 180 ° C. for 2 hours. (Heat treatment conditions) Carburizing: 925 ℃ (3 hours) → 850 ℃ (10 minutes) → Oil quenching Carburizing and carburizing: 850 ℃ (5 hours) → Oil quenching Residual γ distribution adjustment treatment: Carburizing and carburizing (3 hours at 850 ℃) ) → Carburizing (1 hour at 925 ° C) Residual γ distribution adjustment treatment: Carburizing and nitrifying (850 ° C for 5 hours) → Carburizing (940 ° C 1.2 hours) Residual γ distribution adjustment treatment: Using plasma carburization (same as above) )

【0019】上記およびの熱処理は、夫々一般的な
ガス浸炭処理およびガス浸炭浸窒処理である。また〜
の熱処理は、上述した様に浸炭浸窒処理→浸炭処理の
段階処理によって残留γ分布を調整したものである。こ
のうちおよびの熱処理は、浸炭(浸炭浸窒)条件
を、残留γ分布が本発明で規定する範囲内となる様に変
化させたものである。またの熱処理は、プラズマ浸炭
を利用することによって、全く不完全焼入れ組織が発生
していないものである。
The above heat treatments 1 and 2 are a general gas carburizing treatment and a gas carburizing and nitrifying treatment, respectively. Also~
As described above, the heat treatment of (1) is one in which the residual γ distribution is adjusted by the stepwise treatment of carburizing / nitriding treatment → carburizing treatment. Of these, the heat treatments are those in which the carburizing (carburizing and nitrifying) conditions are changed so that the residual γ distribution is within the range specified by the present invention. Further, the heat treatment uses plasma carburization so that an incompletely quenched structure is not generated at all.

【0020】各処理を施した後の各鋼種について、残留
γ分布状況および不完全焼入れ組織最大深さを下記表1
に示す。尚表1においては、本発明で規定する残留γ分
布が得られているものを◎、内部で不足して本発明の範
囲外であるものをL、表面で本発明の範囲よりも過剰で
あるものをHと示した。表1から明らかな様に、表面強
化処理に何らかの工夫を施さない限り、本発明で規定す
る様な理想的な残留γ分布は得られないことがわかる。
尚との熱処理について比較すると、全体的にの方
がよりも不完全焼入れ組織深さが深くなっているが、
これは浸炭温度、浸炭時間および炉内雰囲気の差異によ
るものと考えられる。
For each steel type after each treatment, the residual γ distribution state and the maximum depth of the incompletely quenched structure are shown in Table 1 below.
Shown in. In Table 1, ⊚ indicates that the residual γ distribution defined by the present invention is obtained, L indicates that the internal deficiency is out of the range of the present invention, and surface is excessive beyond the range of the present invention. The thing was shown as H. As is apparent from Table 1, it is understood that the ideal residual γ distribution as defined in the present invention cannot be obtained unless some measures are taken in the surface strengthening treatment.
Comparing the heat treatment with the above, the depth of incompletely quenched structure is deeper than that of the whole.
It is considered that this is due to the difference in carburizing temperature, carburizing time and furnace atmosphere.

【0021】[0021]

【表1】 [Table 1]

【0022】残留γ分布測定結果の典型例を図1に示
す。図1において、例えば記号A−1はA鋼にの熱処
理を施したもの、記号C−3はC鋼にの熱処理を施し
たものを夫々示し、各熱処理後にショットピーニングを
施した後の残留γ分布である。図1からも明らかな様
に、A−5、B−4およびC−3のものは、本発明で規
定する残留γ分布が達成されているが、A−1およびC
−1のものは内部の残留γ量が不足しており、またC−
2のものは表面近傍の残留γ量が過剰である。
A typical example of the residual γ distribution measurement result is shown in FIG. In FIG. 1, for example, the symbol A-1 indicates a heat-treated A steel, and the symbol C-3 indicates a C-heated steel, and the residual γ after shot peening after each heat treatment is shown. Distribution. As is clear from FIG. 1, A-5, B-4 and C-3 have achieved the residual γ distribution defined in the present invention, but A-1 and C
-1 has a shortage of residual γ inside, and C-
No. 2 has an excessive amount of residual γ near the surface.

【0023】以上の処理材における疲労試験結果と不完
全焼入れ最大深さの関係を図2に示す。図2において、
残留γ分布が本発明で規定する範囲内のものを○印、範
囲外のものを●印で示したが、○印のものが●印のもの
に比べて全体的に疲労限が高いことが明らかである。ま
た不完全焼入れ組織最大深さが10μm以下とすること
によって、更に一段と良好な疲労強度になっていること
がわかる。この様な不完全焼入れ深さとの疲労限依存性
は、残留γ分布が適正化されていないものでは顕著でな
い。以上のことから、本発明で規定する要件を満足する
部材が良好な疲労強度を有することが明らかである。
FIG. 2 shows the relationship between the fatigue test results and the maximum depth of incomplete quenching in the above treated materials. In FIG.
Those with a residual γ distribution within the range specified by the present invention are shown with a circle, and those outside the range are shown with a circle. However, those with a circle have a higher fatigue limit than those with a circle. it is obvious. Further, it can be seen that when the maximum depth of the incompletely quenched structure is 10 μm or less, the fatigue strength is further improved. Such fatigue limit dependency with the incomplete quenching depth is not remarkable if the residual γ distribution is not optimized. From the above, it is clear that a member satisfying the requirements specified in the present invention has good fatigue strength.

