JPH07169553A - Surge absorber - Google Patents

Surge absorber

Info

Publication number
JPH07169553A
JPH07169553A JP31464293A JP31464293A JPH07169553A JP H07169553 A JPH07169553 A JP H07169553A JP 31464293 A JP31464293 A JP 31464293A JP 31464293 A JP31464293 A JP 31464293A JP H07169553 A JPH07169553 A JP H07169553A
Authority
JP
Japan
Prior art keywords
sealing
insulating film
surge
sealing electrodes
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31464293A
Other languages
Japanese (ja)
Other versions
JP3134912B2 (en
Inventor
Mikio Harada
三喜男 原田
Masatoshi Abe
政利 阿部
Fujio Ikeda
富士男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP05314642A priority Critical patent/JP3134912B2/en
Publication of JPH07169553A publication Critical patent/JPH07169553A/en
Application granted granted Critical
Publication of JP3134912B2 publication Critical patent/JP3134912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To reduce the number of part items, simplify manufacture, and also absorb surge voltage. CONSTITUTION:A silicon element body 11 covered with an insulating film 15 is housed in an insulating tube 14. A pair of sealing electrodes 12 and 13 are sealed on both ends of the insulating tube 14. The sealing electrodes are brought into close contact with the silicon element body 11 through the insulating film 15 by sealing inert gas in a sealed condition. Normally, the insulating film 15 on both end surfaces of the silicon element body 11 acts as a coating film having high insulation resistance, and electric insulation between the sealing electrodes 12 and 13 is kept. When instantaneous abnormal voltage being a surge is impressed on the sealing electrodes 12 and 13, a discharge phenomenon is generated between the sealing electrode 12 or 13 and the silicon element body 11 by sandwiching the insulating film 15 between them, and the abnormal voltage is instantly absorbed. When the abnormal voltage ceases, discharge stops, and the electric insulation between the sealing electrodes 12 and 13 is restored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通信ラインに侵入する
サージを吸収して、通信ライン端末に使用される電話
機、ファクシミリ等の電子機器を保護するサージアブソ
ーバに関する。更に詳しくは絶縁管内にハーメチックシ
ール(hermetic seal)したサージアブソーバに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surge absorber that absorbs surges entering a communication line and protects electronic devices such as telephones and facsimiles used for communication line terminals. More specifically, it relates to a surge absorber having a hermetic seal in an insulating tube.

【0002】[0002]

【従来の技術】従来、ハーメチックシールしたサージア
ブソーバとして、図3及び図4に示すようなマイクロギ
ャップ式のサージアブソーバ9a及び9bが知られてい
る。2つのサージアブソーバ9a及び9bに内蔵される
マイクロギャップ式サージ吸収素子1は、導電性皮膜1
aで被包した円柱状のセラミック素体1bの中央に円周
方向に幅数10μmのマイクロギャップ1cを形成し、
このセラミック素体1bの両端に一対のキャップ電極1
d,1eを冠着して作られる。図3に示すように、サー
ジアブソーバ9aは、サージ吸収素子1を絶縁管4内に
収容してサージ吸収素子1の両端に一対の封止電極2,
3を配置し、これらの封止電極2,3をキャップ電極1
d,1eに電気的に接続し同時に絶縁管4内部に不活性
ガスを封入して作られる。封止電極2,3にはそれぞれ
リード線6,7が接続される。
2. Description of the Related Art Conventionally, as a hermetically sealed surge absorber, microgap type surge absorbers 9a and 9b as shown in FIGS. 3 and 4 are known. The microgap type surge absorbing element 1 built in the two surge absorbers 9a and 9b has a conductive film 1
A cylindrical ceramic body 1b encapsulated with a is provided with a microgap 1c having a width of several 10 μm in the circumferential direction at the center,
A pair of cap electrodes 1 is provided on both ends of the ceramic body 1b.
It is made by wearing d and 1e. As shown in FIG. 3, the surge absorber 9a accommodates the surge absorbing element 1 in the insulating tube 4 and has a pair of sealing electrodes 2 at both ends of the surge absorbing element 1.
3 are arranged, and these sealing electrodes 2 and 3 are connected to the cap electrode 1.
It is made by electrically connecting to d and 1e and at the same time enclosing an inert gas inside the insulating tube 4. Lead wires 6 and 7 are connected to the sealing electrodes 2 and 3, respectively.

