JPH07172917A - Production of carbonaceous material having optically anisotropic fine texture - Google Patents

Production of carbonaceous material having optically anisotropic fine texture

Info

Publication number
JPH07172917A
JPH07172917A JP5316767A JP31676793A JPH07172917A JP H07172917 A JPH07172917 A JP H07172917A JP 5316767 A JP5316767 A JP 5316767A JP 31676793 A JP31676793 A JP 31676793A JP H07172917 A JPH07172917 A JP H07172917A
Authority
JP
Japan
Prior art keywords
component
pyridine
mesophase pitch
self
immiscible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5316767A
Other languages
Japanese (ja)
Other versions
JP3599062B2 (en
Inventor
Isao Mochida
勲 持田
Takatsugu Fujiura
隆次 藤浦
Takashi Kojima
孝 小島
Hitoshi Sakamoto
斉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP31676793A priority Critical patent/JP3599062B2/en
Priority to US08/350,679 priority patent/US5484520A/en
Priority to EP94309144A priority patent/EP0657400B1/en
Priority to DE69417522T priority patent/DE69417522T2/en
Publication of JPH07172917A publication Critical patent/JPH07172917A/en
Priority to US08/529,439 priority patent/US5609800A/en
Application granted granted Critical
Publication of JP3599062B2 publication Critical patent/JP3599062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To provide a production process capable of easily and steadily obtaining a carbonaceous material having high performance at low cost by baking a self-adhesive carbonaceous powdery material obtained by a heat treatment or a oxidative treatment of a specific mesophase pitch after it is molded. CONSTITUTION:A mesophase pitch (A) is produced by polymerizing a fused polycyclic hydrocarbon, e.g. naphthalene or pyrene or a material containing it in the presence of hydrogen fluoride-boron trifluoride that is a superacid catalyst. The A component is heated at 470-490 deg.C under a non-oxidative atmosphere to obtain a self-adhesive carbonaceous material (B) containing 0.5-1.5wt.% of a component miscible in quinoline and immiscible in pyridine and >=97wt.% of a material immiscible in quinoline. Or, the A component is subjected to an oxidative treatment under an oxidative atmosphere at 170-350 deg.C to obtain another B component containing 5.0-20.0wt.% of a component miscible in pyridine and immiscible in benzene and >=78wt.% of a component immiscible in pyridine. Subsequently, a B component is molded and baked at the temperature from 400 deg.C to 600 deg.C with a temperature increasing rate of <=20 deg.C/h to produce a carbonaceous material having an optically anisotropic texture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細な光学的異方性組織
を有する炭素材料の製造方法に関する。詳しくはサブミ
クロンレベルの光学的異方性単位がランダムに展開して
いる組織を有する高密度炭素材料や炭素複合材料の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon material having a fine optically anisotropic structure. Specifically, it relates to a method for producing a high-density carbon material or a carbon composite material having a structure in which submicron-level optically anisotropic units are randomly developed.

【0002】[0002]

【従来の技術】近年、特殊炭素材料ならびに炭素複合材
料の性能向上に対する要求はますます強いものになって
おり、炭素の構造と組織を制御することは製品の物理的
化学的特性を決定し一層の高性能化を実現する上で極め
て重要である。特殊炭素材料分野においては、製品の高
密度化・高強度化に加え、物理性状の等方性化を図るた
めに、原料粉体の形状やサイズをコントロールすること
によって製品炭素材料組織を微細モザイク化しようとす
る多くの研究と開発がなされている。
2. Description of the Related Art In recent years, the demands for improving the performance of special carbon materials and carbon composite materials have become stronger and stronger, and controlling the structure and structure of carbon determines the physical and chemical properties of the product and makes it even more important. It is extremely important to achieve high performance. In the field of special carbon materials, in order to increase the density and strength of the product and to make the physical properties isotropic, by controlling the shape and size of the raw material powder, a fine mosaic of the product carbon material structure is obtained. There is a lot of research and development going on.

【0003】このような物理性状の等方性化を図る方法
としては、たとえばメソカーボンマイクロビーズを製造
原料とする方法、すなわちコールタールや石油系重質油
等を熱処理する過程で生成する光学的異方性小球体を溶
剤によってピッチマトリックスから分離、乾燥し、これ
を加圧成型後、焼成する方法が知られている。しかしな
がらこうした方法では、得られる炭素材料の組織サイズ
はメソ球晶の粒径(10〜20μm)以下とはならず、これ
以上の微細化ができないことが特開平1-239058号に指摘
されている。また特公平1-58124 号に記載されているバ
ルクメソフェーズの粉砕物を利用する方法においても、
バルクメソフェーズの異方性サイズは粉砕された粒度以
下に細かく展開することはないことが特開平1-239058号
に指摘されている。
As a method for making such physical properties isotropic, for example, a method of using mesocarbon microbeads as a raw material for production, that is, an optical method produced in the process of heat treatment of coal tar, heavy petroleum oil, etc. A method is known in which anisotropic spheres are separated from a pitch matrix with a solvent, dried, pressure-molded, and fired. However, it is pointed out in Japanese Patent Laid-Open No. 1-239058 that, by such a method, the texture size of the obtained carbon material does not fall below the grain size (10 to 20 μm) of mesospherical crystals and further refinement cannot be achieved. . In addition, in the method using the pulverized material of bulk mesophase described in Japanese Patent Publication No. 1-58124,
It is pointed out in JP-A 1-239058 that the anisotropic size of the bulk mesophase does not develop finely below the crushed particle size.

