JP2005325398A - High-strength gear and manufacturing method therefor - Google Patents

High-strength gear and manufacturing method therefor Download PDF

Info

Publication number
JP2005325398A
JP2005325398A JP2004143591A JP2004143591A JP2005325398A JP 2005325398 A JP2005325398 A JP 2005325398A JP 2004143591 A JP2004143591 A JP 2004143591A JP 2004143591 A JP2004143591 A JP 2004143591A JP 2005325398 A JP2005325398 A JP 2005325398A
Authority
JP
Japan
Prior art keywords
mass
gear
strength
fatigue strength
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004143591A
Other languages
Japanese (ja)
Other versions
JP4798963B2 (en
Inventor
Tetsuo Shiragami
哲夫 白神
Kazuaki Fukuoka
和明 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Bars and Shapes Corp filed Critical JFE Bars and Shapes Corp
Priority to JP2004143591A priority Critical patent/JP4798963B2/en
Publication of JP2005325398A publication Critical patent/JP2005325398A/en
Application granted granted Critical
Publication of JP4798963B2 publication Critical patent/JP4798963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mass-manufacturable high-strength gear which has a higher bending fatigue strength of a dedendum than a conventional gear has, and besides, superior bearing fatigue characteristics, and to provide a manufacturing method therefor. <P>SOLUTION: This high-strength gear is made of a steel material comprising 0.10-0.25% C, 0.8-1.2% Si, 0.6-2.0% Mn, 0.006% or more S, 1.0-2.0% Cr, 0.2-0.8% Mo, 0.005-0.200% Al, 0.0050-0.0200% N (by mass%) and the balance Fe with unavoidable impurities; is formed into a gear shape by forging or machining the steel material and then carburizing or carbonitriding it, so that the surface layer of the formed gear can contain less than 0.9 mass% C, and so that the layer of the gear between the surface layer and a 100 μm deep layer can contain less than 40 vol.% of retained austenite and have a structure of a martensite single phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、自動車や各種産業機器等に使用される、高い曲げ疲労強度および面圧疲労強度を有する高強度歯車およびその製造方法に関するものである。   The present invention relates to a high-strength gear having high bending fatigue strength and surface fatigue strength used for automobiles and various industrial equipment, and a method for manufacturing the same.

自動車等に用いられている歯車には、近年、省エネルギー化による車体重量の軽量化に伴って、サイズの小型化が要求され、また、エンジンの高出力化に伴って歯車にかかる負荷が増大している。歯車の耐久性は、主に歯元の曲げ疲労破壊ならびに歯面の面圧疲労破壊によって決まる。   In recent years, gears used in automobiles and the like have been required to be smaller in size as the weight of the vehicle body has been reduced due to energy saving, and the load on the gears has increased as the output of the engine has increased. ing. The durability of a gear is mainly determined by the bending fatigue failure of the tooth root and the surface pressure fatigue failure of the tooth surface.

従来、歯車は、JIS SCM420H、SCM822H等により規定された肌焼鋼を用いて歯車材を調製し、この歯車材に浸炭等の表面処理を施して製造されていた。しかしながら、このような歯車は、高応力下での使用に耐えられるものではないことから、鋼材の変更、熱処理方法の変更、表面の加工硬化処理等によって、歯元曲げ疲労強度、耐ピッチング性の向上を図っていた。   Conventionally, gears have been manufactured by preparing gear materials using case-hardened steel defined by JIS SCM420H, SCM822H, etc., and subjecting the gear materials to surface treatment such as carburization. However, such gears cannot withstand use under high stress, and therefore, by changing steel materials, changing heat treatment methods, surface work hardening treatments, etc., tooth root bending fatigue strength and pitting resistance can be improved. I was trying to improve.

例えば、特公平07−122118号公報(特許文献1)には、鋼中のSiを低減して、Mn、Cr、Mo、Niをコントロールすることにより、浸炭熱処理後の表面の粒界酸化層を低減して亀裂の発生を少なくし、不完全焼入層生成を抑制することにより、表面硬さの低減を抑えて疲労強度を高め、さらに、Caを添加して、亀裂の発生・伝播を助長するMnSの延伸を制御する方法が開示されている。以下、この方法を先行技術1という。   For example, in Japanese Patent Publication No. 07-122118 (Patent Document 1), by reducing Si in steel and controlling Mn, Cr, Mo and Ni, a grain boundary oxide layer on the surface after carburizing heat treatment is provided. By reducing the generation of cracks and suppressing the generation of incompletely hardened layers, the reduction of surface hardness is suppressed and the fatigue strength is increased. Furthermore, Ca is added to promote the generation and propagation of cracks. A method for controlling the stretching of MnS is disclosed. Hereinafter, this method is referred to as Prior Art 1.

また、特許第2945714号公報(特許文献2)には、素材としてSiを0.25〜1.50%添加した鋼材を用いて焼戻し軟化抵抗を高める方法が開示されている。以下、この方法を先行技術2という。   Japanese Patent No. 2945714 (Patent Document 2) discloses a method of increasing temper softening resistance using a steel material to which 0.25 to 1.50% of Si is added as a material. Hereinafter, this method is referred to as Prior Art 2.

特公平07−122118号公報Japanese Patent Publication No. 07-122118 特許第2945714号公報Japanese Patent No. 2945714

しかしながら、上述した先行技術には、下記の問題があった。   However, the above-described prior art has the following problems.

先行技術1によれば、Siを低減することにより、粒界酸化層および不完全焼入れ層が低減するので、歯元での曲げ疲労亀裂発生を抑えることはできる。しかし、逆に焼戻し軟化抵抗が低下して、破壊の発生が歯元から歯面側に移行する結果、歯面での摩擦熱による焼戻し軟化を抑えることができなくなって表面が軟化する。このために、ピッチングが発生しやすくなるという問題があった。   According to Prior Art 1, since the grain boundary oxide layer and the incompletely hardened layer are reduced by reducing Si, it is possible to suppress the occurrence of bending fatigue cracks at the tooth root. However, the temper softening resistance decreases, and the occurrence of fracture shifts from the tooth base to the tooth surface. As a result, temper softening due to frictional heat on the tooth surface cannot be suppressed, and the surface softens. For this reason, there has been a problem that pitching is likely to occur.

先行技術2では、焼戻し軟化抵抗を上げるために逆にSi等を添加し、粒界酸化進行の抑制のために浸炭工法を真空浸炭あるいはプラズマ浸炭等に限定しているが、この方法は、製造コストが上がるので量産化に不適である。   In Prior Art 2, Si or the like is added to increase the temper softening resistance, and the carburizing method is limited to vacuum carburizing or plasma carburizing to suppress the progress of grain boundary oxidation. It is unsuitable for mass production due to increased costs.

従って、この発明の目的は、上述した問題を解決して、歯元曲げ疲労強度が従来の歯車よりも高く、さらに、面圧疲労特性に優れた量産可能な高強度歯車およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems, and provide a high-strength gear capable of mass production that has a higher root bending fatigue strength than that of a conventional gear and that is excellent in surface pressure fatigue characteristics, and a method for manufacturing the same. There is to do.