【0003】図4に示すように、サージアブソーバ9b
は、マイクロギャップ式サージ吸収素子1をその両端の
キャップ電極1d,1eに接続したリード線6,7とと
もにガラス管8で封止して作られる。ガラス管8には不
活性ガスが封入される。上記サージアブソーバ9a又は
9bでは雷サージ等に起因してリード線6,7に異常電
圧が印加すると、最初に円柱状のセラミック素体1bを
被包する導電性皮膜1aに沿ってグロー放電が起こり、
最終的に一対のキャップ電極1d,1e間でのアーク放
電に移行してサージ電圧を吸収する。
As shown in FIG. 4, a surge absorber 9b is provided.
Is manufactured by sealing the microgap type surge absorbing element 1 with the glass tubes 8 together with the lead wires 6 and 7 connected to the cap electrodes 1d and 1e at both ends thereof. The glass tube 8 is filled with an inert gas. In the surge absorber 9a or 9b, when an abnormal voltage is applied to the lead wires 6 and 7 due to a lightning surge or the like, glow discharge first occurs along the conductive film 1a enclosing the cylindrical ceramic body 1b. ,
Finally, the surge voltage is absorbed by shifting to arc discharge between the pair of cap electrodes 1d and 1e.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来のサ
ージアブソーバ9a及び9bは部品点数が多く、しかも
導電性皮膜1aの形成工程、キャップ電極1d,1eの
冠着工程、マイクロギャップ1cの形成工程、封止工程
等の多くの工程を要する不具合があった。特にマイクロ
ギャップの形成には大規模の設備や高度の技術を必要と
し、安定したマイクロギャップを得るためには多大の労
力を要していた。本発明の目的は、部品点数が少なくて
済み、製造が簡単で、しかもサージ電圧を吸収し得るサ
ージアブソーバを提供することにある。
However, the above-mentioned conventional surge absorbers 9a and 9b have a large number of parts, and further, the step of forming the conductive film 1a, the step of attaching the cap electrodes 1d and 1e, and the step of forming the microgap 1c. However, there is a problem that requires many steps such as a sealing step. In particular, formation of a microgap requires a large-scale facility and high technology, and a great deal of labor is required to obtain a stable microgap. An object of the present invention is to provide a surge absorber that can be manufactured with a small number of parts, is simple, and can absorb a surge voltage.

【0005】[0005]

【課題を解決するための手段】図1に示すように、本発
明のサージアブソーバ10は絶縁管14と、この絶縁管
14内に収容され、絶縁膜15で覆われたシリコン素体
11と、絶縁管14の両端に封着可能に構成され、封着
した状態で不活性ガスを封入して絶縁膜15を介してシ
リコン素体11に密着した一対の封止電極12,13と
を備えたものである。
As shown in FIG. 1, a surge absorber 10 of the present invention includes an insulating tube 14, a silicon body 11 housed in the insulating tube 14 and covered with an insulating film 15. The insulating tube 14 is provided with a pair of sealing electrodes 12 and 13 which are configured to be sealable at both ends and sealed with an inert gas and adhered to the silicon body 11 through the insulating film 15. It is a thing.

【0006】以下、本発明を詳述する。本発明の絶縁膜
は酸化珪素膜又は窒化珪素膜であることが好ましく、特
に膜の生成が容易で電気的に高い絶縁性が得られる酸化
珪素膜が好ましい。この絶縁膜の厚さは放電開始電圧に
応じて、またサージアブソーバの寿命の観点から好まし
くは0.5〜10μmの範囲から選ばれる。更に、サー
ジアブソーバの一対の封止電極の間隔、即ちシリコン素
体の長さは放電開始電圧に応じて好ましくは100〜1
000μmの範囲から選ばれる。
The present invention will be described in detail below. The insulating film of the present invention is preferably a silicon oxide film or a silicon nitride film, and particularly preferably a silicon oxide film that can be easily formed and has high electrical insulation. The thickness of this insulating film is preferably selected from the range of 0.5 to 10 μm depending on the discharge starting voltage and from the viewpoint of the life of the surge absorber. Further, the distance between the pair of sealing electrodes of the surge absorber, that is, the length of the silicon body is preferably 100 to 1 depending on the discharge starting voltage.
It is selected from the range of 000 μm.