【0004】一方、原料粉体をあらかじめ微細モザイク
組織に改質する試みも多数報告されている。たとえば特
許公報昭58-58284号には、1μm以下のきわめて微細な
単位からなるモザイク構造の半成コークスを成型原料と
して利用する方法が開示されている。しかしながらこの
方法は、原料石炭を水素ガス存在下にて溶剤抽出し分離
後、この抽出物をさらに熱処理するなどの複雑な工程を
要する。
On the other hand, many attempts have been reported to reform the raw material powder in advance into a fine mosaic structure. For example, Japanese Patent Publication No. 58-58284 discloses a method of using a semi-structured coke having a mosaic structure composed of extremely fine units of 1 μm or less as a forming raw material. However, this method requires complicated steps such as solvent extraction of raw coal in the presence of hydrogen gas, separation, and further heat treatment of this extract.

【0005】また特公平3-64448 号にはピッチにカーボ
ンブッラクを添加する方法が記載されており、特開平1-
239058号にはピッチにレジンを配合したのち粉砕し、バ
インダーを用いることなく成型、焼成することによって
均質なモザイク構造を有する等方性黒鉛材を製造する方
法が記載されている。しかしながらこのような方法も、
混合、混練、再粉砕といった煩雑な工程を経なければな
らない。また得られる炭素材料は嵩密度も低く、必ずし
も満足すべき性能は得られていない。
Japanese Patent Publication No. 3-64448 describes a method of adding carbon black to the pitch.
No. 239058 describes a method of producing an isotropic graphite material having a homogeneous mosaic structure by blending a resin in a pitch, pulverizing the mixture, molding the mixture without using a binder, and firing the mixture. However, this method also
A complicated process such as mixing, kneading, and re-grinding must be performed. Further, the obtained carbon material also has a low bulk density, and thus satisfactory performance is not always obtained.

【0006】炭素複合材料分野においても、優れた耐熱
衝撃性と高い機械的強度の発現に関して微細モザイク構
造を有するマトリックス炭素の優位性が International
Symposium on Carbon; Toyohashi, Extended Abstrac
t, p.196(1982) などに報告されており、ピッチ/フェ
ノール樹脂系については『CARBON』vol.28,p.559
(1990)などに、ピッチ/カーボンブッラク系については
『CARBON』vol.28,p.143(1990)など見られるよう
に、相互作用や炭化性について広く研究が行なわれてい
る。
In the field of carbon composite materials as well, the superiority of matrix carbon having a fine mosaic structure in terms of excellent thermal shock resistance and high mechanical strength is international.
Symposium on Carbon; Toyohashi, Extended Abstrac
t, p.196 (1982), etc., for pitch / phenolic resin systems, see “CARBON” vol.28, p.559.
(1990) and the like, regarding the pitch / carbon black system, "Carbon" vol.28, p.143 (1990), etc., interaction and carbonization are widely studied.

【0007】[0007]

【発明が解決しようとする課題】炭素組織の制御は製品
の高性能化と均質化にとって極めて重要なファクターと
なる。しかしながら従来の方法では、上記の如く様々な
難点がある。本発明の目的は、特定のメソフェーズピッ
チから、微細な光学的異方性組織を有する高性能の炭素
材料を、きわめて簡便な方法で安価に且つ安定して製造
する方法を提供することにある。
Controlling the carbon structure is an extremely important factor for achieving high performance and homogenization of products. However, the conventional method has various problems as described above. An object of the present invention is to provide a method for producing a high-performance carbon material having a fine optically anisotropic structure from a specific mesophase pitch at a low cost and stably by an extremely simple method.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の目的
を実現すべく鋭意検討した結果、超強酸フッ化水素・三
フッ化ホウ素の存在下で縮合多環炭化水素またはこれを
含有する物質を重合させて得られるメソフェーズピッチ
を熱処理あるいは酸化処理することによって調製される
自己融着性炭素質粉体を、成型した後、焼成、必要に応
じて黒鉛化することによって炭素材料を製造するに際
し、成型体の炭素化初期過程における昇温速度のコント
ロールによって、得られる炭素材料の光学組織を均質な
微細モザイク構造に改質できることを見い出し、本発明
に至った。
Means for Solving the Problems As a result of intensive investigations aimed at achieving the above object, the present inventors have found that a condensed polycyclic hydrocarbon or a condensed polycyclic hydrocarbon is contained in the presence of superhydrofluoric acid fluoride / boron trifluoride. A carbon material is produced by molding a self-fusing carbonaceous powder prepared by subjecting a mesophase pitch obtained by polymerizing a substance to a heat treatment or an oxidation treatment, followed by firing and graphitization as required. On this occasion, it was found that the optical texture of the obtained carbon material can be modified into a uniform fine mosaic structure by controlling the temperature rising rate in the initial stage of carbonization of the molded body, and the present invention was completed.