本願発明者等は、上述した課題を解決するために、鋭意、研究を重ねた結果、以下の知見を得た。   The inventors of the present application have earnestly studied to solve the above-mentioned problems, and as a result, obtained the following knowledge.

(1)鋼材中のSi、Crを増量することによって、焼戻し軟化抵抗を高めると共に、歯車接触面での発熱による軟化を抑えれば、歯車駆動時に生じる歯面の亀裂発生を抑制することができる。   (1) By increasing the amount of Si and Cr in the steel material, the temper softening resistance is increased, and if the softening due to heat generation at the gear contact surface is suppressed, the generation of cracks in the tooth surface that occurs during gear driving can be suppressed. .

(2)曲げ疲労および疲労亀裂の起点となり得る粒界酸化層については、Siをある量以上添加することにより、粒界酸化層の成長方向が深さ方向から表面の密度増加方向に変わる。従って、起点となるような深さ方向に成長した酸化層がなくなるので、曲げ疲労および疲労亀裂の起点となりにくくなる。さらに、この酸化層は、剥離し易くなり、ショットピーニングによりほぼ剥離して無くなるために、影響がでない。   (2) For the grain boundary oxide layer that can be the starting point of bending fatigue and fatigue cracks, the growth direction of the grain boundary oxide layer changes from the depth direction to the surface density increase direction by adding a certain amount or more of Si. Therefore, since there is no oxide layer grown in the depth direction as a starting point, it becomes difficult to be a starting point for bending fatigue and fatigue cracks. Furthermore, this oxide layer is easy to peel off, and is almost unpeeled by shot peening, so there is no influence.

(3)上記(1)および(2)の通り、Siは、焼戻し軟化抵抗の向上と粒界酸化層のコントロールに有効であるが、その両方を満たすためのSi量の適正値がある。   (3) As described in the above (1) and (2), Si is effective in improving the temper softening resistance and controlling the grain boundary oxide layer, but there is an appropriate value of the Si amount to satisfy both.

(4)歯面の浸炭部表面は、マルテンサイトおよび40体積%以下の残留オーステナイトにすることにより硬度低下を抑制できる。また、表層のC含有量は、0.9mass%未満にして表層の粒界セメンタイトの生成を抑えることによって、曲げ疲労および面圧疲労での疲労亀裂の発生を抑えることができる。   (4) The surface of the carburized portion of the tooth surface can be reduced in hardness by using martensite and retained austenite of 40% by volume or less. Further, the generation of fatigue cracks in bending fatigue and surface pressure fatigue can be suppressed by setting the C content of the surface layer to less than 0.9 mass% and suppressing the formation of grain boundary cementite in the surface layer.

この発明は、上記知見に基づきなされたものであって、下記を特徴とするものである。   The present invention has been made on the basis of the above findings, and is characterized by the following.

請求項1記載の発明は、C:0.10〜0.25%、Si:0.8〜1.2%、Mn:0.6〜2.0%、S:0.006%以上、Cr:1.0〜2.0%、Mo:0.2〜0.8%、Al:0.005〜0.200%、N:0.0050〜0.0200%(以上、mass%)を含有し、残部がFeおよび不可避的不純物からなる鋼材を、鍛造あるいは機械加工により歯車形状に形成したものからなり、歯車形状に形成後、浸炭処理あるいは浸炭窒化処理を施した時の、表層のC含有量が0.9mass%未満、歯車の表層から100μm深さ位置までの残留オーステナイト量が40体積%以下、且つ、組織がマルテンサイト単相であることに特徴を有するものである。   The invention according to claim 1 includes C: 0.10 to 0.25%, Si: 0.8 to 1.2%, Mn: 0.6 to 2.0%, S: 0.006% or more, Cr : 1.0-2.0%, Mo: 0.2-0.8%, Al: 0.005-0.200%, N: 0.0050-0.0200% (above, mass%) contained In addition, the steel material comprising the balance Fe and inevitable impurities is formed into a gear shape by forging or machining, and after forming into a gear shape, carburizing treatment or carbonitriding treatment is performed, and C content in the surface layer The amount is less than 0.9 mass%, the amount of retained austenite from the surface layer of the gear to the depth of 100 μm is 40% by volume or less, and the structure is characterized by a martensite single phase.

請求項2記載の発明は、請求項1記載の発明において、鋼材は、Nb:0.010〜0.060%、V:0.05〜0.20%(以上、mass%)の少なくとも1種をさらに含有していることに特徴を有するものである。   The invention according to claim 2 is the invention according to claim 1, wherein the steel material is at least one of Nb: 0.010 to 0.060% and V: 0.05 to 0.20% (more than mass%). It is characterized by further containing.

請求項3記載の発明は、請求項1または2記載の発明において、鋼材は、Ti:0.005〜0.050%、B:0.0005〜0.0100%(以上、mass%)をさらに含有していることに特徴を有するものである。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the steel material further includes Ti: 0.005 to 0.050%, B: 0.0005 to 0.0100% (more than mass%). It is characterized by containing.

請求項4記載の発明は、C:0.10〜0.25%、Si:0.8〜1.2%、Mn:0.6〜2.0%、S:0.006%以上、Cr:1.0〜2.0%、Mo:0.2〜0.8%、Al:0.005〜0.200%、N:0.0050〜0.0200%(以上、mass%)を含有し、残部がFeおよび不可避的不純物からなる鋼材を、鍛造あるいは機械加工により歯車形状に形成して歯車材を調製し、次いで、前記歯車材に浸炭処理あるいは浸炭窒化処理を施し、さらに、アークハイト0.3mmA以上のショットピーニングを施して、表層のC含有量を0.9mass%未満、歯車の表層から100μm深さ位置までの残留オーステナイト量を40体積%以下、且つ、組織をマルテンサイト単相とすることに特徴を有するものである。   Invention of Claim 4 is C: 0.10-0.25%, Si: 0.8-1.2%, Mn: 0.6-2.0%, S: 0.006% or more, Cr : 1.0-2.0%, Mo: 0.2-0.8%, Al: 0.005-0.200%, N: 0.0050-0.0200% (above, mass%) contained Then, a steel material having the balance of Fe and inevitable impurities is formed into a gear shape by forging or machining to prepare a gear material, and then the carburizing treatment or carbonitriding treatment is applied to the gear material, and the arc height is further increased. Shot peening of 0.3 mmA or more is performed, the C content of the surface layer is less than 0.9 mass%, the amount of retained austenite from the surface layer of the gear to the 100 μm depth position is 40% by volume or less, and the structure is a martensite single phase. Is characterized by

請求項5記載の発明は、請求項4記載の発明において、鋼材として、Nb:0.010〜0.060%、V:0.05〜0.20%(以上、mass%)の少なくとも1種をさらに含有したものを使用することに特徴を有するものである。   The invention according to claim 5 is the invention according to claim 4, wherein the steel material is at least one of Nb: 0.010 to 0.060%, V: 0.05 to 0.20% (more than mass%). It is characterized by using what further contains.

請求項6記載の発明は、請求項4または5記載の発明において、鋼材として、Ti:0.005〜0.050%、B:0.0005〜0.0100%(以上、mass%)をさらに含有するものを使用することに特徴を有するものである。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein Ti: 0.005 to 0.050%, B: 0.0005 to 0.0100% (above, mass%) is further added as the steel material. It is characterized by using what it contains.

この発明によれば、曲げ疲労特性および面圧疲労特性に優れた、3000MPa以上の高面圧を必要とする自動車や各種産業機器等に使用される歯車を製造することができる。   According to the present invention, it is possible to manufacture a gear that is excellent in bending fatigue characteristics and surface pressure fatigue characteristics and that is used in automobiles, various industrial equipment, and the like that require a high surface pressure of 3000 MPa or more.

以下に、各限定理由について述べる。   Below, each reason for limitation is described.

C:0.10〜0.25mass%
Cは、強度確保のために必要であり、その量は、浸炭焼戻し後の内部硬さを決定するが、その量が0.10mass%未満では、内部の硬さが低下しすぎるために歯車としての強度を確保できない。一方、0.25mass%を超えると、歯車内部の靭性が低下して、疲労亀裂が進展しやすくなるため曲げ疲労特性が低下するばかりでなく、加工性の劣化が起る。従って、C含有量は、0.10〜0.25mass%の範囲内に限定した。
C: 0.10 to 0.25 mass%
C is necessary for securing the strength, and the amount thereof determines the internal hardness after carburizing and tempering. However, if the amount is less than 0.10 mass%, the internal hardness is excessively reduced, so that the gear is used. Can not secure the strength of. On the other hand, if it exceeds 0.25 mass%, the toughness inside the gear is lowered and fatigue cracks are likely to progress, so that not only the bending fatigue characteristics are lowered, but also workability is deteriorated. Therefore, the C content is limited to a range of 0.10 to 0.25 mass%.

Si:0.8〜1.2mass%
Siは、焼戻し軟化抵抗を高めるのに有効な元素であると共に、粒界酸化層深さを抑える効果がある。軟化抵抗が低いと、歯車駆動時に歯車同士の摩擦により歯車表層が焼戻され軟化して、面圧疲労特性が低下する。粒界酸化層深さが大きいと疲労起点となりやすいために曲げ疲労特性、面圧疲労特性の何れも低下する。
Si: 0.8-1.2 mass%
Si is an element effective for increasing the temper softening resistance and has an effect of suppressing the depth of the grain boundary oxide layer. If the softening resistance is low, the gear surface layer is tempered and softened by friction between the gears when the gears are driven, and the surface pressure fatigue characteristics are deteriorated. If the grain boundary oxide layer depth is large, it tends to become a fatigue starting point, so both the bending fatigue characteristics and the surface pressure fatigue characteristics are lowered.

Siの適正範囲を調べるために、以下の試験を行った。   In order to investigate the appropriate range of Si, the following tests were conducted.

Si添加量だけを変更して材料を溶解し、それらの材料に図1に示すパターンに従って浸炭処理を行い回転曲げ疲労試験を行った。また、図2に示す形状および寸法の試験片を用いて面圧疲労特性の指標であるローラーピッチング試験を行った。さらに、それぞれの材料について300℃での焼戻しによる軟化量および粒界酸化層深さを調査した。   Only the amount of Si added was changed to dissolve the materials, and these materials were subjected to carburizing treatment according to the pattern shown in FIG. In addition, a roller pitching test, which is an index of surface pressure fatigue characteristics, was performed using a test piece having the shape and dimensions shown in FIG. Furthermore, the softening amount and the grain boundary oxide layer depth by tempering at 300 ° C. were investigated for each material.

曲げ疲労強度を粒界酸化層深さで整理した結果を図3に示す。図3から粒界酸化層が10μm以下になると、曲げ疲労強度が向上することが分かった。   The result of arranging the bending fatigue strength by the grain boundary oxide layer depth is shown in FIG. FIG. 3 indicates that the bending fatigue strength is improved when the grain boundary oxide layer is 10 μm or less.

次に、面圧疲労強度を300℃焼戻し軟化量で整理した結果を図4に示す。図4から300℃焼戻しによる軟化量ΔHVが100HV以下で面圧疲労強度が向上することが分かった。   Next, FIG. 4 shows the results of arranging the surface pressure fatigue strength by the temper softening amount at 300 ° C. From FIG. 4, it was found that the surface pressure fatigue strength is improved when the softening amount ΔHV by tempering at 300 ° C. is 100 HV or less.

図5に、Si量と粒界酸化層深さおよび300℃焼戻し軟化量との関係を示す。   FIG. 5 shows the relationship between the Si amount, the grain boundary oxide layer depth, and the 300 ° C. temper softening amount.

図5から、Siは、歯面の摩擦による発熱程度の温度である300℃での焼戻しにおいて、硬度低下抑制には、0.8mass%以上で効果があることが分かり、2.0mass%を超えると効果が飽和することが分かった。   From FIG. 5, it can be seen that Si has an effect of suppressing hardness reduction at 0.8 mass% or more in tempering at 300 ° C., which is about the temperature of heat generation due to friction of the tooth surface, and exceeds 2.0 mass%. And the effect was saturated.

図5から粒界酸化層深さに及ぼすSi量は、0.1mass%以下および0.6mass%以上で効果があることが分かった。また、1.2mass%を超えるとその効果は飽和することが分かった。   From FIG. 5, it was found that the effect of Si amount on the grain boundary oxide layer depth was 0.1 mass% or less and 0.6 mass% or more. Moreover, it turned out that the effect will be saturated when it exceeds 1.2 mass%.

以上の実験結果から、粒界酸化層深さおよび300℃焼戻し軟化量の両方の効果が得られるSi添加量の範囲は、0.8〜1.2mass%であり、0.8mass%未満では、面圧疲労強度の向上が図れず、1.2mass%を超えて添加してもこれらの効果は飽和してしまうためにコスト的に無駄である。従って、Si含有量は、0.8〜1.2mass%の範囲内に限定した。   From the above experimental results, the range of Si addition amount in which both the grain boundary oxide layer depth and the 300 ° C. temper softening effect can be obtained is 0.8 to 1.2 mass%, and less than 0.8 mass%, The surface fatigue strength cannot be improved, and even if added over 1.2 mass%, these effects are saturated, and this is wasteful in cost. Therefore, the Si content is limited to the range of 0.8 to 1.2 mass%.

Mn:0.6〜2.0mass%
Mnは、鋼の焼入れ性を高める元素である。焼入れ性を確保するためには、Mnの添加量は、0.6mass%以上必要であるが、2.0mass%を超えて添加しても過剰に焼入れ性が上がり、残留オーステナイト量が過多となって硬さの低下を招くばかりなので、Mn添加量の上限は、2.0mass%とした。
Mn: 0.6 to 2.0 mass%
Mn is an element that enhances the hardenability of steel. In order to ensure hardenability, the amount of Mn added must be 0.6 mass% or more, but even if added over 2.0 mass%, the hardenability is excessively increased and the amount of retained austenite becomes excessive. Therefore, the upper limit of the Mn addition amount is set to 2.0 mass%.

S:0.006mass%以上
Sは、Mnと結合してMnSを形成し、被削性を向上させる効果を持つが、0.006mass%未満では、生成するMnSが少なすぎてその効果が現われない。従って、S含有量は、0.006mass%以上に限定した。
S: 0.006 mass% or more S combines with Mn to form MnS and has an effect of improving machinability. However, if it is less than 0.006 mass%, the generated MnS is so small that the effect does not appear. . Therefore, the S content is limited to 0.006 mass% or more.

Cr:1.0〜2.0mass%
Crは、焼入れ性向上元素であると共に、焼戻し軟化抵抗を高める元素である。両方の性能を発揮させるには1.0mass%以上の添加が必要である。しかし、その添加量が2.0mass%を超えると、軟化抵抗を高める効果は飽和して焼入れ性が高くなりすぎる。このため歯車内部の靭性が劣化して、疲労亀裂の進展が早くなるために曲げ疲労強度が低下する。従って、Cr含有量は、1.0〜2.0mass%の範囲内に限定した。
Cr: 1.0-2.0 mass%
Cr is an element that enhances hardenability and increases temper softening resistance. In order to exhibit both performances, addition of 1.0 mass% or more is necessary. However, when the addition amount exceeds 2.0 mass%, the effect of increasing the softening resistance is saturated and the hardenability becomes too high. For this reason, the toughness inside the gears deteriorates and the fatigue cracks progress more quickly, so the bending fatigue strength decreases. Therefore, the Cr content is limited to a range of 1.0 to 2.0 mass%.

Mo:0.2〜0.8mass%
Moは、焼入れ性向上元素である。そのためには0.2mass%以上の添加が必要であるが、0.8mass%を超えて添加してもその効果は飽和し、しかも、高価な合金であるので経済性も悪い。従って、Mo含有量は、0.2〜0.8mass%の範囲内に限定した。
Mo: 0.2-0.8 mass%
Mo is a hardenability improving element. For that purpose, addition of 0.2 mass% or more is necessary, but even if added in excess of 0.8 mass%, the effect is saturated, and since it is an expensive alloy, the economy is poor. Therefore, the Mo content is limited to the range of 0.2 to 0.8 mass%.

Al:0.005〜0.200mass%
Alは、脱酸に有効な元素であり、その効果は、0.005mass%以上の添加で発揮される。また、Nと結合してAlNを生成し、結晶粒の粗大化を抑える働きがある。その効果は、0.200mass%までの添加で有効であり、それを超えると粗大粒が発生して疲労亀裂が進展しやすくなるために、曲げ疲労強度および面圧疲労強度が低下する。従って、Al含有量は、0.005〜0.200mass%の範囲内に限定した。
Al: 0.005 to 0.200 mass%
Al is an element effective for deoxidation, and the effect is exhibited by addition of 0.005 mass% or more. In addition, it combines with N to produce AlN, and has a function of suppressing coarsening of crystal grains. The effect is effective when added up to 0.200 mass%, and if it exceeds that, coarse grains are generated and fatigue cracks tend to progress, so that the bending fatigue strength and the surface pressure fatigue strength are reduced. Therefore, the Al content is limited to a range of 0.005 to 0.200 mass%.

N:0.0050〜0.0200mass%
Nは、Alと結合してAlNを生成し、結晶粒の粗大化を抑えて疲労強度を向上させる。その効果を得るには0.005mass%以上必要であるが、0.0200mass%を超えるとその効果は飽和するだけでなく、内部にブローボール等の欠陥を発生させ、結果的に曲げ疲労強度の低下を招く。従って、N含有量は、0.005〜0.0200mass%の範囲内に限定した。
N: 0.0050-0.0200 mass%
N combines with Al to produce AlN, and suppresses coarsening of crystal grains to improve fatigue strength. In order to obtain the effect, 0.005 mass% or more is necessary. However, if it exceeds 0.0200 mass%, the effect is not only saturated, but also defects such as blow balls are generated inside, resulting in bending fatigue strength. Incurs a decline. Therefore, the N content is limited to a range of 0.005 to 0.0200 mass%.

Nb:0.010〜0.060mass%
Nbは、炭窒化物形成により結晶粒を微細化させる。これにより歯元曲げ疲労強度の向上が図られる。結晶粒を微細化させるには0.010mass%以上必要であり、0.060mass%以上添加してもその効果は飽和してしまう。従って、Nb含有量は、0.010〜0.060mass%の範囲内に限定した。
Nb: 0.010 to 0.060 mass%
Nb refines crystal grains by forming carbonitrides. As a result, the root bending fatigue strength is improved. In order to refine crystal grains, 0.010 mass% or more is necessary, and the effect is saturated even if 0.060 mass% or more is added. Therefore, the Nb content is limited to the range of 0.010 to 0.060 mass%.

V:0.05〜0.20mass%
Vは、Si、Crと同じく焼戻し軟化抵抗を高める。また、それと同時に炭窒化物を形成して結晶粒の微細化を行いSiの偏析を抑制する効果も持っている。その効果を発揮させるためには、0.05mass%以上の添加が必要である。しかし、この効果は、0.20mass%を超えて添加しても飽和してしまい、十分な効果は得られず、製造コストが上がるだけである。従って、V含有量は、0.05〜0.20mass%の範囲内に限定した。
V: 0.05-0.20 mass%
V increases the temper softening resistance in the same manner as Si and Cr. At the same time, carbonitrides are formed to refine crystal grains and to suppress the segregation of Si. In order to exhibit the effect, addition of 0.05 mass% or more is necessary. However, this effect is saturated even if added in excess of 0.20 mass%, a sufficient effect cannot be obtained, and the manufacturing cost only increases. Therefore, the V content is limited to the range of 0.05 to 0.20 mass%.

Ti:0.005〜0.050mass%、B:0.0005〜0.0100masss%
Bは、焼入れ性を上げるのに有効である。その効果は、0.0005mass%以上で得られ、0.0100mass%を超えると飽和してしまう。従って、B含有量は、0.0005〜0.0100mass%の範囲内に限定した。しかし、Bの焼入れ性向上効果は、BがN化合物で存在した場合は、無効であるためB添加と同時にNを固定するためにTiを添加する。その適正添加量は、N量により異なるが、0.005〜0.050mass%の範囲内である。
Ti: 0.005-0.050 mass%, B: 0.0005-0.0100 mass%
B is effective in increasing the hardenability. The effect is obtained at 0.0005 mass% or more, and when it exceeds 0.0100 mass%, the effect is saturated. Therefore, the B content is limited to a range of 0.0005 to 0.0100 mass%. However, the effect of improving the hardenability of B is ineffective when B is an N compound, so Ti is added to fix N simultaneously with the addition of B. The appropriate addition amount varies depending on the N amount, but is in the range of 0.005 to 0.050 mass%.

なお、不可避不純物としてのPおよび酸素含有量は、できるだけ低い方が望ましい。   The P and oxygen contents as inevitable impurities are preferably as low as possible.

また、被削性を向上させるために必要に応じて、S、Pb、Se、Ca等の快削元素を含有させても良い。   Moreover, you may contain free-cutting elements, such as S, Pb, Se, and Ca, as needed in order to improve machinability.

表層C含有量:0.9mass%未満
浸炭により表層のC含有量は高くなる。その結果、表面硬度が上がり、曲げ疲労および面圧疲労強度が向上する。しかし、表層C含有量が0.9mass%以上になると、表層付近の粒界にセメンタイトを析出させ、疲労の起点となるために、曲げ疲労強度および面圧疲労強度が低下する。従って、表層C含有量は、0.9mass%未満に限定した。
Surface layer C content: less than 0.9 mass% The C content of the surface layer is increased by carburization. As a result, the surface hardness is increased, and bending fatigue and surface fatigue strength are improved. However, if the surface layer C content is 0.9 mass% or more, cementite is precipitated at the grain boundary near the surface layer and becomes a starting point of fatigue, so that the bending fatigue strength and the surface pressure fatigue strength are lowered. Therefore, the surface layer C content is limited to less than 0.9 mass%.

歯面表層の残留オーステナイト量≦40体積%以下
残留オーステナイトは、それ自体では軟質だが、それが歯面の表層に存在している場合、歯車の駆動中の応力によりマルテンサイトに変態し、硬化するので、曲げおよび面圧疲労に対して亀裂進展を抑制する効果を持つ。しかし、残留オーステナイト量が40体積%を超えると、逆に表層の硬さの低下が大きくなり過ぎて、曲げ疲労特性および面圧疲労特性は悪くなる。従って、残留オーステナイト量は、40体積%以下に限定した。
Residual austenite content of the tooth surface surface layer ≦ 40 volume% or less Residual austenite is soft by itself, but when it exists on the surface layer of the tooth surface, it transforms into martensite due to stress during driving of the gear and hardens. Therefore, it has the effect of suppressing crack propagation against bending and surface pressure fatigue. However, when the amount of retained austenite exceeds 40% by volume, the hardness of the surface layer is excessively decreased, and the bending fatigue characteristics and the surface pressure fatigue characteristics are deteriorated. Therefore, the amount of retained austenite is limited to 40% by volume or less.

組織:マルテンサイト単相組織
Si、V等を添加した場合、変態点の上昇により、焼入れ加熱温度でもオーステナイト単相にならず、フェライトが発生する。フェライトは、曲げ疲労破壊での亀裂の進行を早め、疲労強度が低下しやすい。従って、組織は、マルテンサイト単相に限定した。なお、フェライト発生回避については、各種元素の添加量を調整することにより可能である。
Structure: Martensite single phase structure When Si, V, or the like is added, an austenite single phase is not formed even at the quenching heating temperature due to an increase in the transformation point, and ferrite is generated. Ferrite accelerates the progress of cracks due to bending fatigue failure, and fatigue strength tends to decrease. Therefore, the structure was limited to the martensite single phase. It should be noted that the generation of ferrite can be avoided by adjusting the addition amount of various elements.

ショットピーニングのアークハイト:0.3mmA以上
ショットピーニングは、表層付近に圧縮残留応力を付与して曲げ疲労強度、面圧疲労強度をさらに上昇させる。この処理を行う場合、アークハイトが0.3mmA以下では圧縮残留応力の付与が少なすぎるために曲げ疲労強度、面圧疲労強度をさらに上げることができない。従って、ショットピーニングは、アークハイト0.3mmA以上で施すべきである。
Shot peening arc height: 0.3 mmA or more Shot peening imparts compressive residual stress in the vicinity of the surface layer to further increase bending fatigue strength and surface fatigue strength. When this treatment is performed, if the arc height is 0.3 mmA or less, the application of compressive residual stress is too small, so that the bending fatigue strength and the contact pressure fatigue strength cannot be further increased. Therefore, shot peening should be performed at an arc height of 0.3 mmA or more.

この発明を実施例により比較例と対比し、さらに詳細に説明する。   The present invention will be described in more detail in comparison with comparative examples by way of examples.

表1に示す化学成分組成を有する鋼を溶解した。表1に示すNo.1〜10は、この発明の歯車の製造に用いた本発明鋼であり、No.11〜19は、この発明の範囲外である比較鋼である。そして、No.20、21は、従来鋼であり、それぞれJIS SCM420H、SCM822Hであり、同じく、この発明の範囲外である。   Steel having the chemical composition shown in Table 1 was melted. No. shown in Table 1. Nos. 1 to 10 are steels of the present invention used for manufacturing the gears of the present invention. 11 to 19 are comparative steels that are outside the scope of the present invention. And No. 20 and 21 are conventional steels, which are JIS SCM420H and SCM822H, respectively, which are also outside the scope of the present invention.

溶製した本発明鋼、比較鋼および従来鋼からなる各インゴットを熱間圧延して丸棒鋼を調製し、得られた丸棒鋼に対し焼準処理を実施して、本発明供試体No.1〜10、比較供試体No.11〜19および従来供試体No.20、21を得た。   Each ingot made of the invented steel of the present invention, comparative steel and conventional steel is hot-rolled to prepare a round bar steel, and the obtained round bar steel is subjected to a normalizing treatment. 1-10, comparative specimen No. 11-19 and the conventional specimen No. 20, 21 were obtained.

焼準処理後の各供試体から、20mmφの各種特性試験用丸棒鋼、小野式回転曲げ疲労試験片およびローラーピッチング試験片を採取した。各種特性試験用丸棒鋼および各試験片に対して、図1に示すパターンに従って浸炭焼入れ・焼戻し処理を施した後、表面にアークハイト0.3mmAのショットピーニングを施し、各種特性試験、回転曲げ疲労試験およびローラーピッチング試験を実施した。その結果を、粒界酸化層、浸炭部γ粒度および表層C含有量の結果と併せて表2に示す。   From each specimen after the normalizing treatment, a round bar steel for various characteristic tests of 20 mmφ, an Ono type rotating bending fatigue test piece and a roller pitching test piece were collected. Carved quenching and tempering treatments are performed according to the pattern shown in Fig. 1 on the round bar steel and various test pieces for various characteristic tests, and then the surface is subjected to shot height peening with an arc height of 0.3 mmA to perform various characteristic tests and rotational bending fatigue. Tests and roller pitching tests were performed. The results are shown in Table 2 together with the results of the grain boundary oxide layer, the carburized portion γ grain size, and the surface layer C content.

以下にそれぞれの調査内容について説明する。   The contents of each survey are described below.

(1)有効硬化層深さ、内部の組織、内部靭性、内部硬度
20mmφの丸棒鋼を切断し、断面の硬度分布を測定し、ビッカース硬さで550HVの得られる深さを調査し、有効硬化層深さとした。また、各丸棒鋼の浸炭焼入れ・焼戻しにおける内部(非浸炭部)の組織を検鏡試験で観察し、フェライト析出の有無を確認した。さらに、内部よりJIS3号衝撃試験片を作製し、20℃における衝撃値を調査した。内部の硬度については、ビッカース硬度計を用いて測定した。
(1) Effective hardened layer depth, internal structure, internal toughness, internal hardness Cut 20mmφ round bar steel, measure the hardness distribution of the cross section, investigate the depth to obtain 550HV in Vickers hardness, effective hardening It was the depth. Moreover, the inside (non-carburized part) structure in the carburizing and quenching and tempering of each round bar steel was observed with a spectroscopic test to confirm the presence or absence of ferrite precipitation. Furthermore, a JIS No. 3 impact test piece was produced from the inside, and the impact value at 20 ° C. was investigated. The internal hardness was measured using a Vickers hardness tester.

(2)表層残留オーステナイト
別の丸棒鋼を用いて、表層下20μm位置での残留γ量を測定した。なお、測定面の研磨には電解研磨を使用し、測定にはX線回折装置を使用した。
(2) Surface layer retained austenite Using another round steel bar, the amount of residual γ at a position 20 μm below the surface layer was measured. Note that electrolytic polishing was used for polishing the measurement surface, and an X-ray diffractometer was used for measurement.

(3)回転曲げ疲労特性
直径32mmの丸棒鋼供試体から、平行部直径10mmの試験片を採取し、平行部にこれと直角方向の深さ3mmの切り欠き(切り欠き係数:1.4)を全周に亘って付けた回転曲げ疲労試験片を調製した。この試験片全数に対し、浸炭焼入れ・焼戻しを行った。その後、各供試体の試験片について半数にショットピーニング処理(アークハイト:0.3mmA)を行った。そして、各試験片のショットピーニング実施品、未実施品について、小野式回転曲げ疲労試験機を使用して107回を疲労限度として回転曲げ疲労試験を行い、回転曲げ疲労強度を測定した。
(3) Rotating bending fatigue characteristics A test piece with a parallel part diameter of 10 mm was sampled from a round steel bar with a diameter of 32 mm, and a notch with a depth of 3 mm perpendicular to the parallel part was obtained (notch coefficient: 1.4). Was prepared for a rotating bending fatigue test piece. Carburization quenching and tempering were performed on all the test pieces. Thereafter, half of the test pieces of each specimen were subjected to shot peening treatment (arc height: 0.3 mmA). And about the test peened execution goods of each test piece, and the non-execution goods, the rotation bending fatigue strength was measured by using the Ono-type rotation bending fatigue tester with 10 7 times as a fatigue limit, and the rotation bending fatigue strength was measured.

(4)ローラーピッチング試験(面圧疲労特性)
直径32mmの丸棒鋼供試体から図2に示す試験面の直径が26mm、幅が28mmの円筒部を有する試験片を作製した。さらに、直径70mmの丸棒鋼を用いて、鍛造により直径135mmとした後、焼準処理を行い、直径130mm、幅18mmの大ローラーを作製した。次いで、ローラー状試験片および大ローラーの浸炭焼入れ・焼戻し処理を行った。その後、それぞれの半数について回転曲げ疲労試験片と同じ条件でショットピーニング処理(アークハイト:0.3mmA)を実施した。そして、各試験片のショットピーニング実施品、未実施品について、ローラーピッチング試験機を使用して107回を疲労限度として試験を行った。そのときの試験条件は、回転数:1500rpm、すべり率40%、潤滑剤:ミッションオイル、油温:120℃であった。
(4) Roller pitching test (surface fatigue characteristics)
A test piece having a cylindrical portion having a diameter of 26 mm and a width of 28 mm as shown in FIG. 2 was prepared from a round steel bar having a diameter of 32 mm. Furthermore, after using a round steel bar with a diameter of 70 mm to obtain a diameter of 135 mm by forging, a normalizing process was performed to produce a large roller with a diameter of 130 mm and a width of 18 mm. Next, carburizing and tempering treatment of the roller-shaped test piece and the large roller was performed. Thereafter, a shot peening treatment (arc height: 0.3 mmA) was carried out under the same conditions as for the rotating bending fatigue test piece for each half. Then, the shot peened product and the unexecuted product of each test piece were tested using a roller pitching tester with 10 7 times as the fatigue limit. The test conditions at that time were as follows: rotation speed: 1500 rpm, slip rate of 40%, lubricant: mission oil, oil temperature: 120 ° C.

Figure 2005325398
Figure 2005325398

Figure 2005325398
Figure 2005325398

表1および表2から以下の事項が明らかとなった。   From Table 1 and Table 2, the following matters became clear.

本発明供試体No.1〜10は、従来供試体No.20、21に比べて、内部靭性、浸炭部γ粒度、残留γ量は同等であるものの、粒界酸化層が小さくなっており、そのため、回転曲げ疲労強度が向上した。また、Siにより焼戻し軟化抵抗が高いために面圧疲労強度が著しく上昇した。   Specimen No. of the present invention. 1 to 10 are conventional specimen Nos. Compared to 20 and 21, the internal toughness, carburized part γ grain size, and residual γ amount were the same, but the grain boundary oxide layer was smaller, and therefore the rotational bending fatigue strength was improved. Moreover, since the temper softening resistance is high due to Si, the surface pressure fatigue strength is remarkably increased.

これに対して、比較供試体No.11は、C含有量が本発明範囲より低く、Si含有量が本発明の範囲を超えて高いために、内部にフェライトが析出した。そのため内部の硬さが低すぎて、回転曲げ疲労強度が低下した。   In contrast, comparative specimen No. In No. 11, since the C content was lower than the range of the present invention and the Si content exceeded the range of the present invention, ferrite precipitated inside. Therefore, the internal hardness was too low, and the rotational bending fatigue strength was reduced.

比較供試体No.12は、C含有量が本発明の範囲を超えており、焼入れ性が高すぎる。そのため内部の靭性が低下した。また、残留γ量が多くなりすぎて浸炭層の硬度が低下し、回転曲げ疲労強度、面圧疲労強度共に低下した。   Comparative specimen No. No. 12, the C content exceeds the range of the present invention, and the hardenability is too high. Therefore, the internal toughness decreased. Further, the amount of residual γ increased too much, and the hardness of the carburized layer decreased, and both the rotary bending fatigue strength and the surface pressure fatigue strength decreased.

比較供試体No.13は、Cr含有量が本発明の範囲を超えて高い。そのため内部衝撃値が低くなりすぎたために、回転曲げ疲労強度が低下した。また、Al含有量が低すぎて、浸炭部γ粒が大きくなっているために面圧疲労強度が低下した。   Comparative specimen No. No. 13 has a high Cr content exceeding the range of the present invention. Therefore, since the internal impact value became too low, the rotational bending fatigue strength decreased. Moreover, since the Al content was too low and the carburized portion γ grains were large, the surface pressure fatigue strength was reduced.

比較供試体No.14は、Mn含有量が本発明の範囲より多く、そのために焼入れ性が高すぎた。このために、有効硬化層深さが深くなりすぎて、浸炭層に残留γが多過ぎた。この結果、回転曲げ疲労強度、面圧疲労強度共に低下した。   Comparative specimen No. No. 14 had a Mn content greater than the range of the present invention, and therefore the hardenability was too high. For this reason, the effective hardened layer depth became too deep, and there was too much residual γ in the carburized layer. As a result, both the rotary bending fatigue strength and the contact pressure fatigue strength decreased.

比較供試体No.15は、Mn含有量が本発明範囲より低いために、焼入れ性が低すぎて有効硬化層深さが浅すぎ、この結果、マトリックスの強度が不足して、回転曲げ疲労強度が低下した。   Comparative specimen No. In No. 15, since the Mn content was lower than the range of the present invention, the hardenability was too low and the effective hardened layer depth was too shallow. As a result, the strength of the matrix was insufficient and the rotational bending fatigue strength was lowered.

比較供試体No.16は、Cr含有量が本発明の範囲より少ないために、焼戻し軟化抵抗が低く、また、焼入れ性が低いために有効硬化層が浅かった。そのため、回転曲げ疲労強度、面圧疲労強度共に低下した。   Comparative specimen No. In No. 16, the Cr content was less than the range of the present invention, so the temper softening resistance was low, and the hardenability was low, so the effective hardened layer was shallow. For this reason, both the rotary bending fatigue strength and the contact pressure fatigue strength decreased.

比較供試体No.17は、Si含有量が本発明の範囲より少ないために、焼戻し軟化抵抗が低く、そのため面圧疲労強度が低下した。   Comparative specimen No. In No. 17, since the Si content was less than the range of the present invention, the temper softening resistance was low, and therefore the surface pressure fatigue strength was reduced.

比較供試体No.18は、Mo含有量が本発明範囲よりも低く、そのために焼入れ性が低すぎて内部硬さが低く、有効硬化層深さが浅いために回転曲げ疲労強度が低下した。   Comparative specimen No. In No. 18, the Mo content was lower than the range of the present invention, so that the hardenability was too low, the internal hardness was low, and the effective hardened layer depth was shallow, so the rotational bending fatigue strength was lowered.

比較供試体No.19は、Al含有量が本発明範囲よりも高い。そのために結晶粒が大きくなりすぎて、回転曲げ疲労強度、面圧疲労強度共に低下した。   Comparative specimen No. No. 19 has an Al content higher than the range of the present invention. Therefore, the crystal grains became too large, and both the rotational bending fatigue strength and the surface pressure fatigue strength were reduced.

比較供試体No.20、21は、従来鋼のJIS SCM420H、SCM822Hであるが、Si含有量が本発明の範囲より低く、その結果、粒界酸化層が深くなり、回転曲げ疲労強度、面圧疲労強度共に低下した。   Comparative specimen No. 20 and 21 are JIS SCM420H and SCM822H of conventional steels, but the Si content is lower than the range of the present invention. As a result, the grain boundary oxide layer becomes deep, and both the rotational bending fatigue strength and the surface pressure fatigue strength are reduced. .

浸炭処理のパターンを示す図である。It is a figure which shows the pattern of a carburizing process. ピッチング試験片の一例を示す図である。It is a figure which shows an example of a pitching test piece. 粒界酸化層深さと曲げ疲労強度との関係を示すグラフである。It is a graph which shows the relationship between a grain boundary oxide layer depth and bending fatigue strength. 300℃焼戻し軟化量と面圧疲労強度との関係を示すグラフである。It is a graph which shows the relationship between 300 degreeC temper softening amount and surface pressure fatigue strength. Siの添加量と300℃焼戻し軟化量および粒界酸化層深さとの関係を示すグラフである。It is a graph which shows the relationship between the addition amount of Si, 300 degreeC temper softening amount, and a grain boundary oxide layer depth.

Claims (6)

C:0.10〜0.25%、
Si:0.8〜1.2%、
Mn:0.6〜2.0%、
S:0.006%以上、
Cr:1.0〜2.0%、
Mo:0.2〜0.8%、
Al:0.005〜0.200%、
N:0.0050〜0.0200%(以上、mass%)
を含有し、残部がFeおよび不可避的不純物からなる鋼材を、鍛造あるいは機械加工により歯車形状に形成したものからなり、歯車形状に形成後、浸炭処理あるいは浸炭窒化処理を施した時の、表層のC含有量が0.9mass%未満、歯車の表層から100μm深さ位置までの残留オーステナイト量が40体積%以下、且つ、組織がマルテンサイト単相であることを特徴とする高強度歯車。
C: 0.10 to 0.25%,
Si: 0.8 to 1.2%,
Mn: 0.6 to 2.0%,
S: 0.006% or more,
Cr: 1.0-2.0%,
Mo: 0.2 to 0.8%,
Al: 0.005 to 0.200%,
N: 0.0050-0.0200% (above, mass%)
And the balance of Fe and inevitable impurities is formed into a gear shape by forging or machining, and after forming into a gear shape, carburizing treatment or carbonitriding treatment is performed. A high-strength gear having a C content of less than 0.9 mass%, a retained austenite amount of 40% by volume or less from the gear surface to a depth of 100 μm, and a martensite single phase.
前記鋼材は、
Nb:0.010〜0.060%、
V:0.05〜0.20%(以上、mass%)
の少なくとも1種をさらに含有していることを特徴とする、請求項1記載の高強度歯車。
The steel material is
Nb: 0.010 to 0.060%,
V: 0.05-0.20% (above, mass%)
The high-strength gear according to claim 1, further comprising at least one of the following.
前記鋼材は、
Ti:0.005〜0.050%、
B:0.0005〜0.0100%(以上、mass%)
をさらに含有していることを特徴とする、請求項1または2記載の高強度歯車。
The steel material is
Ti: 0.005 to 0.050%,
B: 0.0005 to 0.0100% (above, mass%)
The high-strength gear according to claim 1, further comprising:
C:0.10〜0.25%、
Si:0.8〜1.2%、
Mn:0.6〜2.0%、
S:0.006%以上、
Cr:1.0〜2.0%、
Mo:0.2〜0.8%、
Al:0.005〜0.200%、
N:0.0050〜0.0200%(以上、mass%)
を含有し、残部がFeおよび不可避的不純物からなる鋼材を、鍛造あるいは機械加工により歯車形状に形成して歯車材を調製し、次いで、前記歯車材に浸炭処理あるいは浸炭窒化処理を施し、さらに、アークハイト0.3mmA以上のショットピーニングを施して、表層のC含有量を0.9mass%未満、歯車の表層から100μm深さ位置までの残留オーステナイト量を40体積%以下、且つ、組織をマルテンサイト単相とすることを特徴とする、高強度歯車の製造方法。
C: 0.10 to 0.25%,
Si: 0.8 to 1.2%,
Mn: 0.6 to 2.0%,
S: 0.006% or more,
Cr: 1.0-2.0%,
Mo: 0.2 to 0.8%,
Al: 0.005 to 0.200%,
N: 0.0050-0.0200% (above, mass%)
A steel material containing the balance Fe and inevitable impurities is formed into a gear shape by forging or machining, and then the gear material is subjected to carburizing treatment or carbonitriding treatment, Shot peening with an arc height of 0.3 mmA or more is performed, the C content of the surface layer is less than 0.9 mass%, the amount of retained austenite from the surface layer of the gear to the 100 μm depth position is 40% by volume or less, and the structure is martensite. A method for producing a high-strength gear, characterized by being a single phase.
前記鋼材として、
Nb:0.010〜0.060%、
V:0.05〜0.20%(以上、mass%)
の少なくとも1種をさらに含有したものを使用することを特徴とする、請求項4記載の、高強度歯車の製造方法。
As the steel material,
Nb: 0.010 to 0.060%,
V: 0.05-0.20% (above, mass%)
The method for producing a high-strength gear according to claim 4, wherein a material further containing at least one of the above is used.
前記鋼材として、
Ti:0.005〜0.050%、
B:0.0005〜0.0100%(以上、mass%)
をさらに含有するものを使用することを特徴とする、請求項4または5記載の、高強度歯車の製造方法。
As the steel material,
Ti: 0.005 to 0.050%,
B: 0.0005 to 0.0100% (above, mass%)
The method for producing a high-strength gear according to claim 4 or 5, characterized in that a material further containing
JP2004143591A 2004-05-13 2004-05-13 High strength gear and manufacturing method thereof Expired - Lifetime JP4798963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143591A JP4798963B2 (en) 2004-05-13 2004-05-13 High strength gear and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143591A JP4798963B2 (en) 2004-05-13 2004-05-13 High strength gear and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005325398A true JP2005325398A (en) 2005-11-24
JP4798963B2 JP4798963B2 (en) 2011-10-19

Family

ID=35471964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143591A Expired - Lifetime JP4798963B2 (en) 2004-05-13 2004-05-13 High strength gear and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4798963B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179848A (en) * 2007-01-24 2008-08-07 Jfe Bars & Shapes Corp Steel for gear having superior impact fatigue resistance and contact fatigue strength, and gear using the same
JP2008261037A (en) * 2007-04-13 2008-10-30 Sumitomo Metal Ind Ltd Carburized component or carbonitrided component made of steel and subjected to shot peening
WO2009034970A1 (en) * 2007-09-12 2009-03-19 Sanyo Special Steel Co., Ltd. Case-hardening steel being excellent in contact pressure fatigue strength, impact strength and bending fatigue strength
JP2009068065A (en) * 2007-09-12 2009-04-02 Sanyo Special Steel Co Ltd Case hardening steel excellent in bearing fatigue-strength, impact strength and bending fatigue-strength
JP2009263767A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp Method for manufacturing high-strength case hardened steel part
CN104308483A (en) * 2014-09-05 2015-01-28 南京金鑫传动设备有限公司 Method for manufacturing small module gear
CN110157864A (en) * 2019-05-21 2019-08-23 武汉钢铁有限公司 A kind of 1300MPa grades of low hydrogen-induced delayed cracking sensibility hot forming steel and production method
JP2021095627A (en) * 2019-12-13 2021-06-24 愛知製鋼株式会社 Differential hypoid gear, pinion gear, and paired hypoid gears formed by combination thereof
CN114045432A (en) * 2021-10-30 2022-02-15 天津荣程联合钢铁集团有限公司 22CrMoH hardenability-maintaining gear steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362859A (en) * 1986-09-02 1988-03-19 Honda Motor Co Ltd Machine structural member for high surface pressure
JPH0421757A (en) * 1990-05-15 1992-01-24 Nissan Motor Co Ltd High surface pressure gear
JPH07188895A (en) * 1993-12-28 1995-07-25 Kobe Steel Ltd Manufacture of parts for machine structure use
JPH083629A (en) * 1994-06-15 1996-01-09 Sumitomo Metal Ind Ltd Carburizing and quenching method
JPH09111404A (en) * 1995-10-11 1997-04-28 Toa Steel Co Ltd Low strain type carburized and quenched steel stock for gear
JPH10259470A (en) * 1997-03-19 1998-09-29 Aichi Steel Works Ltd Gear excellent in pitting resistance and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362859A (en) * 1986-09-02 1988-03-19 Honda Motor Co Ltd Machine structural member for high surface pressure
JPH0421757A (en) * 1990-05-15 1992-01-24 Nissan Motor Co Ltd High surface pressure gear
JPH07188895A (en) * 1993-12-28 1995-07-25 Kobe Steel Ltd Manufacture of parts for machine structure use
JPH083629A (en) * 1994-06-15 1996-01-09 Sumitomo Metal Ind Ltd Carburizing and quenching method
JPH09111404A (en) * 1995-10-11 1997-04-28 Toa Steel Co Ltd Low strain type carburized and quenched steel stock for gear
JPH10259470A (en) * 1997-03-19 1998-09-29 Aichi Steel Works Ltd Gear excellent in pitting resistance and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179848A (en) * 2007-01-24 2008-08-07 Jfe Bars & Shapes Corp Steel for gear having superior impact fatigue resistance and contact fatigue strength, and gear using the same
JP2008261037A (en) * 2007-04-13 2008-10-30 Sumitomo Metal Ind Ltd Carburized component or carbonitrided component made of steel and subjected to shot peening
WO2009034970A1 (en) * 2007-09-12 2009-03-19 Sanyo Special Steel Co., Ltd. Case-hardening steel being excellent in contact pressure fatigue strength, impact strength and bending fatigue strength
JP2009068064A (en) * 2007-09-12 2009-04-02 Sanyo Special Steel Co Ltd Case hardening steel excellent in bearing fatigue-strength, impact-strength and bending fatigue-strength
JP2009068065A (en) * 2007-09-12 2009-04-02 Sanyo Special Steel Co Ltd Case hardening steel excellent in bearing fatigue-strength, impact strength and bending fatigue-strength
JP2009263767A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp Method for manufacturing high-strength case hardened steel part
CN104308483A (en) * 2014-09-05 2015-01-28 南京金鑫传动设备有限公司 Method for manufacturing small module gear
CN110157864A (en) * 2019-05-21 2019-08-23 武汉钢铁有限公司 A kind of 1300MPa grades of low hydrogen-induced delayed cracking sensibility hot forming steel and production method
JP2021095627A (en) * 2019-12-13 2021-06-24 愛知製鋼株式会社 Differential hypoid gear, pinion gear, and paired hypoid gears formed by combination thereof
JP7123098B2 (en) 2019-12-13 2022-08-22 愛知製鋼株式会社 Differential hypoid gears, pinion gears, and hypoid gear pairs that combine these
CN114045432A (en) * 2021-10-30 2022-02-15 天津荣程联合钢铁集团有限公司 22CrMoH hardenability-maintaining gear steel and preparation method thereof

Also Published As

Publication number Publication date
JP4798963B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP5129564B2 (en) Carburized induction hardening parts
JP5635316B2 (en) Gear having excellent fatigue strength and method for manufacturing the same
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JP5872863B2 (en) Gear having excellent pitting resistance and method for producing the same
WO2011114775A1 (en) Steel for nitrocarburization, nitrocarburized components, and production method for same
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
WO2019244503A1 (en) Mechanical component
JP2009127095A (en) Case-hardening steel for power transmission component
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP5206271B2 (en) Carbonitriding parts made of steel
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP4798963B2 (en) High strength gear and manufacturing method thereof
JP5599211B2 (en) Manufacturing method of bearing parts and bearing parts
JP4847681B2 (en) Ti-containing case-hardened steel
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JPH0790363A (en) Production of machine structural part excellent in mechanical strength
JP4504550B2 (en) Steel for gears and gears with excellent root bending fatigue and surface fatigue properties
JP2002212672A (en) Steel member
JPH09111405A (en) Low strain type carburized and quenched steel stock for gear
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250