【0007】シリコン素体は全面を絶縁膜で覆われる。
このシリコン素体は両端面が平面であれば直方体に限ら
ず、円柱体でもよい。
The entire surface of the silicon body is covered with an insulating film.
The silicon body is not limited to a rectangular parallelepiped, and may be a cylinder if the both end surfaces are flat.

【0008】本発明の絶縁管はガラス管、セラミック管
等である。ガラス管はホウケイ酸ガラスのような硬質ガ
ラス、又は鉛ガラス、ソーダ石灰ガラスのような軟質ガ
ラスから作られる。セラミック管はPLZT、透明アル
ミナのような可視光線を透過するセラミック焼結体から
作られたもののみならず、他の絶縁性のあるセラミック
管であればよい。
The insulating tube of the present invention is a glass tube, a ceramic tube or the like. The glass tube is made of hard glass such as borosilicate glass, or soft glass such as lead glass, soda lime glass. The ceramic tube is not limited to one made of a ceramic sintered body that transmits visible light, such as PLZT or transparent alumina, but may be another ceramic tube having an insulating property.

【0009】本発明の封止電極は封着時の絶縁管の熱収
縮によるクラックの発生を防止するために絶縁管と熱膨
張係数のほぼ等しい金属を用いる。従って封止電極は絶
縁管の種類より材質を選定する。絶縁管が軟質ガラス管
である場合には、封止電極にジュメット線(Dumet wir
e)、鉄52wt%−ニッケル42wt%−クロム6w
t%合金等が用いられ、絶縁管が硬質ガラス管である場
合には、鉄58wt%−ニッケル42wt%合金(以
下、42合金という)等が用いられる。絶縁管がセラミ
ック管である場合には、封止電極に42合金と銅のクラ
ッド材、コバール(Kovar)等が用いられる。ジュメッ
ト線は輪切りにして封止電極にする。42合金と銅のク
ラッド材は42合金の板材の片面又は両面に銅薄膜を密
着させ、高温で機械的に圧延するクラッド法(claddin
g)により作られる。クラッド材の銅薄膜を酸化させて
銅表面を亜酸化銅にすると封着時にガラスとのなじみが
良くなり好ましい。このクラッド材を円板に打抜いた
後、絞り加工して封止電極にする。
The sealing electrode of the present invention uses a metal whose coefficient of thermal expansion is almost the same as that of the insulating tube in order to prevent cracking due to thermal contraction of the insulating tube during sealing. Therefore, the material of the sealing electrode is selected according to the type of insulating tube. If the insulating tube is a soft glass tube, use Dumet wire for the sealing electrode.
e), iron 52 wt% -nickel 42 wt% -chromium 6w
When a t% alloy or the like is used and the insulating tube is a hard glass tube, an iron 58 wt% -nickel 42 wt% alloy (hereinafter referred to as 42 alloy) or the like is used. When the insulating tube is a ceramic tube, a clad material of 42 alloy and copper, Kovar, or the like is used for the sealing electrode. The dumet wire is cut into rings to form a sealed electrode. The clad material of 42 alloy and copper is a clad method (claddin) in which a copper thin film is adhered to one or both sides of a plate material of 42 alloy and mechanically rolled at high temperature.
made by g). It is preferable to oxidize the copper thin film of the clad material to form cuprous oxide on the copper surface, because the compatibility with glass becomes good at the time of sealing. After punching this clad material into a disk, it is drawn into a sealed electrode.

【0010】封止電極を封着するときには 絶縁管の内
部にはアルゴンガス、ネオンガス、窒素ガス等の不活性
ガスが充填される。本発明のサージアブソーバの放電開
始電圧は、前述した絶縁膜の厚さ、封止電極間の間隔以
外に、不活性ガスの封止圧力により制御される。
When the sealing electrode is sealed, the inside of the insulating tube is filled with an inert gas such as argon gas, neon gas or nitrogen gas. The discharge start voltage of the surge absorber of the present invention is controlled by the sealing pressure of the inert gas, in addition to the thickness of the insulating film and the gap between the sealing electrodes described above.