【0009】すなわち本発明は、フッ化水素・三フッ化
ホウ素の存在下で縮合多環炭化水素またはこれを含有す
る物質を重合させて得られるメソフェーズピッチを非酸
化性雰囲気下にて熱処理することによって調製される、
キノリンに可溶でピリジンに不溶な成分 0.5〜1.5 重量
% 、キノリンに不溶な成分97重量% 以上を含有する自己
融着性炭素質粉体、または該メソフェーズピッチを酸化
性雰囲気下にて酸化処理することによって調製される、
ピリジンに可溶でベンゼンに不溶な成分 5.0〜20.0重量
% 、ピリジンに不溶な成分78重量% 以上を含有する自己
融着性炭素質粉体を成型した後、 400℃から 600℃まで
の焼成速度を20℃/h以下で焼成することを特徴とする微
細な光学的異方性組織を有する炭素材料の製造方法であ
る。
That is, the present invention is to heat-treat a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride in a non-oxidizing atmosphere. Prepared by,
Quinoline soluble and pyridine insoluble 0.5-1.5 wt.
%, Self-fusing carbonaceous powder containing 97% by weight or more of a component insoluble in quinoline, or prepared by subjecting the mesophase pitch to oxidation treatment in an oxidizing atmosphere,
Insoluble in benzene, insoluble in pyridine 5.0 to 20.0 weight
%, The self-bonding carbonaceous powder containing 78% by weight or more of a component insoluble in pyridine is molded, and then the firing rate from 400 ° C. to 600 ° C. is fired at 20 ° C./h or less. It is a method for producing a carbon material having a fine optically anisotropic structure.

【0010】本発明において用いられる自己融着性炭素
質粉体の前駆体は、超強酸であるフッ化水素・三フッ化
ホウ素の存在下で、縮合多環炭化水素またはこれを含有
する物質を重合させて得られるメソフェーズピッチであ
る。このメソフェーズピッチは、特に特開昭63-146920
号、特開平1-139621号、特開平1-254796号などに示され
るように、ナフタレン、アントラセン、フェナントレ
ン、アセナフテン、アセナフチレン、ピレン等の縮合多
環炭化水素およびこれらを含有する物質を、超強酸触媒
であるフッ化水素・三フッ化ホウ素の存在下で重合させ
て得られる。本発明において用いられる自己融着性炭素
質粉体は、この合成メソフェーズピッチから二通りの方
法、すなわちメソフェ−ズピッチの熱処理あるいは酸化
処理することによって調製される。
The precursor of the self-fusing carbonaceous powder used in the present invention is a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride which is a super strong acid. It is a mesophase pitch obtained by polymerization. This mesophase pitch is especially disclosed in JP-A-63-146920.
No. 1, JP-A 1-139621, JP-A 1-254796, etc., naphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, condensed polycyclic hydrocarbons such as pyrene and substances containing these, superacid It is obtained by polymerizing in the presence of hydrogen fluoride / boron trifluoride as a catalyst. The self-fusing carbonaceous powder used in the present invention is prepared from this synthetic mesophase pitch by two methods, that is, by heat treatment or oxidation treatment of mesophase pitch.

【0011】まず熱処理の場合は、上記の合成メソフェ
ーズピッチを引き続き非酸化性雰囲気下において熱処理
したのち、これを粉砕することによって自己融着性炭素
質粉体が得られる。熱処理条件については特に限定され
ないが、キノリンに可溶でピリジンに不溶な成分を 0.5
〜1.5 重量% 、且つキノリンに不溶な成分を97重量%以
上となるような処理条件が選択される。熱処理温度は一
般には 470〜490 ℃である。このようにして処理された
熱改質ピッチは粉末状する。この粉末化方法、粉体形状
および粒度分布は特に限定されない。
In the case of heat treatment, the above synthetic mesophase pitch is subsequently heat-treated in a non-oxidizing atmosphere and then pulverized to obtain a self-bonding carbonaceous powder. The heat treatment conditions are not particularly limited, but components that are soluble in quinoline and insoluble in pyridine are 0.5
Treatment conditions are selected such that the content of the quinoline-insoluble component is about 1.5% by weight and 97% by weight or more. The heat treatment temperature is generally 470 to 490 ° C. The heat-modified pitch treated in this way is in powder form. The powdering method, powder shape and particle size distribution are not particularly limited.