【0024】[0024]

【発明の効果】本発明は以上の様に構成されており、優
れた疲労強度を示す高強度鋼部品が実現できた。
The present invention is constructed as described above, and a high-strength steel part having excellent fatigue strength can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】残留γ分布測定結果の典型例を示すグラフであ
る。
FIG. 1 is a graph showing a typical example of residual γ distribution measurement results.

【図2】処理材における疲労試験結果と不完全焼入れ最
大深さの関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a fatigue test result and a maximum depth of incomplete quenching in a treated material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 8/36 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C23C 8/36

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素原子および/または窒素原子の鋼部
品内への導入を伴う表面処理をその製造工程の一つまた
はそれ以上として含んで製造されたものであり、最表面
から40μm深さまでの残留オーステナイト量が15体
積%以下であると共に、前記表面処理の条件下で前記鋼
部品表層が酸化されることにより生じる不完全焼入れ組
織の最大深さが10μm以内であり、且つ最表面から1
50μmの位置と同350μmの位置の間の領域内にお
ける残留オーステナイト量が20〜40体積%であるこ
とを特徴とする疲労強度に優れた高強度鋼部品。
1. A method comprising a surface treatment involving the introduction of carbon atoms and / or nitrogen atoms into a steel part as one or more of the manufacturing steps, and is manufactured up to a depth of 40 μm from the outermost surface. The amount of retained austenite is 15% by volume or less, the maximum depth of the incompletely hardened structure caused by the oxidation of the surface layer of the steel part under the condition of the surface treatment is within 10 μm, and 1 from the outermost surface.
A high-strength steel part excellent in fatigue strength, characterized in that the amount of retained austenite in a region between the position of 50 μm and the position of 350 μm is 20 to 40% by volume.
JP31784993A 1993-12-17 1993-12-17 High strength steel part excellent in fatigue strength Withdrawn JPH07173603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784993A JPH07173603A (en) 1993-12-17 1993-12-17 High strength steel part excellent in fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31784993A JPH07173603A (en) 1993-12-17 1993-12-17 High strength steel part excellent in fatigue strength

Publications (1)

Publication Number Publication Date
JPH07173603A true JPH07173603A (en) 1995-07-11

Family

ID=18092746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784993A Withdrawn JPH07173603A (en) 1993-12-17 1993-12-17 High strength steel part excellent in fatigue strength

Country Status (1)

Country Link
JP (1) JPH07173603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322536A (en) * 2001-04-23 2002-11-08 Aichi Steel Works Ltd High strength gear having excellent bending strength of dedendum and pitting resistance, and producing method therefor
JP2006299324A (en) * 2005-04-19 2006-11-02 Mazda Motor Corp Method for surface-treating steel member, steel member and toothed gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322536A (en) * 2001-04-23 2002-11-08 Aichi Steel Works Ltd High strength gear having excellent bending strength of dedendum and pitting resistance, and producing method therefor
JP2006299324A (en) * 2005-04-19 2006-11-02 Mazda Motor Corp Method for surface-treating steel member, steel member and toothed gear

Similar Documents

Publication Publication Date Title
JP5639064B2 (en) Method for producing carbonitrided member
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
EP2832877B1 (en) Gear having excellent seizing resistance
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JPWO2006118243A1 (en) Carburized induction hardening parts
EP2548986A1 (en) Steel for nitrocarburization, nitrocarburized components, and production method for same
Asi et al. The effect of high temperature gas carburizing on bending fatigue strength of SAE 8620 steel
JP2004076125A (en) Rolling member
JP4354277B2 (en) Method for manufacturing carburized and quenched members
JP2013112827A (en) Gear excellent in pitching resistance and manufacturing method therefor
JP5397308B2 (en) Hot-worked steel for case hardening
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
JP4501573B2 (en) Gear and gear manufacturing method
JP2000129347A (en) Production of high strength parts
JP3543557B2 (en) Carburized gear
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2021113338A (en) Steel component and method for manufacturing the same
JP2009263767A (en) Method for manufacturing high-strength case hardened steel part
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP2005325398A (en) High-strength gear and manufacturing method therefor
JPH07173603A (en) High strength steel part excellent in fatigue strength
JP2001140020A (en) Method for heat-treating carbo-nitriding treated member excellent in pitting resistance
JP4821582B2 (en) Steel for vacuum carburized gear
JPH0754050A (en) High strength gear excellent in root of tooth bending fatigue strength and tooth surface pitching resistance and manufacture therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306