【0011】[0011]

【作用】通常はシリコン素体11の絶縁膜15が高絶縁
抵抗の皮膜として作用し、一対の封止電極12,13間
の電気的絶縁が保たれる。サージである瞬間的な異常電
圧が一対の封止電極12,13に印加されると、放電現
象が絶縁膜15を挟んで封止電極12又は13とシリコ
ン素体11の間で発生し、異常電圧は瞬時に吸収され
る。異常電圧が止むと、放電は停止し、一対の封止電極
12,13間の電気的絶縁は復元される。
In general, the insulating film 15 of the silicon body 11 acts as a film having a high insulation resistance, and the electrical insulation between the pair of sealing electrodes 12 and 13 is maintained. When a momentary abnormal voltage, which is a surge, is applied to the pair of sealing electrodes 12 and 13, a discharge phenomenon occurs between the sealing electrode 12 or 13 and the silicon element body 11 with the insulating film 15 sandwiched between them, resulting in abnormalities. The voltage is absorbed instantly. When the abnormal voltage stops, the discharge stops and the electrical insulation between the pair of sealing electrodes 12 and 13 is restored.

【0012】[0012]

【実施例】次に、本発明の実施例を比較例とともに図面
に基づいて詳しく説明する。 <実施例>図1及び図2に示すように、直方体のシリコ
ン素体11が一対の封止電極12,13に挟まれてガラ
ス管14内に収容される。この例ではシリコン素体11
は一辺が約500μmの立方体であって、シリコン素体
全体が厚さ約1μmのSiO2からなる絶縁膜15で覆
われる。このSiO2膜はシリコン素体を大気中で高温
で加熱することにより形成される。
Embodiments of the present invention will now be described in detail with reference to the drawings together with comparative examples. <Example> As shown in FIGS. 1 and 2, a rectangular parallelepiped silicon body 11 is sandwiched between a pair of sealing electrodes 12 and 13 and housed in a glass tube 14. In this example, the silicon body 11
Is a cube whose one side is about 500 μm, and the entire silicon body is covered with an insulating film 15 made of SiO 2 and having a thickness of about 1 μm. This SiO 2 film is formed by heating a silicon body at high temperature in the atmosphere.

【0013】絶縁膜15で覆われたシリコン素体11は
一対の封止電極12,13で挟持される。一対の封止電
極12,13の各外面にはリード線16,17がそれぞ
れ溶着される。シリコン素体11を挟持した状態で鉛ガ
ラスからなる内径1.8mm、厚さ0.7mm、長さ4
mmのガラス管14内に挿入する。封止電極12,13
はそれぞれ直径約1.7mmのジュメット線を長さ約
1.5mmに輪切りしたものである。この状態でガラス
管内の空気をアルゴンガスで置換して800Torrの
圧力にした後、650℃に加熱することにより封止電極
12,13によりガラス管14が封止される。
The silicon body 11 covered with the insulating film 15 is sandwiched by a pair of sealing electrodes 12 and 13. Lead wires 16 and 17 are welded to the outer surfaces of the pair of sealing electrodes 12 and 13, respectively. Internal diameter 1.8 mm, thickness 0.7 mm, length 4 made of lead glass with the silicon body 11 being sandwiched
It is inserted into the mm glass tube 14. Sealing electrodes 12, 13
Is a Jumet wire with a diameter of about 1.7 mm, which is cut into a length of about 1.5 mm. In this state, the air inside the glass tube is replaced with argon gas to a pressure of 800 Torr, and the glass tube 14 is sealed by the sealing electrodes 12 and 13 by heating to 650 ° C.