【0012】酸化処理の場合は、上述の合成メソフェー
ズピッチを引き続き粉砕したのち、このピッチ粉体を酸
化性雰囲気下で酸化処理することによって自己融着性炭
素質粉体が得られる。粉末化方法ならびに粉体形状は特
に限定されない。酸化条件は合成メソフェーズピッチの
性状と酸化反応性を充分に考慮に入れ、酸化処理された
メソフェーズピッチ粉体のピリジンに可溶でベンゼンに
不溶な成分が 5.0〜20.0重量% 、且つピリジンに不溶な
成分が78重量% 以上となるように適切に選択することが
肝要である。一般には 170〜350 ℃の範囲で酸化処理さ
れる。
In the case of oxidation treatment, the above-mentioned synthetic mesophase pitch is continuously crushed, and then the pitch powder is subjected to oxidation treatment in an oxidizing atmosphere to obtain a self-fusing carbonaceous powder. The powdering method and the powder shape are not particularly limited. As for the oxidation conditions, the characteristics of the synthetic mesophase pitch and the oxidation reactivity are taken into consideration, and 5.0 to 20.0% by weight of the benzene-insoluble component that is soluble in pyridine and insoluble in benzene of the oxidized mesophase pitch powder, and insoluble in pyridine. It is important to properly select the components so as to be 78% by weight or more. Generally, it is oxidized at 170 to 350 ° C.

【0013】これら操作を経て得られた自己融着性炭素
質粉体、すなわち熱改質メソフェーズピッチ粉体または
酸化改質メソフェーズピッチ粉体は、加圧成型、好まし
くは等方加圧成型により成型される。この際バインダー
は特に不要である。成型体形状については、目的、用途
等に応じて自由に選択できる。成型は常温で行なわれる
場合と、自己融着性炭素質粉体が軟化あるいは溶融する
温度域で行なわれる場合があり、これは要求される形
状、性能およびコストに応じて決定される。
The self-bonding carbonaceous powder obtained through these operations, that is, the thermally modified mesophase pitch powder or the oxidation modified mesophase pitch powder, is molded by pressure molding, preferably isotropic pressure molding. To be done. At this time, a binder is not particularly necessary. The shape of the molded body can be freely selected according to the purpose, application and the like. Molding may be carried out at room temperature or in a temperature range where the self-bonding carbonaceous powder is softened or melted, which is determined according to the required shape, performance and cost.

【0014】成型体は引続き焼成することによって炭素
材料が製造される。焼成工程は非酸化性雰囲気下、成型
体を 600〜1700℃の温度に加熱して炭化することによっ
て行われる。さらに必要に応じて、この炭化物はより高
温にて黒鉛化される。従って本発明には成型体を 600〜
1700℃の温度に加熱して炭化することによって得られた
炭素材料と、更に高温にて黒鉛化することによって得ら
れる炭素材料が含まれる。
The carbon material is manufactured by subsequently firing the molded body. The firing step is performed by heating the molded body to a temperature of 600 to 1700 ° C and carbonizing it in a non-oxidizing atmosphere. Furthermore, if desired, this carbide is graphitized at higher temperatures. Therefore, in the present invention, a molded body is
A carbon material obtained by heating to a temperature of 1700 ° C. to carbonize and a carbon material obtained by graphitizing at a higher temperature are included.

【0015】焼成後に微細なモザイク組織を具備する炭
素材料を得るためには、上記自己融着性炭素質粉体から
なるグリーン成型体を焼成するに際し 400℃から 600℃
までの炭素化初期過程において20℃/h以下、好ましくは
5〜15℃/hの昇温速度を適用することが極めて重要であ
る。このように焼成することによって、焼成前の粒子が
ドメイン組織であるにもかかわらず、焼成後にはサブミ
クロンレベルの光学的異方性単位がランダムに展開した
均質な微細モザイク組織に改質できる。こうして形成さ
れた組織は光学組織サイズが極めて微小であるので、黒
鉛化の過程におけるクラックの発生と進展を防止でき、
炭素材料の一層の高性能化と諸物性の等方性化が図られ
る。
In order to obtain a carbon material having a fine mosaic structure after firing, 400 ° C. to 600 ° C. are required when firing the green molded body made of the self-bonding carbonaceous powder.
20 ℃ / h or less in the initial stage of carbonization, preferably
It is extremely important to apply a heating rate of 5 to 15 ° C / h. By firing in this way, although the particles before firing have a domain structure, after firing, it can be modified into a homogeneous fine mosaic structure in which optically anisotropic units of submicron level are randomly developed. Since the structure thus formed has an extremely small optical structure size, it is possible to prevent the occurrence and development of cracks during the graphitization process,
It is possible to further improve the performance of carbon materials and make the various properties isotropic.

【0016】グリーン成型体を焼成するに際し 400℃か
ら 600℃までの炭素化初期過程における昇温が20℃/hよ
り速い場合には微細なモザイク組織は形成されず、成型
体の大部分の領域は焼成前の粒子径程度の異方性単位か
ら構成される粗く不均質な組織となる。またさらに黒鉛
化すると多数のクラックが生成し、所望の光学組織が得
られない。
When firing the green molded body, if the temperature rise in the initial stage of carbonization from 400 ° C. to 600 ° C. is faster than 20 ° C./h, a fine mosaic structure is not formed, and most regions of the molded body are not formed. Has a coarse and inhomogeneous structure composed of anisotropic units of about the particle size before firing. Further, when graphitized, a large number of cracks are generated and a desired optical structure cannot be obtained.

【0017】[0017]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。ただし本発明はこれらの実施例により制限さ
れるものではない。なお各実施例および比較例の結果を
示す光学組織写真 (図1〜4)の倍率は全て同一であ
る。
EXAMPLES The present invention will be described in more detail below with reference to examples. However, the present invention is not limited to these examples. In addition, all the magnifications of the optical texture photographs (FIGS. 1 to 4) showing the results of the respective Examples and Comparative Examples are the same.

【0018】実施例1 ナフタレン 7.0モル、フッ化水素 2.4モル、三フッ化ホ
ウ素0.74モルを3リットルの耐酸オートクレーブに仕込
み、反応圧を 25kg/cm2 に保ちながら 290℃に昇温後 4
時間反応させた。その後オートクレーブの放出弁を開け
て、常圧において実質的に全量のフッ化水素、三フッ化
ホウ素をガス状で回収した。その後、窒素を吹き込みな
がら低沸点成分を除去したメソフェーズピッチを得た。
ピッチ収率は70重量%(原料ナフタレン基準)であった。
また得られたメソフェーズピッチの軟化点は 250℃、光
学的異方性相含有率は100%、H/C原子比は0.60、炭化
収率は87重量% であった。
Example 1 7.0 mol of naphthalene, 2.4 mol of hydrogen fluoride, and 0.74 mol of boron trifluoride were charged into a 3 liter acid-resistant autoclave, and the temperature was raised to 290 ° C. while maintaining the reaction pressure at 25 kg / cm 2.
Reacted for hours. After that, the discharge valve of the autoclave was opened, and substantially all amounts of hydrogen fluoride and boron trifluoride were recovered in a gaseous state under normal pressure. Then, a low boiling point component was removed while blowing nitrogen to obtain mesophase pitch.
The pitch yield was 70% by weight (based on raw material naphthalene).
The softening point of the obtained mesophase pitch was 250 ° C., the optically anisotropic phase content was 100%, the H / C atomic ratio was 0.60, and the carbonization yield was 87% by weight.

【0019】この合成メソフェーズピッチを窒素雰囲気
下で 480℃まで昇温し、この温度で1時間の熱処理を行
なった。得られた熱処理ピッチは、キノリンに可溶でピ
リジンに不溶な成分を1.0wt%、キノリンに不溶な成分を
98.5wt% 含有していた。この熱処理ピッチを粉砕し、平
均粒径 7μmの粉体としたのち、成型圧1.5tf/cm2 で室
温にてプレート状(35mmx40mmx10mm) に成型した。この
グリーン成型体を窒素流通下、室温から 400℃までは 3
00℃/hの速度で、 400℃から 600℃までは12℃/hの速度
で昇温し 600℃で 2時間保持した。
The synthetic mesophase pitch was heated to 480 ° C. in a nitrogen atmosphere and heat-treated at this temperature for 1 hour. The heat-treated pitch obtained contained 1.0 wt% of quinoline-soluble and pyridine-insoluble components and quinoline-insoluble components.
It contained 98.5 wt%. The heat-treated pitch was crushed to obtain a powder having an average particle size of 7 μm, and the powder was molded into a plate (35 mm x 40 mm x 10 mm) at a molding pressure of 1.5 tf / cm 2 at room temperature. This green molded body should be heated from room temperature to 400 ° C under nitrogen flow.
The temperature was increased from 400 to 600 ° C at a rate of 12 ° C / h at a rate of 00 ° C / h and kept at 600 ° C for 2 hours.

【0020】得られた炭化物は樹脂埋め後研磨し光学観
察を行った。この結果、図1に示されるように炭化後の
組織は均質であり、且つサブミクロンレベルの異方性単
位がランダムに展開したファイン−モザイク構造であっ
た。この炭化物の嵩密度は1.35g/cm3 、圧縮強度は15.6
kgf/mm2 、曲げ強度は 7.8kgf/mm2 であった。さらにこ
の炭化物をアルゴン流通下 300℃/hの速度で1900℃まで
昇温し、この温度で 2時間持することによって黒鉛化物
を得た。黒鉛化後の光学組織は図2に示されるように一
層均質化し、異方性サイズの微細化が一層促進された。
クラックの生成は全く認められなかった。この黒鉛化物
の嵩密度は2.04g/cm3 、圧縮強度は25.7kgf/mm2 、曲げ
強度は13.7kgf/mm2 であった。
The obtained carbide was embedded in a resin, polished, and then optically observed. As a result, as shown in FIG. 1, the structure after carbonization was homogeneous and had a fine-mosaic structure in which anisotropic units of submicron level were randomly developed. The bulk density of this carbide is 1.35 g / cm 3 , and the compressive strength is 15.6.
kgf / mm 2, bending strength was 7.8kgf / mm 2. Further, this carbide was heated to 1900 ° C. at a rate of 300 ° C./h under argon flow, and kept at this temperature for 2 hours to obtain a graphitized product. The optical structure after graphitization was further homogenized as shown in FIG. 2, and the miniaturization of anisotropic size was further promoted.
Generation of cracks was not observed at all. The bulk density of this graphitized product was 2.04 g / cm 3 , the compressive strength was 25.7 kgf / mm 2 , and the bending strength was 13.7 kgf / mm 2 .

【0021】実施例2 実施例1と同一の合成メソフェーズピッチを粉砕し、平
均粒径 7μmの粉体としたのち、空気流通下 220℃で 2
時間の酸化処理を行なった。この酸化処理粉体はピリジ
ンに可溶でベンゼンに不溶な成分を11.0重量% 、ピリジ
ンに不溶な成分を88.5重量% 含有していた。この酸化処
理粉体を実施例1と同様の条件で成型、炭化した。得ら
れた炭化物の光学組織は実施例1の場合と同様であり、
サブミクロンレベルの異方性単位がランダムに展開した
ファイン−モザイク構造を示していた。この炭化物の嵩
密度は1.35g/cm3 、圧縮強度は15.6kgf/mm2 、曲げ強度
は7.8kgf/mm2 であった。得られた炭化物ならびに黒鉛
化物の光学組織は実施例1の場合と同様であり、光学組
織のの微細化が一層促進され、クラックの生成は全く認
められなかった。この黒鉛化物の嵩密度は2.01g/cm3
圧縮強度は25.1kgf/mm2 、曲げ強度は13.9kgf/mm2 であ
った。
Example 2 The same synthetic mesophase pitch as in Example 1 was crushed to obtain a powder having an average particle size of 7 μm, and then the powder was distributed at 220 ° C. under air flow at 2 ° C.
Oxidation treatment of time was performed. This oxidation-treated powder contained 11.0% by weight of a component soluble in pyridine and insoluble in benzene, and 88.5% by weight of a component insoluble in pyridine. The oxidized powder was molded and carbonized under the same conditions as in Example 1. The obtained carbide has an optical structure similar to that of Example 1,
It showed a fine-mosaic structure in which anisotropic units at the submicron level were randomly expanded. The bulk density of the carbides 1.35 g / cm 3, compressive strength 15.6kgf / mm 2, bending strength was 7.8kgf / mm 2. The optical structures of the obtained carbides and graphitized products were the same as in Example 1, and further miniaturization of the optical structure was further promoted, and crack formation was not observed at all. The bulk density of this graphitized product is 2.01 g / cm 3 ,
The compressive strength was 25.1 kgf / mm 2 and the bending strength was 13.9 kgf / mm 2 .

【0022】比較例1 実施例1と同一の熱改質メソフェーズピッチ粉体を実施
例1と同様な条件で成型した。このグリーン成型体を室
温から 600℃まで 300℃/hの速度で昇温し、 600℃で 2
時間保持した。こうして得られた炭化物の光学組織は図
3に示されるように不均質であり、異方性サイズも大き
く、粉砕された粒度を保持している領域が多く観察され
た。この炭化物の嵩密度は1.32g/cm3 、圧縮強度は12.9
kgf/mm2、曲げ強度は 6.0kgf/mm2 であった。さらにこ
の炭化物をアルゴン流通下 300℃/hの速度で1900℃まで
昇温しこの温度で 2時間持することによって黒鉛化物を
得た。黒鉛化後の光学組織は図4に示されるように不均
質であった。また光学的異方性サイズの比較的大きな領
域にはクラックの生成が観察された。この黒鉛化物の嵩
密度は1.97g/cm3 、圧縮強度は14.3kgf/mm2 、曲げ強度
は 5.9kgf/mm2 であった。
Comparative Example 1 The same thermally modified mesophase pitch powder as in Example 1 was molded under the same conditions as in Example 1. This green molded body is heated from room temperature to 600 ° C at a rate of 300 ° C / h and heated at 600 ° C.
Held for hours. As shown in FIG. 3, the optical texture of the thus obtained carbide was inhomogeneous, the anisotropic size was large, and many regions retaining the crushed grain size were observed. This carbide has a bulk density of 1.32 g / cm 3 and a compressive strength of 12.9.
kgf / mm 2, bending strength was 6.0 kgf / mm 2. Further, this carbide was heated to 1900 ° C. at a rate of 300 ° C./h under argon flow and kept at this temperature for 2 hours to obtain a graphitized product. The optical structure after graphitization was inhomogeneous as shown in FIG. In addition, the generation of cracks was observed in a region having a relatively large optically anisotropic size. The bulk density of this graphitized product was 1.97 g / cm 3 , the compressive strength was 14.3 kgf / mm 2 , and the bending strength was 5.9 kgf / mm 2 .

【0023】比較例2 実施例2と同一の酸化改質メソフェーズピッチ粉体を実
施例1と同様な条件で成型した。得られたグリーン成型
体を室温から 600℃まで 300℃/hの速度で昇温し 600℃
で 2時間保持した。さらにこの炭化物をアルゴン流通下
300℃/hの速度で1900℃まで昇温しこの温度で 2時間保
持した。得られた炭化物の組織は、比較例1の場合と同
様に不均質であり、組織サイズも大きく、粉砕時の粒径
を維持していた。この炭化物の嵩密度は1.31g/cm3 、圧
縮強度は12.7kgf/mm2 、曲げ強度は 5.9kgf/mm2 であっ
た。黒鉛化物の光学組織も不均質で、異方性サイズの比
較的大きな領域には比較例1の場合と同様にクラックの
生成が観察された。この黒鉛化物の嵩密度は1.97g/c
m3 、圧縮強度は14.0kgf/mm2 、曲げ強度は 5.7kgf/mm
2 であった。
Comparative Example 2 The same oxidation-modified mesophase pitch powder as in Example 2 was molded under the same conditions as in Example 1. The green molded body obtained is heated from room temperature to 600 ° C at a rate of 300 ° C / h and heated to 600 ° C.
Hold for 2 hours. Further, this carbide is passed under argon flow.
The temperature was raised to 1900 ° C at a rate of 300 ° C / h and kept at this temperature for 2 hours. The structure of the obtained carbide was inhomogeneous as in Comparative Example 1, the structure size was large, and the particle size at the time of pulverization was maintained. The bulk density of this carbide was 1.31 g / cm 3 , the compressive strength was 12.7 kgf / mm 2 , and the bending strength was 5.9 kgf / mm 2 . The optical structure of the graphitized product was also inhomogeneous, and crack formation was observed in the region having a relatively large anisotropic size, as in Comparative Example 1. The bulk density of this graphitized product is 1.97 g / c.
m 3 , compressive strength 14.0kgf / mm 2 , bending strength 5.7kgf / mm
Was 2 .

【0024】[0024]

【発明の効果】以上述の如く本発明の方法により成型体
の炭素化初期過程における昇温速度をコントロールする
ことによって、炭素材料の光学組織を容易に均質な微細
モザイク構造に改質できる。この結果、炭素材料製品の
機械的等方性化が図られ、炭素材料製品の性能向上に寄
与する。
As described above, the optical structure of the carbon material can be easily modified into a uniform fine mosaic structure by controlling the temperature rising rate in the initial stage of carbonization of the molded body by the method of the present invention. As a result, the carbon material product is made mechanically isotropic, which contributes to improving the performance of the carbon material product.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において得られた炭化物の光学組織写
真である。
FIG. 1 is an optical micrograph of the carbide obtained in Example 1.

【図2】実施例1において得られた黒鉛化物の光学組織
写真である。
2 is a photograph of the optical texture of the graphitized product obtained in Example 1. FIG.

【図3】比較例1において得られた炭化物の光学組織写
真である。
FIG. 3 is an optical texture photograph of the carbide obtained in Comparative Example 1.

【図4】比較例1において得られた黒鉛化物の光学組織
写真である。
4 is an optical texture photograph of the graphitized product obtained in Comparative Example 1. FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年2月4日[Submission date] February 4, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ化水素・三フッ化ホウ素の存在下で縮
合多環炭化水素またはこれを含有する物質を重合させて
得られるメソフェーズピッチを非酸化性雰囲気下にて熱
処理することによって調製される、キノリンに可溶でピ
リジンに不溶な成分 0.5〜1.5 重量% 、キノリンに不溶
な成分97重量% 以上を含有する自己融着性炭素質粉体、
または該メソフェーズピッチを酸化性雰囲気下にて酸化
処理することによって調製される、ピリジンに可溶でベ
ンゼンに不溶な成分 5.0〜20.0重量% 、ピリジンに不溶
な成分78重量% 以上を含有する自己融着性炭素質粉体を
成型した後、 400℃から 600℃までの焼成速度を20℃/h
以下で焼成することを特徴とする微細な光学的異方性組
織を有する炭素材料の製造方法。
1. A mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride, which is prepared by heat treatment in a non-oxidizing atmosphere. A self-fusing carbonaceous powder containing 0.5 to 1.5% by weight of a quinoline-soluble and pyridine-insoluble component, and 97% by weight or more of a quinoline-insoluble component.
Alternatively, a self-melting agent prepared by subjecting the mesophase pitch to oxidation treatment in an oxidizing atmosphere, containing 5.0 to 20.0% by weight of a pyridine-soluble and benzene-insoluble component and 78% by weight or more of a pyridine-insoluble component. After molding the adhesive carbonaceous powder, the firing rate from 400 ℃ to 600 ℃ is 20 ℃ / h.
A method for producing a carbon material having a fine optically anisotropic structure, which comprises firing as follows.
JP31676793A 1993-12-09 1993-12-16 Method for producing carbon material having fine optically anisotropic structure Expired - Fee Related JP3599062B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP31676793A JP3599062B2 (en) 1993-12-16 1993-12-16 Method for producing carbon material having fine optically anisotropic structure
US08/350,679 US5484520A (en) 1993-12-09 1994-12-07 Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
EP94309144A EP0657400B1 (en) 1993-12-09 1994-12-08 Process for producing high-density and high-strength carbon artifacts from self-adhesive carbonaceous grains
DE69417522T DE69417522T2 (en) 1993-12-09 1994-12-08 Process for the production of high-density and high-strength objects made of carbon using self-adhesive, granular carbon materials
US08/529,439 US5609800A (en) 1993-12-09 1995-09-18 Process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31676793A JP3599062B2 (en) 1993-12-16 1993-12-16 Method for producing carbon material having fine optically anisotropic structure

Publications (2)

Publication Number Publication Date
JPH07172917A true JPH07172917A (en) 1995-07-11
JP3599062B2 JP3599062B2 (en) 2004-12-08

Family

ID=18080704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31676793A Expired - Fee Related JP3599062B2 (en) 1993-12-09 1993-12-16 Method for producing carbon material having fine optically anisotropic structure

Country Status (1)

Country Link
JP (1) JP3599062B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206119A (en) * 2002-01-07 2003-07-22 Mitsubishi Gas Chem Co Inc Carbon foam, graphite foam and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206119A (en) * 2002-01-07 2003-07-22 Mitsubishi Gas Chem Co Inc Carbon foam, graphite foam and production method therefor
JP4517563B2 (en) * 2002-01-07 2010-08-04 三菱瓦斯化学株式会社 Production method of carbon foam and graphite foam

Also Published As

Publication number Publication date
JP3599062B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US6183854B1 (en) Method of making a reinforced carbon foam material and related product
CA1298456C (en) Method for producing elastic graphite structures
US5547654A (en) Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom
JPH07172917A (en) Production of carbonaceous material having optically anisotropic fine texture
US5057297A (en) Method for producing elastic graphite structures
US5484520A (en) Self-adhesive carbonaceous grains and process for producing high-density and high-strength carbon artifacts showing a fine mosaic texture of optical anisotropy derived from such grains
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH0550468B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH06144812A (en) Self-fusible carbonaceous powder and high-density carbon material
JP3678433B2 (en) Method for producing mesocarbon microbeads
JPH07157547A (en) Starting powder for carbonaceous material of high density and high strength, and production of carbonaceous material
JPH04283293A (en) Preparation of coke for isotropic high-density carbon material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH0158124B2 (en)
JPH08133714A (en) Production of self-sintering carbon and carbon material
JPH05163008A (en) Production of raw material powder for carbonaceous material
JPH06145669A (en) Self-fusible carbonaceous powder and high-density carbon material
JP2000230178A (en) Production of mesophase microbeads
JPH05163011A (en) Production of raw material powder for carbonaceous material
JPH03103490A (en) Coal tar-based impregnating pitch and production thereof
JPH0521842B2 (en)
JPH0542996B2 (en)
JPH05105512A (en) Production of high-density isotropic carbonaceous material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

LAPS Cancellation because of no payment of annual fees