【0014】<比較例>図3に示される前述したサージ
アブソーバ9aを比較例とした。このサージアブソーバ
9aのガラス管4にはサージ吸収素子1がアルゴンガス
とともに封止される。封止電極2,3は実施例と同じジ
ュメット線を用いた。サージ吸収素子1はムライトから
なる長さ5.5mmで直径1.7mmの円柱状のセラミ
ック素体1bの全面にスパッタリングにより導電性皮膜
1aを形成した後、このセラミック素体1bの両端にそ
れぞれ厚さ0.2mm、外径2.1mm、長さ1.5m
mの一対のキャップ電極1d,1eを圧入して冠着し、
更にセラミック素体1bの周面中央に数10μm幅のマ
イクロギャップ1cをレーザにより形成することにより
作られる。
<Comparative Example> The aforementioned surge absorber 9a shown in FIG. 3 was used as a comparative example. The surge absorber 1 is sealed in the glass tube 4 of the surge absorber 9a together with argon gas. As the sealing electrodes 2 and 3, the same Dumet wire as in the example was used. The surge absorbing element 1 is made of mullite and has a length of 5.5 mm and a diameter of 1.7 mm, and a conductive film 1a is formed on the entire surface of a cylindrical ceramic body 1b by sputtering. 0.2 mm, outer diameter 2.1 mm, length 1.5 m
m pair of cap electrodes 1d and 1e are press-fitted and capped,
Further, it is produced by forming a microgap 1c having a width of several tens of μm in the center of the peripheral surface of the ceramic body 1b by laser.

【0015】実施例及び比較例のサージアブソーバの直
流放電開始電圧、絶縁抵抗、静電容量、静電気応答電
圧、静電気寿命特性等の電気的特性を調べた。その結果
を表1に示す。なお、静電気応答電圧及び静電気寿命特
性測定に使用した静電気印加条件は1500pF−0Ω
−10kVである。
The electrical characteristics of the surge absorbers of Examples and Comparative Examples such as DC discharge starting voltage, insulation resistance, electrostatic capacitance, electrostatic response voltage, and electrostatic life characteristic were examined. The results are shown in Table 1. In addition, the static electricity applied condition used for the static electricity response voltage and the static electricity life characteristic measurement is 1500 pF-0 Ω.
It is -10 kV.

【0016】[0016]

【表1】 [Table 1]

【0017】表1から明かなように、実施例及び比較例
のサージアブソーバとも同じ電気的特性を示した。
As is clear from Table 1, the surge absorbers of Examples and Comparative Examples also showed the same electrical characteristics.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、絶
縁膜で覆ったシリコン素体を絶縁膜を介して一対の封止
電極で挟持して絶縁管に不活性ガスとともに封止するこ
とにより、従来のマイクロギャップ式のサージ吸収素子
と比べて、部品点数が少なくて済み、マイクロギャップ
を形成する工程が不要になるため、製造が簡単になる。
本発明のサージアブソーバは通常シリコン素体を覆う絶
縁膜が高絶縁抵抗膜として作用し、一対の封止電極間の
電気的絶縁を保つ。一方サージである瞬間的な異常電圧
が封止電極間に印加されると、放電現象が絶縁膜を挟ん
で封止電極とシリコン素体の間で発生し、異常電圧は瞬
時に吸収される。異常電圧が止むと、放電は停止し、封
止電極間の電気的絶縁は復元され、マイクロギャップ式
サージアブソーバと同等にサージを吸収することができ
る。
As described above, according to the present invention, a silicon element body covered with an insulating film is sandwiched by a pair of sealing electrodes via the insulating film and sealed in an insulating tube together with an inert gas. As a result, the number of parts is smaller than that of the conventional microgap type surge absorbing element, and the step of forming the microgap is not required, which simplifies manufacturing.
In the surge absorber of the present invention, the insulating film that normally covers the silicon element acts as a high insulation resistance film, and maintains electrical insulation between the pair of sealing electrodes. On the other hand, when a momentary abnormal voltage, which is a surge, is applied between the sealing electrodes, a discharge phenomenon occurs between the sealing electrode and the silicon element body with the insulating film interposed therebetween, and the abnormal voltage is instantaneously absorbed. When the abnormal voltage stops, the discharge stops, the electrical insulation between the sealing electrodes is restored, and the surge can be absorbed in the same manner as the microgap type surge absorber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のサージアブソーバの中央断面
図。
FIG. 1 is a central sectional view of a surge absorber according to an embodiment of the present invention.

【図2】その分解した状態を示す斜視図。FIG. 2 is a perspective view showing the disassembled state.

【図3】従来例サージアブソーバの中央断面図。FIG. 3 is a central cross-sectional view of a conventional surge absorber.

【図4】別の従来例サージアブソーバの断面図。FIG. 4 is a cross-sectional view of another conventional surge absorber.

【符号の説明】[Explanation of symbols]

10 サージアブソーバ 11 シリコン素体 12,13 封止電極 14 ガラス管(絶縁管) 15 絶縁膜 10 Surge Absorber 11 Silicon Element 12, 13 Sealing Electrode 14 Glass Tube (Insulating Tube) 15 Insulating Film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 富士男 埼玉県秩父郡横瀬町大字横瀬2270番地 三 菱マテリアル株式会社セラミックス研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fujio Ikeda 2270 Yokose, Yokose-cho, Chichibu-gun, Saitama Sanryo Materials Co., Ltd. Ceramics Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁管(14)と、 前記絶縁管(14)内に収容され、絶縁膜(15)で覆われたシ
リコン素体(11)と、 前記絶縁管(14)の両端に封着可能に構成され、封着した
状態で不活性ガスを封入して前記絶縁膜(15)を介してシ
リコン素体(11)に密着した一対の封止電極(12,13)とを
備えたサージアブソーバ。
1. An insulating pipe (14), a silicon body (11) housed in the insulating pipe (14) and covered with an insulating film (15), and a sealing member at both ends of the insulating pipe (14). And a pair of sealing electrodes (12, 13) which are configured to be attachable and which are sealed and filled with an inert gas and adhered to the silicon body (11) through the insulating film (15). surge absorber.
【請求項2】 絶縁膜(15)が酸化珪素膜又は窒化珪素膜
である請求項1記載のサージアブソーバ。
2. The surge absorber according to claim 1, wherein the insulating film (15) is a silicon oxide film or a silicon nitride film.
【請求項3】 絶縁膜(15)の厚さが0.5〜10μmで
ある請求項1記載のサージアブソーバ。
3. The surge absorber according to claim 1, wherein the insulating film (15) has a thickness of 0.5 to 10 μm.
【請求項4】 一対の封止電極(12,13)の間隔が100
〜1000μmである請求項1記載のサージアブソー
バ。
4. The gap between the pair of sealing electrodes (12, 13) is 100.
The surge absorber according to claim 1, which has a thickness of about 1000 μm.
JP05314642A 1993-12-15 1993-12-15 surge absorber Expired - Fee Related JP3134912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05314642A JP3134912B2 (en) 1993-12-15 1993-12-15 surge absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05314642A JP3134912B2 (en) 1993-12-15 1993-12-15 surge absorber

Publications (2)

Publication Number Publication Date
JPH07169553A true JPH07169553A (en) 1995-07-04
JP3134912B2 JP3134912B2 (en) 2001-02-13

Family

ID=18055788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05314642A Expired - Fee Related JP3134912B2 (en) 1993-12-15 1993-12-15 surge absorber

Country Status (1)

Country Link
JP (1) JP3134912B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069561A (en) * 2011-09-22 2013-04-18 Tdk Corp Electrostatic protective element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069561A (en) * 2011-09-22 2013-04-18 Tdk Corp Electrostatic protective element

Also Published As

Publication number Publication date
JP3134912B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US5559663A (en) Surge absorber
US5506071A (en) Sealing electrode and surge absorber using the same
JP3134912B2 (en) surge absorber
JP4544255B2 (en) Electronic component enclosure
JP3601320B2 (en) surge absorber
JPH0729667A (en) Discharge type surge absorber and its manufacture
TW478229B (en) Chip type surge absorbing device and its manufacturing method
CA2108828A1 (en) Encapsulated spark gap and method of manufacturing
JP2541069B2 (en) Sealing electrode and surge absorber using the same
JPH0246680A (en) Surge absorption element
JPH08153565A (en) Surge absorber
JPH06310252A (en) Surge absorber
JPH0722152A (en) Surge absorber and its manufacture
JPH11224761A (en) High voltage surge absorber
US7301740B2 (en) Surge protector device and its fabrication method
JPH1022042A (en) Electronic part sealing body
JPH0226154Y2 (en)
JP4239422B2 (en) surge absorber
JP2541068B2 (en) Sealing electrode and surge absorber using the same
JP2910006B2 (en) surge absorber
JP2910007B2 (en) surge absorber
JP2020181722A (en) Surge protection element
JP4265321B2 (en) surge absorber
JPH1022043A (en) Overvoltage absorbing element and its manufacture
JP3777886B2 (en) Chip type surge absorber (1)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees