JPH07167227A - Internal intermeshing planetary gear structure and flexible intermeshing type gear intermeshing structure - Google Patents

Internal intermeshing planetary gear structure and flexible intermeshing type gear intermeshing structure

Info

Publication number
JPH07167227A
JPH07167227A JP31202993A JP31202993A JPH07167227A JP H07167227 A JPH07167227 A JP H07167227A JP 31202993 A JP31202993 A JP 31202993A JP 31202993 A JP31202993 A JP 31202993A JP H07167227 A JPH07167227 A JP H07167227A
Authority
JP
Japan
Prior art keywords
gear
external
tooth
internal
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31202993A
Other languages
Japanese (ja)
Other versions
JP2828580B2 (en
Inventor
Toshihiro Ishida
敏浩 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP31202993A priority Critical patent/JP2828580B2/en
Publication of JPH07167227A publication Critical patent/JPH07167227A/en
Application granted granted Critical
Publication of JP2828580B2 publication Critical patent/JP2828580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)

Abstract

PURPOSE:To reduce power transmission loss by making an external gear slip against an internal gear at every rotation of an input shaft by the difference of the number of teeth between the internal and the external gears. CONSTITUTION:The difference of the number teeth between an external gear and an internal gear is denoted as N (N: an integer of 2 or more). The tooth profile of the external tooth 109 of the external gear is made by using the innermost curve when N pieces of epitrochoid parallel curves are overlapped by shifting the phase as its reference, while the tooth profile of the internal tooth 111 of the internal gear is made by using the innermost curve when the epitrochoid parallel curve is overlapped by shifting the phase of N pieces of intermeshing envelopes inside the trochoid by the same number of the external gear. With this constitution, the external tooth gear slips (autorotates) by N teeth against the internal gear by every rotation of the input shaft. Thus, surface pressure of the point of contact of the external tooth 109 and the internal tooth 111 can be reduced and the load capacity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、小型の減速機、あるい
は増速機に適用するのに好適な、内接噛合遊星歯車構造
及び撓み噛合い式歯車噛合構造の特に歯形の構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internally meshing planetary gear structure and a flexible meshing gear meshing structure, particularly a tooth structure, which is suitable for application to a small speed reducer or speed increaser.

【0002】[0002]

【従来の技術】[Prior art]

〔従来例1:内接噛合遊星歯車構造の従来例〕従来、内
接噛合遊星歯車構造の例として、第1軸と、該第1軸の
回転によって回転する偏心体と、該偏心体にベアリング
を介して取り付けられ偏心回転が可能とされた複数の外
歯歯車と、該外歯歯車に内接噛合する内歯歯車と、前記
外歯歯車に該外歯歯車の自転成分のみを取り出す手段を
介して連結された第2軸と、を備えた複列式内接噛合遊
星歯車構造が広く知られている。
[Conventional Example 1: Conventional example of internally meshing planetary gear structure] Conventionally, as an example of an internally meshing planetary gear structure, a first shaft, an eccentric body that rotates by rotation of the first shaft, and a bearing for the eccentric body are provided. A plurality of externally toothed gears that are mounted via eccentric rotation, an internally toothed gear that internally meshes with the externally toothed gear, and a means for extracting only the rotation component of the externally toothed gear to the externally toothed gear. A double-row internal meshing planetary gear structure including a second shaft that is connected via a widely-known type is widely known.

【0003】この構造の従来例を図6及び図7に示す。
この従来例は、前記第1軸を入力軸とすると共に、第2
軸を出力軸とし、且つ内歯歯車を固定することによって
上記構造を「減速機」に適用したものである。
A conventional example of this structure is shown in FIGS.
In this conventional example, the first shaft is used as the input shaft, and the second shaft is used.
The above structure is applied to a "speed reducer" by using the shaft as an output shaft and fixing an internal gear.

【0004】入力軸1には所定位相差(この例では18
0°)をもって偏心体3a、3bが嵌合されている。こ
の偏心体3a、3bは、それぞれ入力軸1(中心O1)
に対して偏心量eだけ偏心している(中心O2)。それ
ぞれの偏心体3a、3bにはベアリング4a、4bを介
して2枚の外歯歯車5a、5bが複列に取り付けられて
いる。この外歯歯車5a、5bには内ローラ孔6a、6
bが複数設けられ、内ピン7及び内ローラ8が嵌入され
ている。
A predetermined phase difference (18 in this example) is applied to the input shaft 1.
The eccentric bodies 3a and 3b are fitted at 0 °. The eccentric bodies 3a and 3b are respectively connected to the input shaft 1 (center O1).
Is eccentric by an eccentric amount e (center O2). Two external gears 5a and 5b are attached to the eccentric bodies 3a and 3b in double rows via bearings 4a and 4b. The external gears 5a and 5b have inner roller holes 6a and 6a.
A plurality of b are provided, and the inner pin 7 and the inner roller 8 are fitted therein.

【0005】外歯歯車を2枚(複列)にしているのは、
主に伝達容量の増大、強度の維持、回転バランスの保持
を図るためである。
Two external gears (double row) are used.
This is mainly for the purpose of increasing transmission capacity, maintaining strength, and maintaining rotational balance.

【0006】前記外歯歯車5a、5bの外周にはトロコ
イド歯形(エピトロコイド平行曲線歯形)の外歯9が設
けられている。この外歯9はケーシング12に固定され
た内歯歯車10と内接噛合している。
External teeth 9 having a trochoidal tooth profile (epitrochoid parallel curve tooth profile) are provided on the outer circumferences of the external gears 5a and 5b. The external teeth 9 are internally meshed with the internal gear 10 fixed to the casing 12.

【0007】前記外歯歯車5a、5bを貫通する内ピン
7は、出力軸2のフランジ部に固着又は嵌入されてい
る。
The inner pin 7 penetrating the external gears 5a, 5b is fixed or fitted to the flange portion of the output shaft 2.

【0008】入力軸1が1回転すると偏心体3a、3b
が1回転する。この偏心体3a、3bの1回転により、
外歯歯車5a、5bは入力軸1の周りで揺動回転を行お
うとするが、内歯歯車10によってその自転が拘束され
るため、外歯歯車5a、5bは、この内歯歯車10に内
接しながらほとんど揺動のみを行うことになる。
When the input shaft 1 makes one revolution, the eccentric bodies 3a, 3b
Rotates once. By one rotation of the eccentric bodies 3a and 3b,
The external gears 5a and 5b try to oscillate around the input shaft 1. However, since the rotation of the external gears 5a and 5b is restricted by the internal gear 10, the external gears 5a and 5b are not rotated by the internal gear 10. Almost only rocking is performed while touching.

【0009】今、例えば外歯歯車5a、5bの歯数をn
(図示例では、n=21となっている)、内歯歯車10
の歯数をn+1とした場合、その歯数差Nは1である。
そのため、入力軸の1回転毎に外歯歯車5a、5bは、
ケーシング12に固定された内歯歯車10に対して1歯
分だけずれる(自転する)ことになる。これは入力軸1
の1回転が外歯歯車5a、5bの−1/nの回転に減速
されたことを意味する。
Now, for example, the number of teeth of the external gears 5a and 5b is n.
(In the illustrated example, n = 21), the internal gear 10
If the number of teeth of N is n + 1, the difference N of the number of teeth is one.
Therefore, the external gears 5a and 5b are
The internal gear 10 fixed to the casing 12 is displaced (rotated) by one tooth. This is the input shaft 1
1 rotation of the external gear 5a, 5b is reduced to -1 / n rotation.

【0010】この外歯歯車5a、5bの回転は内ローラ
孔6a、6b及び内ピン7(内ローラ8)の隙間によっ
てその揺動成分が吸収され、自転成分のみが該内ピン7
を介して出力軸2へと伝達される。
With respect to the rotation of the external gears 5a, 5b, the swing component is absorbed by the gap between the inner roller holes 6a, 6b and the inner pin 7 (inner roller 8), and only the rotation component is rotated.
Is transmitted to the output shaft 2 via.

【0011】この結果、結局減速比−1/nの減速が達
成される。
As a result, a reduction ratio of -1 / n is achieved.

【0012】なお、この内接噛合遊星歯車構造は、現在
種々の減速機あるいは増速機に適用されている。例え
ば、上記構造においては、第1軸を入力軸、第2軸を出
力軸とすると共に、内歯歯車を固定するようにしていた
が、第1軸を入力軸、内歯歯車を出力軸とすると共に、
第2軸を固定することによっても、減速機を構成するこ
とが可能である。更に、これらの構造において、入、出
力軸を逆転させることにより、「増速機」を構成するこ
ともできる。
The intermeshing planetary gear structure is currently applied to various speed reducers or speed increasers. For example, in the above structure, the first shaft serves as the input shaft, the second shaft serves as the output shaft, and the internal gear is fixed. However, the first shaft serves as the input shaft and the internal gear serves as the output shaft. Along with
The speed reducer can also be configured by fixing the second shaft. Further, in these structures, the "speed increaser" can be configured by reversing the input and output shafts.

【0013】ところで、この種の内接噛合噛合遊星歯車
構造においては、歯面の面圧の大きさにより概ねその負
荷荷重が決まってしまい、装置の小形化、高負荷容量化
に限界を生じることから、特に歯面の面圧の軽減が要求
されていた。
By the way, in this type of intermeshing meshing planetary gear structure, the load is generally determined by the magnitude of the surface pressure of the tooth surface, and there is a limit to downsizing of the device and high load capacity. Therefore, it has been particularly required to reduce the surface pressure on the tooth surface.

【0014】そこで、従来、特公昭63−4056に示
されるように、外歯歯車の外歯9の歯形にエピトロコイ
ド平行曲線、内歯歯車の内歯11の歯形にトロコイド内
包絡線を用いることにより、外歯歯車と内歯歯車の各歯
の噛合点(接触点)を2点に増やし、歯面の面圧の軽減
を図ったものが提案されている。
Therefore, conventionally, as shown in JP-B-63-4056, an epitrochoid parallel curve is used for the tooth profile of the external tooth 9 of the external gear, and a trochoid internal envelope is used for the tooth profile of the internal tooth 11 of the internal gear. Accordingly, there has been proposed one in which the meshing points (contact points) of the teeth of the external gear and the internal gear are increased to two points to reduce the surface pressure of the tooth surface.

【0015】具体的に述べると、この技術においては、
図8に示すように、外歯歯車5a、5bの外歯9の歯形
をエピトロコイド平行曲線で構成し、内歯歯車10の内
歯11の歯形を、両端の円弧歯形部分P、Pと中間の歯
形部分Q(この部分は外歯の歯形をエピトロコイド平行
曲線で構成した場合の相手歯形として求めた歯形であ
る)とからなるトロコイド内包絡線で構成している。
Specifically, in this technology,
As shown in FIG. 8, the tooth profile of the external tooth 9 of the external gear 5a, 5b is configured by an epitrochoid parallel curve, and the tooth profile of the internal tooth 11 of the internal gear 10 is made to be intermediate with the arc tooth profile portions P, P at both ends. Tooth profile portion Q (this portion is a tooth profile obtained as a mating tooth profile when the tooth profile of the external tooth is composed of epitrochoid parallel curves).

【0016】この歯形を採用した歯車構造によると、内
歯歯車10と外歯歯車5a、5bの噛合部において、両
者の接触点(噛合点)が、荷重伝達に有効な位置で2点
になる。つまり、円弧歯形部分Pの接触点の他に歯形部
分Qでも接触点をもつようになる。この2つの接触部分
は、ともに歯車の機構学的な歯形の条件を満足している
ので、各々の接触点は動力伝達に有効に作用することと
なる。
According to the gear structure adopting this tooth profile, the contact points (meshing points) between the internal gear 10 and the external gears 5a, 5b are two points at positions effective for load transmission. . That is, in addition to the contact point of the arcuate tooth profile portion P, the tooth profile portion Q also has a contact point. Since these two contact portions both satisfy the condition of the gear tooth profile of the gear, each contact point effectively acts on power transmission.

【0017】このように、上記従来公報の内接噛合遊星
歯車構造においては、歯形の改良により歯の2点接触を
可能とし、それにより歯面の面圧を軽減して、小形化、
高負荷容量化を図っている。
As described above, in the internally meshing planetary gear structure of the above-mentioned conventional publication, the two-point contact of the teeth is made possible by improving the tooth profile, thereby reducing the surface pressure of the tooth surface and downsizing.
Aiming at high load capacity.

【0018】〔従来例2:撓み噛合い式歯車噛合構造の
従来例〕撓み噛合い式歯車噛合構造の従来例としては、
例えば特開昭63−130949号公報に記載のものが
知られている。以下、これについて説明する。
[Conventional Example 2: Conventional Example of Flexible Meshing Gear Meshing Structure] As a conventional example of a flexible meshing gear meshing structure,
For example, the one described in JP-A-63-130949 is known. This will be described below.

【0019】図9は従来技術の構造を示す断面図、図1
0は図9のX−X線断面図である。この構造は一般に波
動歯車装置として知られている。
FIG. 9 is a sectional view showing the structure of the prior art, FIG.
0 is a sectional view taken along line XX of FIG. This structure is generally known as a wave gear device.

【0020】入力回転軸21には外スプライン22Aが
設けられており、該外スプライン22Aが、波動発生器
となる偏心体23に設けられた内スプライン22Bと結
合している。これらの偏心体23の外周には偏心体軸受
24が設けられている。偏心体軸受24の外周には外歯
歯車28が設けられており、該外歯歯車28はフランジ
部29、円環部30及び外歯部31とから構成されてい
る。外歯歯車28の外歯部31は偏心体軸受24の外輪
27の外周に位置している。
The input rotary shaft 21 is provided with an outer spline 22A, and the outer spline 22A is connected to an inner spline 22B provided on an eccentric body 23 serving as a wave generator. Eccentric body bearings 24 are provided on the outer circumferences of these eccentric bodies 23. An external gear 28 is provided on the outer periphery of the eccentric body bearing 24, and the external gear 28 is composed of a flange portion 29, an annular portion 30, and an external tooth portion 31. The external tooth portion 31 of the external gear 28 is located on the outer circumference of the outer ring 27 of the eccentric body bearing 24.

【0021】前記において、外輪27、円環部30及び
外歯部31は弾性変形可能となっている。外歯部31に
設けられた外歯31Aは、トロコイド歯形等からなって
おり、該外歯31Aは、内歯歯車32に回転可能に支持
されたピンにより構成された内歯33に噛合している。
In the above, the outer ring 27, the annular portion 30 and the outer tooth portion 31 are elastically deformable. The external teeth 31A provided on the external teeth portion 31 have a trochoidal tooth profile or the like, and the external teeth 31A mesh with the internal teeth 33 formed of pins rotatably supported by the internal gear 32. There is.

【0022】内歯歯車32の内歯(ピン)33Aの数に
対して、外歯31Aの数は2歯だけ少なくなっている。
そして、外歯31Aの形状は、転円と基円の半径比が整
数であるエピトロコイド平行曲線を2個、位相をずらせ
て重ね合わせ、重なり合った個々の曲線のうち最も内側
にある曲線部分を歯形曲線としたものであり、この歯形
自体は特公昭58−42382号(特許第120854
8号)として公知のものである。
The number of external teeth 31A is smaller by two than the number of internal teeth (pins) 33A of the internal gear 32.
The shape of the external teeth 31A is such that two epitrochoid parallel curves having a radius ratio of an inversion circle and a base circle are integers are overlapped with their phases shifted, and the innermost curve portion of the overlapping individual curves is This is a tooth profile curve, and the tooth profile itself is Japanese Patent Publication No. 58-42382 (Patent No. 120854).
No. 8).

【0023】入力回転軸21の回転は波動発生器(偏心
体23)の回転となり、偏心体23は偏心体軸受24を
介して外歯歯車28の外歯部31を変形させる。偏心体
23の凸部により変形させられた外歯部31は、その外
歯31Aが内歯(ピン)33Aと噛合し、偏心体23の
1回転の間に外歯31Aとピン33Aとの歯数差だけ位
相がずれ、そのずれが外歯歯車28の回転となって出力
軸34に伝達される。本例では具体的には外歯31Aが
100歯、内歯(ピン)33Aが102歯あり、その歯
数差は2であり減速比は(−2/100=−1/50)
となる。なお、「−」は入出力が逆回転の関係となるこ
とを示している。
The rotation of the input rotary shaft 21 becomes the rotation of the wave generator (eccentric body 23), and the eccentric body 23 deforms the external tooth portion 31 of the external gear 28 via the eccentric body bearing 24. The outer tooth portion 31 deformed by the convex portion of the eccentric body 23 has its outer tooth 31A meshing with the inner tooth (pin) 33A, and the tooth of the outer tooth 31A and the pin 33A is rotated during one rotation of the eccentric body 23. The phase shifts by a number difference, and the shift becomes rotation of the external gear 28 and is transmitted to the output shaft 34. In this example, specifically, there are 100 external teeth 31A and 102 internal teeth (pins) 33A, the difference in the number of teeth is 2, and the reduction ratio is (-2 / 100 = -1 / 50).
Becomes In addition, "-" indicates that the input and output are in a reverse rotation relationship.

【0024】内歯歯車32はこの実施例では固定されて
いる。しかしながら、外歯歯車28と内歯歯車32とは
一方を固定すると他方が出力側となる相対的なものであ
り、又、入力回転軸は出力軸を入力側とすれば増速して
取り出す出力軸ともなる。
The internal gear 32 is fixed in this embodiment. However, if one of the external gear 28 and the internal gear 32 is fixed, the other is an output side, and the input rotary shaft is an output that is accelerated and taken out when the output shaft is an input side. It also serves as an axis.

【0025】[0025]

【発明が解決しようとする課題】上記従来例1の内接噛
合遊星歯車構造においては、歯形の改良により歯の2点
接触を可能とし、それにより歯面の面圧を軽減して、小
形化、高負荷容量化を図っている。
In the internally meshing planetary gear structure of the above-mentioned conventional example 1, the two-point contact of the teeth is made possible by the improvement of the tooth profile, thereby reducing the surface pressure of the tooth surface and downsizing. , We are aiming for high load capacity.

【0026】しかしながら、上記のような歯形を使用し
たとしても歯面の負荷能力にはなお限界があり、減速機
の更なる小形軽量化のためには歯面の一層の高負荷能力
が求められていた。
However, even if the above tooth profile is used, the load capacity of the tooth surface is still limited, and further higher load capacity of the tooth surface is required in order to further reduce the size and weight of the reducer. Was there.

【0027】又、従来例2の撓み噛合い式歯車噛合構造
では、内歯歯車32の円弧歯形部分である内歯(ピン)
33とトロコイド歯形等からなる外歯歯車28の外歯3
1Aを噛み合わせるようにしたものであるため、内歯歯
車32と外歯歯車28は一つの接触点をもって接触す
る。
Further, in the flexible mesh type gear meshing structure of Conventional Example 2, the internal teeth (pins) which are the arcuate tooth profile portions of the internal gear 32.
33 and the external teeth 3 of the external gear 28 including a trochoidal tooth profile
Since the gears 1A are meshed with each other, the internal gear 32 and the external gear 28 contact each other at one contact point.

【0028】従って、同一半径の円弧歯形よりなる内歯
歯車32では、歯面の面圧の制限に応じて、概ねその負
荷荷重が決まってしまい、波動歯車装置の小型化、高負
荷容量化に限界があった。
Therefore, in the internal gear 32 having the arcuate tooth profile of the same radius, the load is generally determined according to the limit of the surface pressure of the tooth surface, and the wave gear device can be downsized and the load capacity can be increased. There was a limit.

【0029】本発明は、このような問題に鑑みてなされ
たものであって、歯形形状に工夫を加えることにより小
型で高負荷に耐えられる内接噛合遊星歯車構造及び撓み
噛合い式歯車噛合構造を提供することを目的としてい
る。
The present invention has been made in view of the above problems, and is a compact internal gear meshing planetary gear structure and a flexible meshing gear meshing structure that can withstand a high load by devising a tooth profile. Is intended to provide.

【0030】[0030]

【課題を解決するための手段】請求項1の発明は、第1
軸と、該第1軸に設けた偏心体を介してこの第1軸に対
して偏心回転可能な状態で取付けられた複数枚の外歯歯
車と、該外歯歯車が内接噛合する内歯歯車と、前記外歯
歯車に該外歯歯車の自転成分のみを伝達する手段を介し
て連結された第2軸と、を備えた内接噛合遊星歯車構造
において、前記外歯歯車と内歯歯車の歯数差をN(N:
2以上の整数)とし、前記外歯歯車の歯形は、N個のエ
ピトロコイド平行曲線を位相をずらせて重ね合わせた時
にできる最も内側の曲線により構成されたN個の仮想外
歯歯形曲線を、前記エピトロコイド平行曲線における1
歯の1/Nずつ位相をずらせて重ね合わせた時にできる
最も外側の曲線を基準にして構成し、又、前記内歯歯車
の歯形は、前記エピトロコイド平行曲線と噛合うN個の
トロコイド内包絡線を前記外歯歯車と同じだけ位相をず
らせて重ね合わせた時にできる最も内側の曲線により構
成されたN個の仮想内歯歯形曲線を、前記トロコイド内
包絡線における1歯の1/Nずつ位相をずらせて重ね合
わせた時にできる最も外側の曲線を基準にして構成した
ことにより、上記課題を解決したものである。
The invention according to claim 1 is the first
A shaft, a plurality of external gears eccentrically attached to the first shaft via an eccentric body provided on the first shaft, and internal teeth with which the external gear meshes internally In an internally meshing planetary gear structure comprising a gear and a second shaft connected to the external gear via a means for transmitting only the rotation component of the external gear, the external gear and the internal gear The difference in the number of teeth of N (N:
The integer of 2 or more), and the tooth profile of the external gear has N virtual external tooth profile curves formed by the innermost curves formed by superimposing N epitrochoid parallel curves with a phase shift, 1 in the epitrochoid parallel curve
The tooth profile of the internal gear is composed of N trochoidal internal envelopes that mesh with the epitrochoid parallel curve when the tooth profile of the internal gear is formed based on the outermost curved line when the phases are superposed by shifting the phase by 1 / N. N virtual internal tooth profile curves formed by the innermost curves formed when the lines are superposed with the same phase shift as the external gear, and the phase of each tooth in the trochoid internal envelope is 1 / N The above-mentioned problem is solved by constructing with the outermost curve that is formed when the sheets are shifted and overlapped as a reference.

【0031】又、請求項2の発明は、剛性を有した内歯
歯車と、該内歯歯車に内接噛合する可撓性を有した外歯
歯車と、該外歯歯車を撓ませて変形させる波動発生器
と、を備えた撓み噛合い式歯車噛合構造において、前記
外歯歯車と内歯歯車の歯数差をN(N:2以上の整数)
とし、前記外歯歯車の歯形は、N個のエピトロコイド平
行曲線を位相をずらせて重ね合わせた時にできる最も内
側の曲線により構成されたN個の仮想外歯歯形曲線を、
前記エピトロコイド平行曲線における1歯の1/Nずつ
位相をずらせて重ね合わせた時にできる最も外側の曲線
を基準にして構成し、又、前記内歯歯車の歯形は、前記
エピトロコイド平行曲線と噛合うN個のトロコイド内包
絡線を前記外歯歯車と同じだけ位相をずらせて重ね合わ
せた時にできる最も内側の曲線により構成されたN個の
仮想内歯歯形曲線を、前記トロコイド内包絡線における
1歯の1/Nずつ位相をずらせて重ね合わせた時にでき
る最も外側の曲線を基準にして構成したことにより上記
課題を解決したものである。
Further, according to a second aspect of the present invention, the internal gear having rigidity, the external gear having flexibility which is internally meshed with the internal gear, and the external gear deformed by bending. And a wave generator that causes the wave generator to move. In a meshing structure of a flexible meshing gear, the difference in the number of teeth between the external gear and the internal gear is N (N: an integer of 2 or more).
And the tooth profile of the external gear has N virtual external tooth profile curves formed by the innermost curves formed by superimposing N epitrochoid parallel curves with a phase shift,
The epitrochoid parallel curve is configured with reference to the outermost curve formed when the teeth are overlapped with each other by shifting the phase by 1 / N, and the tooth profile of the internal gear is meshed with the epitrochoid parallel curve. 1 N in the trochoidal internal envelope curve is formed by N inner virtual internal tooth profile curves which are formed by the innermost curves formed when N trochoidal internal envelope lines that match are superposed with the external gears being out of phase with each other. The above problem is solved by using the outermost curve formed when the teeth are superposed with the phase shifted by 1 / N.

【0032】又、請求項3の発明は、剛性を有した内歯
歯車と、該内歯歯車に内接噛合可能な可撓性を有した外
歯歯車と、該外歯歯車を撓み変形させることによって前
記内歯歯車と外歯歯車との内接噛合を実現させる波動発
生器と、を備えた撓み噛合い式歯車噛合構造において、
前記内歯歯車と外歯歯車との歯数差をIとしたときに、
前記内歯歯車との歯数差がIより大きなNで(I<
N)、且つ該内歯歯車と内接噛合する剛性を有した仮想
外歯歯車を想定し、前記外歯歯車の歯形を、該外歯歯車
が撓んだ結果、内歯歯車と噛合する部分において前記仮
想外歯歯車の歯形と等しくなる形状に形成すると共に、
該外歯歯車の内歯歯車と噛合する部分における変形曲率
を、前記仮想外歯歯車の曲率と等しく設定し、前記仮想
外歯歯車の歯形は、N個のエピトロコイド平行曲線を位
相をずらせて重ね合わせた時にできる最も内側の曲線に
より構成されたN個の仮想外歯歯形曲線を、前記エピト
ロコイド平行曲線における1歯の1/Nずつ位相をずら
せて重ね合わせた時にできる最も外側の曲線を基準にし
て構成し、又、前記内歯歯車の歯形は、前記エピトロコ
イド平行曲線と噛合うN個のトロコイド内包絡線を前記
外歯歯車と同じだけ位相をずらせて重ね合わせた時にで
きる最も内側の曲線により構成されたN個の仮想内歯歯
形曲線を、前記トロコイド内包絡線における1歯の1/
Nずつ位相をずらせて重ね合わせた時にできる最も外側
の曲線を基準にして構成したことにより、上記課題を解
決したものである。
According to a third aspect of the present invention, the internal gear having rigidity, the external gear having flexibility capable of intermeshing with the internal gear, and the external gear flexibly deformed. In the flexible meshing gear meshing structure, which comprises a wave generator that realizes intimate meshing between the internal gear and the external gear,
When the difference in the number of teeth between the internal gear and the external gear is I,
When the difference in the number of teeth from the internal gear is N larger than I (I <
N), and assuming a virtual external gear having rigidity that is internally meshed with the internal gear, the tooth profile of the external gear is a portion that meshes with the internal gear as a result of bending of the external gear. In addition to forming a shape that is equal to the tooth profile of the virtual external gear in
The deformation curvature in the portion of the external gear that meshes with the internal gear is set equal to the curvature of the virtual external gear, and the tooth profile of the virtual external gear has N epitrochoid parallel curves that are out of phase. The outermost curves formed when the N virtual external tooth profile curves formed by the innermost curves formed when superposed are overlapped by shifting the phase by 1 / N of one tooth in the epitrochoid parallel curve The tooth profile of the internal gear is the innermost one formed when N trochoid internal envelopes meshing with the epitrochoid parallel curve are overlapped with each other by shifting the phase by the same amount as the external gear. The N virtual internal tooth tooth profile curves configured by the curves of 1 and 1 of 1 tooth in the trochoidal internal envelope
The above-mentioned problem is solved by using the outermost curve formed when the phases are overlapped with each other by shifting the phase by N as a reference.

【0033】[0033]

【作用】本出願人は、先に歯面の高負荷能力を一層高め
るようにした内接噛合遊星歯車構造を開発し、特願平4
−202295号(未公知)として出願した(請求項1
の基礎)。
The applicant of the present invention has previously developed an internally meshing planetary gear structure designed to further enhance the high load capacity of the tooth surface.
-202295 (unknown) was filed (Claim 1
Basics).

【0034】この内接噛合遊星歯車構造では、外歯歯車
と内歯歯車の歯数差をN(N:2以上の整数)とし、外
歯歯車の歯形を、N個のエピトロコイド平行曲線を位相
をずらせて重ね合わせた時にできる最も内側の曲線を基
準にして構成し、又、内歯歯車の歯形を、前記エピトロ
コイド平行曲線と噛合うN個のトロコイド内包絡線を前
記外歯歯車と同じだけ位相をずらせて重ね合わせた時に
できる最も内側の曲線を基準にして構成している。
In this internally meshing planetary gear structure, the difference in the number of teeth between the external gear and the internal gear is N (N: an integer of 2 or more), and the tooth profile of the external gear has N epitrochoid parallel curves. The tooth profile of the internal gear is formed based on the innermost curve formed when the phases are shifted and the tooth profile of the internal gear is N trochoid internal envelopes meshing with the epitrochoid parallel curve. It is constructed with the innermost curve that can be created when overlapping with the same phase shift.

【0035】この構造により、外歯歯車と内歯歯車の歯
数差をN(2以上の整数)に設定することができる。そ
の結果、入力軸の1回転毎に外歯歯車は内歯歯車に対し
てN歯分だけずれる(自転する)ことになり、歯数差1
の場合と同じ減速比を得る場合には、外歯歯車及び内歯
歯車の歯数を従来のもののN倍にすることができる。こ
れにより、荷重伝達に有効な部分での噛合歯数が増大す
るとともに、動力伝達上有効に働かない上に滑りが大き
い部分の噛合を減らすことができる。そのため、接触点
の面圧を軽減することができるとともに、動力伝達ロス
を軽減することができる。
With this structure, the difference in the number of teeth between the external gear and the internal gear can be set to N (an integer of 2 or more). As a result, the external gear shifts (rotates) by N teeth with respect to the internal gear for each rotation of the input shaft, resulting in a difference in the number of teeth of 1
To obtain the same reduction ratio as in the above case, the number of teeth of the external gear and the internal gear can be N times that of the conventional gear. As a result, the number of meshing teeth at the portion effective for load transmission is increased, and the meshing at the portion that does not work effectively for power transmission and has large slippage can be reduced. Therefore, the surface pressure at the contact point can be reduced and the power transmission loss can be reduced.

【0036】又、本出願人は、同様に小型化、高負荷容
量化への対応が一層容易な撓み噛合い式歯車噛合構造を
開発し、特願平4−142515号(未公知)として出
願した(請求項2の基礎)。
The applicant of the present invention has also developed a flexible meshing gear meshing structure that is easier to deal with downsizing and high load capacity, and filed as Japanese Patent Application No. 4-142515 (unknown). It did (the basis of claim 2).

【0037】この撓み噛合い式歯車噛合構造は、外歯歯
車の外歯の歯形、及び内歯歯車の内歯歯車の歯形を、前
記特願平4−202295号と同様に構成したものであ
る。この場合も、上記と同様の理由により面圧を軽減す
ることができ、小型化、高負荷容量化に対応可能とな
る。
In this flexible meshing type gear meshing structure, the tooth profile of the external tooth of the external gear and the tooth profile of the internal gear of the internal gear are configured in the same manner as in Japanese Patent Application No. 4-202295. . Also in this case, the surface pressure can be reduced for the same reason as described above, and it becomes possible to cope with downsizing and high load capacity.

【0038】更に本出願人は、先に外歯歯車の変形によ
る曲げ応力を極力抑え、伝達効率の向上及び伝達可能ト
ルクの増大を図ることのできる、撓み噛合い式歯車噛合
構造を開発し、特願平5−4463号(未公知)として
出願した(請求項3の基礎)。
Further, the present applicant has previously developed a flexible meshing gear meshing structure capable of suppressing bending stress due to deformation of the external gear as much as possible, improving transmission efficiency and increasing transmittable torque, The application was filed as Japanese Patent Application No. 5-4463 (unknown) (the basis of claim 3).

【0039】即ち、従来例2の撓み噛合い式歯車噛合構
造では、次の問題があった。以下、図11を用いて説明
する。
That is, the flexural mesh type gear meshing structure of the conventional example 2 has the following problems. This will be described below with reference to FIG.

【0040】図11は、撓み噛合い式歯車噛合構造にお
ける外歯歯車の変形状態を概念的に示したものである。
図に示されるように、外歯歯車28上の点A、B、C、
Dは、変形により点A2、B2、C2、D2へと移る。
ここで曲線A2−D2及び曲線B2−C2で示される部
分において、外歯歯車28の外歯31Aと内歯歯車32
の内歯(ピン)33Aが理論的に正確に噛合う必要があ
る。
FIG. 11 conceptually shows the deformed state of the external gear in the flex mesh type gear mesh structure.
As shown, points A, B, C on external gear 28,
Deformation moves to points A2, B2, C2, D2.
Here, in the portions indicated by the curves A2-D2 and B2-C2, the external teeth 31A of the external gear 28 and the internal gear 32 are shown.
It is necessary that the internal teeth (pins) 33A of the gears theoretically mesh accurately.

【0041】ここで、外歯歯車28の変形前と変形後の
曲線を比較して見ると、曲線A−D(曲線B−C)が曲
線A2−D2(曲線B2−C2)へ平行移動しているた
め、A2−B2間(C2−D2間)がA−B間(C−D
間)より広くなっており、その分曲線A2−B2(曲線
C2−D2)は点A2、B2(点C2、D2)での接線
の傾きがA、B(C、D)での傾きと等しいままで、曲
線A−B(曲線C−D)をX軸方向に引き伸ばされた形
となっている。
Here, comparing the curves of the external gear 28 before and after deformation, the curve A-D (curve B-C) is translated to the curve A2-D2 (curve B2-C2). Therefore, between A2-B2 (between C2-D2) is between A-B (C-D
The curve A2-B2 (curve C2-D2) has a tangent slope at points A2 and B2 (points C2 and D2) equal to the slope at A and B (C and D). Up to this point, the curve AB (curve CD) is extended in the X-axis direction.

【0042】そのため、変形後の外歯歯車28の形状
は、点A2、B2、C2、D2の近傍で急激に曲率半径
が小さくなっていることが分かる。
Therefore, it can be seen that the deformed external gear 28 has a sharply reduced radius of curvature in the vicinity of the points A2, B2, C2 and D2.

【0043】これは、変形前後の全周の長さが一定であ
ること、及び一定の範囲(ここでは曲線A2−D2及び
曲線B2−C2)において、変形後においても変形前の
曲率半径を維持しなければならないために必然的に生じ
る現象である(これにより、偏心体23Aの形状も決定
される)。
This is because the length of the entire circumference before and after deformation is constant, and within a certain range (here, curve A2-D2 and curve B2-C2), the radius of curvature before deformation is maintained. This is a phenomenon that inevitably occurs because it has to be done (this also determines the shape of the eccentric body 23A).

【0044】従って、外歯歯車28には、当該変形によ
り、特に点A2、B2、C2、D2の付近において大き
な曲げ応力が発生し、これによって伝達可能トルクを制
限せざるを得ない場合が少なくなかった。
Therefore, in many cases, due to the deformation, a large bending stress is generated in the external gear 28 particularly near the points A2, B2, C2, D2, and this makes it impossible to limit the transmittable torque. There wasn't.

【0045】この不具合を解消したのが、即ち請求項3
の基礎となる特願平5−4463号(未公知)で、この
撓み噛合い式歯車噛合構造は、内歯歯車と外歯歯車との
歯数差をIとしたときに、内歯歯車との歯数差がIより
大きなNで(I<N)、且つ該内歯歯車と内接噛合する
剛性を有した仮想外歯歯車を想定し、外歯歯車の歯形
を、該外歯歯車が撓んだ結果、内歯歯車と噛合する部分
において前記仮想外歯歯車の歯形と等しくなる形状に形
成すると共に、該外歯歯車の内歯歯車と噛合する部分に
おける変形曲率を、前記仮想外歯歯車の曲率と等しく設
定したものである。
This problem has been solved, namely, claim 3
In Japanese Patent Application No. 5-4463 (unknown), which is the basis of the invention, this flexible meshing gear meshing structure has an internal gear and an internal gear when the difference in the number of teeth between the internal gear and the external gear is I. Assuming a virtual external gear having a rigidity in which the number of teeth of N is larger than I (I <N) and has an internal mesh with the internal gear, the external gear has a tooth profile of As a result of the bending, the portion that meshes with the internal gear is formed to have a shape that is equal to the tooth profile of the virtual external gear, and the deformation curvature of the portion of the external gear that meshes with the internal gear changes to the virtual external tooth. It is set to be equal to the curvature of the gear.

【0046】図12は、この構造に係る外歯歯車の変形
形状について、図11と対応して示した図である。図1
2と図11において、点PとQは同一である。即ち、変
形前の真円の状態でX軸上で点Pの位置にあった外歯歯
車の外歯部分が噛合時に点Qの位置まで移動することに
なる。
FIG. 12 is a view showing the deformed shape of the external gear according to this structure, corresponding to FIG. 11. Figure 1
2 and FIG. 11, points P and Q are the same. That is, the external tooth portion of the external gear, which was located at the point P on the X-axis in the state of a perfect circle before deformation, moves to the point Q at the time of meshing.

【0047】又、図12の曲線A1−D1(曲線B1−
C1)の曲率半径は、図11の曲線A2−D2(曲線B
2−C2)の曲率半径(曲線A−D(曲線B−C)の曲
率半径)よりも小さく、その割合は「仮想外歯歯車の歯
数/外歯歯車の歯数」に相当する。
The curve A1-D1 (curve B1-
The curvature radius of C1) is the curve A2-D2 (curve B) of FIG.
2-C2) is smaller than the radius of curvature (the radius of curvature of the curve A-D (curve B-C)), and the ratio thereof corresponds to "the number of teeth of the virtual external gear / the number of teeth of the external gear".

【0048】従って、点A→点A2(点B→点B2、点
C→点C2、点D→点D2)へのX軸方向の移動距離よ
りも、A→A1(B→B1、C→C1、D→D1)への
X軸方向の移動距離の方が短くなる。しかも、θ1は
(外歯歯車の歯数/仮想外歯歯車の歯数)×θであるた
め、θ1>θである。そのため曲線A−B→曲線A1−
B1(曲線C−D→曲線C1−D1)への変形は、A
−A1間とA−A2間のX軸方向の距離の差、及び点
A1、B1での曲線A1−B1の接線の傾きと、点A
2、B2での曲線A2−B2の接線の傾きの差、によっ
て曲線A−B→曲線A2−B2(曲線C−D→曲線C2
−D2)への変形よりも容易に行うことができる。
Therefore, rather than the moving distance in the X-axis direction from point A → point A2 (point B → point B2, point C → point C2, point D → point D2), A → A1 (B → B1, C → The moving distance in the X-axis direction from C1, D → D1) becomes shorter. Moreover, since θ1 is (number of teeth of external gear / number of teeth of virtual external gear) × θ, θ1> θ. Therefore, curve AB → curve A1-
The transformation from B1 (curve C-D to curve C1-D1) is A
-A1 and A-A2 distance difference in the X-axis direction, and the slope of the tangent to the curve A1-B1 at points A1 and B1 and point A
2, the difference in the tangent slopes of the curve A2-B2 at B2, the curve AB → the curve A2-B2 (curve CD → curve C2
-D2) can be performed more easily.

【0049】従って、外歯歯車の変形による曲げ応力が
その分低減され、ひいては外歯歯車の曲げ応力により制
限されていた伝達可能トルクを増大させることができる
ようになる。
Therefore, the bending stress due to the deformation of the external gear is reduced accordingly, and the transmittable torque limited by the bending stress of the external gear can be increased.

【0050】しかも噛合部分では、外歯歯車は仮想外歯
歯車の曲率半径に変形すると共に、その噛合部分の歯形
が仮想外歯歯車の歯形と同一形状となるように予め形成
されているため、内歯歯車と外歯歯車は、(歯数差が実
際はIでありながら)あたかも歯数差がNであるかのよ
うに完全に理論噛合することになる。
Further, at the meshing portion, the external gear is deformed to the radius of curvature of the virtual external gear, and the tooth profile of the meshing portion is formed in advance so as to have the same shape as the virtual external gear. The internal gear and the external gear are completely theoretically meshed (as if the tooth number difference is actually I) as if the tooth number difference is N.

【0051】ところでこの場合も、内歯歯車の内歯と外
歯歯車の外歯の歯形形状を、特願平4−202295号
と同様に設定した例を提示している。
Also in this case, an example is shown in which the tooth profile of the internal teeth of the internal gear and the external teeth of the external gear is set in the same manner as in Japanese Patent Application No. 4-202295.

【0052】即ち、仮想外歯歯車と内歯歯車との歯数差
をNとした場合、仮想外歯歯車の歯形は、N個のエピト
ロコイド平行曲線を位相をずらせて重ね合わせた時にで
きる最も内側の曲線を基準にして構成し、又内歯歯車の
歯形は、前記エピトロコイド平行曲線と噛合うN個のト
ロコイド内包絡線を、前記仮想外歯歯車と同じだけ位相
をずらせて重ね合わせた時にできる最も内側の曲線を基
準に構成したものである。
That is, when the difference in the number of teeth between the virtual external gear and the internal gear is N, the tooth profile of the virtual external gear is the most possible when N epitrochoid parallel curves are superposed with their phases shifted. The tooth profile of the internal gear is based on the inner curve, and the N trochoid internal envelopes meshing with the epitrochoid parallel curve are superposed with the same phase offset as the virtual external gear. It is constructed based on the innermost curve that can be made at times.

【0053】以上のように、先に揚げた3つの未公知先
行技術(特願平4−202295号、特願平4−142
515号、特願平5−4463号)では、いずれも基本
的に同一の歯形を採用している。即ち、外歯歯車(特願
平5−4463号のみ仮想外歯歯車)と内歯歯車の歯数
差をN(N:2以上の整数)とし、外歯歯車(仮想外歯
歯車)の歯形は、N個のエピトロコイド平行曲線を互い
に位相をずらせて重ね合わせた時にできる最も内側の曲
線を基準にして構成し、又、内歯歯車の歯形は、前記エ
ピトロコイド平行曲線と噛合うN個のトロコイド内包絡
線を互いに前記外歯歯車と同量だけ位相をずらせて重ね
合わせた時にできる最も内側の曲線を基準にして構成し
たものとなっている。
As described above, the three previously-noted prior arts (Japanese Patent Application No. 4-202295 and Japanese Patent Application No. 4-142) which have been previously fried.
No. 515 and Japanese Patent Application No. 5-4463) basically employ the same tooth profile. That is, the tooth profile of the external gear (virtual external gear) is defined as N (N: an integer of 2 or more) and the difference in the number of teeth between the external gear (only Japanese Patent Application No. 5-4463 is a virtual external gear). Is based on the innermost curve formed by superimposing N epitrochoid parallel curves with their phases shifted from each other, and the tooth profile of the internal gear has N tooth profiles that mesh with the epitrochoid parallel curve. The trochoidal internal envelope of the above is constructed with reference to the innermost curve formed when the trochoidal internal envelopes are overlapped with each other by shifting the phase by the same amount as the external gear.

【0054】図13、図14にこれを例示する。図13
は内接噛合遊星歯車構造の場合の内歯11と外歯9を示
し、図9は撓み噛合い式歯車噛合構造の場合の内歯33
Aと外歯31Aを示す。未公知の歯形であるため、内接
噛合遊星歯車構造の場合を例にとってこの歯形の不具合
を少し説明しておく。撓み噛合い式歯車噛合構造の場合
も同様である。
This is illustrated in FIGS. 13 and 14. FIG.
Shows the internal teeth 11 and the external teeth 9 in the case of the internally meshing planetary gear structure, and FIG. 9 shows the internal teeth 33 in the case of the flexible mesh type gear mesh structure.
A and external teeth 31A are shown. Since the tooth profile is not known, the problem of this tooth profile will be described a little by taking the case of the internally meshing planetary gear structure as an example. The same applies to the case of the flexible mesh type gear mesh structure.

【0055】図15は図13に示した歯形の拡大図であ
る。
FIG. 15 is an enlarged view of the tooth profile shown in FIG.

【0056】この歯形において、歯面の負荷能力を上げ
るには、図の内歯11の歯形曲線のうち、円弧部分Pの
円弧の曲率を大きくした方が、主要な噛合位置での外歯
9と内歯11の相対的な曲率半径が大きくなり、歯面の
面圧を低下させるので好ましい。
In this tooth profile, in order to increase the load capacity of the tooth surface, it is preferable to increase the curvature of the arc of the arc portion P of the tooth profile curve of the internal tooth 11 in the figure to the external tooth 9 at the main meshing position. The relative radius of curvature of the inner teeth 11 is increased, and the surface pressure of the tooth surface is reduced, which is preferable.

【0057】しかしながら、円弧部分Pの曲率を図16
に示すように大きくし過ぎると、図17に示すように、
外歯歯車5と内歯歯車10の噛合い歯数が減り、逆効果
となるため、円弧部分Pの曲率を大きくするのは困難が
伴っていた。
However, the curvature of the arc portion P is shown in FIG.
If it is made too large as shown in FIG.
Since the number of meshing teeth of the external gear 5 and the internal gear 10 is reduced, which has the opposite effect, it is difficult to increase the curvature of the arc portion P.

【0058】請求項1〜3の発明は、このように同一の
歯形を与えられていた未公知先行技術である特願平4−
202295号、特願平4−142515号、特願平5
−4463号の構造を基礎とし、それぞれに同一技術思
想に係る一層改良した歯形を与えたものである。
The inventions of claims 1 to 3 are the unexplained prior arts in which the same tooth profile is given in this way.
No. 202295, Japanese Patent Application No. 4-142515, Japanese Patent Application No. 5
Based on the structure of No. -4463, each is given a further improved tooth profile according to the same technical idea.

【0059】即ち、外歯と内歯の歯形を「課題を解決す
るための手段」の項で説明したように構成したことによ
り、円弧部の曲率半径を大きくすることができ、しかも
その場合の噛合い歯数は先行技術のものと変わらなくす
ることができる。従って、面圧を低下させることがで
き、歯面の負荷能力を高めることができる。
That is, since the tooth profile of the external tooth and the internal tooth is configured as described in the section "Means for solving the problem", the radius of curvature of the arc portion can be increased, and in that case. The number of meshing teeth can be the same as in the prior art. Therefore, the surface pressure can be reduced and the load capacity of the tooth surface can be increased.

【0060】[0060]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0061】図1は請求項1の発明の一実施例の内接噛
合遊星歯車構造の外歯109と内歯111を示す。この
実施例では、外歯109の歯形及び内歯111の歯形が
従来例1と異なるだけで、他は図6、図7に示すものと
同じ構成を採用している。よって、以下においては、主
に外歯109の歯形及び内歯111の歯形について説明
し、他の説明については省略する。
FIG. 1 shows the outer teeth 109 and the inner teeth 111 of the internally meshing planetary gear structure according to the first embodiment of the invention. In this embodiment, the tooth profile of the outer teeth 109 and the tooth profile of the inner teeth 111 are different from those of the conventional example 1, and the other configurations are the same as those shown in FIGS. 6 and 7. Therefore, hereinafter, the tooth profile of the outer teeth 109 and the tooth profile of the inner teeth 111 will be mainly described, and the other description will be omitted.

【0062】本実施例では、外歯歯車と内歯歯車の歯数
差は2となっている(N=2)。
In this embodiment, the difference in the number of teeth between the external gear and the internal gear is 2 (N = 2).

【0063】まず、図を用いて外歯歯車の外歯の歯形に
ついて説明する。
First, the tooth profile of the external teeth of the external gear will be described with reference to the drawings.

【0064】外歯歯車の外歯の歯形は、図4に示すよう
に、2個の仮想外歯歯形曲線200A、200Bを、互
いに1歯の1/2だけ位相をずらせて重ね合わせた時の
最も外側の曲線で構成されている。
As shown in FIG. 4, the tooth profile of the external teeth of the external gear is obtained by superimposing two virtual external tooth profile curves 200A and 200B with a phase difference of 1/2 of one tooth from each other. It is composed of the outermost curves.

【0065】ここで、仮想外歯歯形曲線200A、20
0Bは、図3に示すように、2個のエピトロコイド平行
曲線201A、201Bを、互いに1歯の1/4だけ位
相をずらせて重ね合わせた時の最も内側の曲線で構成さ
れている。この場合、エピトロコイド平行曲線をどれだ
けずらすかについては任意でよい。
Here, the virtual external tooth profile curves 200A, 20
As shown in FIG. 3, OB is composed of two epitrochoid parallel curves 201A and 201B, which are the innermost curves when they are overlapped with each other by shifting the phase by 1/4 of one tooth. In this case, the offset of the epitrochoid parallel curve may be arbitrary.

【0066】なお、本例では、外歯と内歯の歯数差Nが
2であるので、2個の仮想外歯歯形曲線200A、20
0Bを互いに1歯の1/2だけ位相をずらせたのであ
り、歯数差Nが3の場合は3個の仮想外歯歯形曲線を互
いに1歯の1/3だけ位相をずらせて重ね合わせる。こ
れは仮想外歯歯形曲線を構成する時も同様であり、3個
のエピトロコイド平行曲線を任意の量だけ位相をずらし
て重ね合わせる。
In this example, since the tooth number difference N between the external teeth and the internal teeth is 2, two virtual external tooth profile curves 200A, 20
Since 0B is out of phase with each other by 1/2 of one tooth, when the tooth number difference N is 3, three virtual external tooth profile curves are overlapped with each other by being out of phase with one third of one tooth. This is also the same when constructing the virtual external tooth profile curve, and the three epitrochoid parallel curves are superposed with the phase shifted by an arbitrary amount.

【0067】本実施例に戻って、内歯の歯形についても
外歯の場合と同様に、N=2であるから、前記エピトロ
コイド平行曲線と噛合う2個のトロコイド内包絡線を互
いに1歯の1/4だけ位相をずらせて重ね合わせた時の
最も内側の曲線を仮想内歯歯形曲線とし、2個の仮想内
歯歯形曲線を互いに1歯の1/N=1/2だけ位相をず
らせて重ね合わせた時の最も外側の曲線により、内歯の
歯形曲線を構成する。
Returning to the present embodiment, the tooth profile of the internal tooth is N = 2 as in the case of the external tooth, so that two trochoid internal envelopes meshing with the epitrochoid parallel curve are formed into one tooth. The phase of the innermost curve when the phases are overlapped with each other by 1/4 of the above is set as the virtual internal tooth profile curve, and the two virtual internal tooth profile curves are shifted in phase by 1 / N = 1/2 of one tooth. The outermost curve when superposed on each other constitutes the tooth profile curve of the internal tooth.

【0068】このように、エピトロコイド平行曲線及び
トロコイド内包絡線の位相をずらせて重ね合わせる場
合、ずらしの量自体は任意であるが両者のずらせ方は同
一にしなければならない。ここでは前述したように両者
共1歯の1/4だけ位相をずらせている。又、実際に使
用する場合は、外歯と内歯の歯先又は歯元を適当に丸め
る等の修整を行うと良い。
As described above, when the epitrochoid parallel curve and the trochoid internal envelope are shifted in phase and overlapped with each other, the shift amount itself is arbitrary, but both shifts must be the same. Here, as described above, both are shifted in phase by 1/4 of one tooth. In addition, when actually used, it is advisable to make modifications such as appropriately rounding the tips or roots of the outer and inner teeth.

【0069】こうして得られた外歯歯車と内歯歯車の噛
合状態は図2に示すようになる。この歯形の形状によれ
ば、円弧部の曲率半径を、図16、図17で示したもの
と同じ程度に大きくすることができる。しかもその場合
の噛合い歯数は未公知先行技術のものと変わらなくする
ことができる。従って、面圧を低下させることができ、
歯面の負荷能力を高めることができる。
The meshing state of the external gear and the internal gear thus obtained is as shown in FIG. According to this tooth profile, the radius of curvature of the arc portion can be increased to the same extent as that shown in FIGS. In addition, the number of meshing teeth in that case can be made the same as that of the unknown prior art. Therefore, the surface pressure can be reduced,
The load capacity of the tooth surface can be increased.

【0070】上記実施例では、上述のように構成した内
歯111と外歯109を内接噛合遊星歯車構造に適用し
た場合を示したが、上述した撓み噛合い式歯車噛合構造
(特願平4−142515号、特願平5−4463号)
の内歯と外歯(仮想外歯)の歯形曲線の代わりに、上記
内歯111と外歯109の歯形曲線を用いることによ
り、撓み噛合い式歯車噛合構造においても、歯面の面圧
低減をより効果的に実現することができるようになる
(請求項2、3の実施例に相当)。図5はその場合の例
を示し、131Aが同歯形曲線を採用した外歯、133
Aが同歯形曲線を採用した内歯を示す。
In the above embodiment, the case where the internal teeth 111 and the external teeth 109 configured as described above are applied to the internally meshing planetary gear structure has been described. However, the above-described flexible meshing gear meshing structure (Japanese Patent Application No. No. 4-142515, Japanese Patent Application No. 5-4463)
By using the tooth profile curves of the inner teeth 111 and the outer teeth 109 instead of the tooth profile curves of the inner teeth and the outer teeth (virtual outer teeth) of FIG. Can be realized more effectively (corresponding to the embodiments of claims 2 and 3). FIG. 5 shows an example in that case, in which 131A is an external tooth 133 adopting the same tooth profile curve.
A shows the internal tooth which adopted the same tooth profile curve.

【0071】[0071]

【発明の効果】以上説明したように、本発明の内接噛合
遊星歯車構造あるいは撓み噛合い式歯車噛合構造によれ
ば、円弧部分の曲率を大きくしても噛合い歯数が減少し
なくなる。このため、歯面の面圧を下げることができ、
負荷能力を向上することができ、その結果、歯車の強度
を向上させることができて、軽量、コンパクト、高性能
な減速機あるいは増速機を提供することができるように
なる。
As described above, according to the internally meshing planetary gear structure or the flexible meshing gear meshing structure of the present invention, the number of meshing teeth does not decrease even if the curvature of the arc portion is increased. Therefore, the surface pressure of the tooth surface can be reduced,
The load capacity can be improved, and as a result, the strength of the gear can be improved, and a lightweight, compact, high-performance reducer or speed increaser can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における外歯と内歯の歯形の
拡大図
FIG. 1 is an enlarged view of tooth profiles of an external tooth and an internal tooth according to an embodiment of the present invention.

【図2】同実施例における外歯と内歯の噛合部の拡大図FIG. 2 is an enlarged view of a meshing portion of external teeth and internal teeth in the embodiment.

【図3】同実施例の外歯の歯形曲線を作成する際に用い
る仮想外歯歯形曲線の説明図
FIG. 3 is an explanatory diagram of a virtual external tooth profile curve used when creating a tooth profile curve of an external tooth of the embodiment.

【図4】同実施例の外歯の歯形曲線を作成する場合の原
理説明図
FIG. 4 is an explanatory view of the principle of creating the tooth profile curve of the external tooth of the embodiment.

【図5】本発明の他の実施例における外歯と内歯の噛合
FIG. 5 is a meshing diagram of external teeth and internal teeth in another embodiment of the present invention.

【図6】本発明の一実施例と従来技術に共通の内接噛合
遊星歯車構造の一例の全体構成を示す断面図
FIG. 6 is a cross-sectional view showing the overall configuration of an example of an internally meshing planetary gear structure common to one embodiment of the present invention and the prior art.

【図7】従来構造における図6のVII−VII線断面
7 is a sectional view taken along line VII-VII of FIG. 6 in the conventional structure.

【図8】従来の外歯歯車と内歯歯車の噛合図FIG. 8 is a meshing diagram of a conventional external gear and internal gear

【図9】本発明の他の実施例と従来技術に共通の撓み噛
合い式歯車噛合構造の一例の全体構成を示す断面図
FIG. 9 is a cross-sectional view showing an overall configuration of an example of a flexing mesh type gear meshing structure common to another embodiment of the present invention and the prior art.

【図10】従来構造における図9のX−X線断面図10 is a sectional view taken along line XX of FIG. 9 showing a conventional structure.

【図11】従来の外歯歯車の変形前(撓み前)及び変形
後(撓み後)の関係を示す線図
FIG. 11 is a diagram showing a relationship between a conventional external gear before deformation (before bending) and after deformation (after bending).

【図12】先行技術の外歯歯車の変形前(撓み前)及び
変形後(撓み後)の関係を示す線図
FIG. 12 is a diagram showing a relationship of a prior art external gear before deformation (before bending) and after deformation (after bending).

【図13】内接噛合遊星歯車構造の先行技術の外歯歯車
と内歯歯車の噛合図
FIG. 13 is a meshing diagram of a prior art external gear and internal gear having an internally meshing planetary gear structure.

【図14】撓み噛合い式歯車噛合構造の先行技術の外歯
歯車と内歯歯車の噛合図
FIG. 14 is a meshing diagram of a prior art external gear and internal gear having a flexible meshing gear meshing structure.

【図15】内接噛合遊星歯車構造の先行技術の外歯と内
歯の噛合状態を示す拡大図
FIG. 15 is an enlarged view showing a meshing state of external teeth and internal teeth of a prior art of internally meshing planetary gear structure.

【図16】図15の歯形の円弧部分Pの曲率を大きくし
た場合の噛合図
FIG. 16 is a meshing diagram when the curvature of the circular arc portion P of the tooth profile of FIG. 15 is increased.

【図17】図16の噛合状態の全体図FIG. 17 is an overall view of the meshed state of FIG.

【符号の説明】[Explanation of symbols]

1…入力軸(第1軸) 2…出力軸(第2軸) 3a、3b…偏心体 5a、5b…外歯歯車 109…外歯 10…内歯歯車 111…内歯 123…偏心体 128…外歯歯車 131A…外歯 132…内歯歯車 133A…内歯 134…仮想外歯歯車 200A、200B…仮想外歯歯形曲線 201A、201B…エピトロコイド平行曲線 DESCRIPTION OF SYMBOLS 1 ... Input shaft (1st shaft) 2 ... Output shaft (2nd shaft) 3a, 3b ... Eccentric body 5a, 5b ... External tooth gear 109 ... External tooth 10 ... Internal tooth gear 111 ... Internal tooth 123 ... Eccentric body 128 ... External tooth gear 131A ... External tooth 132 ... Internal tooth gear 133A ... Internal tooth 134 ... Virtual external tooth gear 200A, 200B ... Virtual external tooth profile curve 201A, 201B ... Epitrochoid parallel curve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1軸と、該第1軸に設けた偏心体を介し
てこの第1軸に対して偏心回転可能な状態で取付けられ
た複数枚の外歯歯車と、該外歯歯車が内接噛合する内歯
歯車と、前記外歯歯車に該外歯歯車の自転成分のみを伝
達する手段を介して連結された第2軸と、を備えた内接
噛合遊星歯車構造において、 前記外歯歯車と内歯歯車の歯数差をN(N:2以上の整
数)とし、 前記外歯歯車の歯形は、N個のエピトロコイド平行曲線
を位相をずらせて重ね合わせた時にできる最も内側の曲
線により構成されたN個の仮想外歯歯形曲線を、前記エ
ピトロコイド平行曲線における1歯の1/Nずつ位相を
ずらせて重ね合わせた時にできる最も外側の曲線を基準
にして構成し、 又、前記内歯歯車の歯形は、前記エピトロコイド平行曲
線と噛合うN個のトロコイド内包絡線を前記外歯歯車と
同じだけ位相をずらせて重ね合わせた時にできる最も内
側の曲線により構成されたN個の仮想内歯歯形曲線を、
前記トロコイド内包絡線における1歯の1/Nずつ位相
をずらせて重ね合わせた時にできる最も外側の曲線を基
準にして構成したことを特徴とする内接噛合遊星歯車構
造。
1. A first shaft, a plurality of external gears mounted in an eccentrically rotatable manner with respect to the first shaft via an eccentric body provided on the first shaft, and the external gear. In an internally meshing planetary gear structure, comprising: an internal gear that internally meshes; and a second shaft that is connected to the external gear via a means that transmits only the rotation component of the external gear. The difference in the number of teeth between the external gear and the internal gear is N (N: an integer of 2 or more), and the tooth profile of the external gear is the innermost when the N epitrochoid parallel curves are superposed with the phases shifted from each other. N virtual external tooth profile curves configured by the above curve are constructed with reference to the outermost curve formed when the phase is superposed by shifting the phase by 1 / N of one tooth in the epitrochoid parallel curve, and , The tooth profile of the internal gear is N that meshes with the epitrochoid parallel curve N number of virtual teeth tooth profile that is configured by the innermost curves can when the trochoidal the envelope superimposed by shifting as many phases as the external gear,
An intermeshing planetary gear structure, characterized in that it is configured with reference to an outermost curve formed when the teeth are overlapped with each other by shifting the phase by 1 / N of one tooth in the trochoid inner envelope.
【請求項2】剛性を有した内歯歯車と、該内歯歯車に内
接噛合する可撓性を有した外歯歯車と、該外歯歯車を撓
ませて変形させる波動発生器と、を備えた撓み噛合い式
歯車噛合構造において、 前記外歯歯車と内歯歯車の歯数差をN(N:2以上の整
数)とし、 前記外歯歯車の歯形は、N個のエピトロコイド平行曲線
を位相をずらせて重ね合わせた時にできる最も内側の曲
線により構成されたN個の仮想外歯歯形曲線を、前記エ
ピトロコイド平行曲線における1歯の1/Nずつ位相を
ずらせて重ね合わせた時にできる最も外側の曲線を基準
にして構成し、 又、前記内歯歯車の歯形は、前記エピトロコイド平行曲
線と噛合うN個のトロコイド内包絡線を前記外歯歯車と
同じだけ位相をずらせて重ね合わせた時にできる最も内
側の曲線により構成されたN個の仮想内歯歯形曲線を、
前記トロコイド内包絡線における1歯の1/Nずつ位相
をずらせて重ね合わせた時にできる最も外側の曲線を基
準にして構成したことを特徴とする撓み噛合い式歯車構
造。
2. An internal gear having rigidity, an external gear having flexibility that is internally meshed with the internal gear, and a wave generator that bends and deforms the external gear. In a flex meshing type gear meshing structure provided, a tooth number difference between the external gear and the internal gear is N (N: an integer of 2 or more), and the tooth profile of the external gear has N epitrochoid parallel curves. It is possible to superimpose N virtual external tooth profile curves formed by the innermost curves when they are superposed on each other by shifting the phase of each tooth by shifting the phase by 1 / N of one tooth in the epitrochoid parallel curve. The outermost curve is used as a reference, and the tooth profile of the internal gear is formed by superposing N trochoid internal envelopes meshing with the epitrochoid parallel curve with the same phase shift as the external gear. Composed of innermost curves N number of virtual teeth tooth curve,
A flexible mesh type gear structure, characterized in that it is configured with reference to an outermost curve formed when the teeth are overlapped by shifting the phase by 1 / N of one tooth in the trochoidal envelope.
【請求項3】剛性を有した内歯歯車と、該内歯歯車に内
接噛合可能な可撓性を有した外歯歯車と、該外歯歯車を
撓み変形させることによって前記内歯歯車と外歯歯車と
の内接噛合を実現させる波動発生器と、を備えた撓み噛
合い式歯車噛合構造において、 前記内歯歯車と外歯歯車との歯数差をIとしたときに、
前記内歯歯車との歯数差がIより大きなNで(I<
N)、且つ該内歯歯車と内接噛合する剛性を有した仮想
外歯歯車を想定し、 前記外歯歯車の歯形を、該外歯歯車が撓んだ結果、内歯
歯車と噛合する部分において前記仮想外歯歯車の歯形と
等しくなる形状に形成すると共に、 該外歯歯車の内歯歯車と噛合する部分における変形曲率
を、前記仮想外歯歯車の曲率と等しく設定し、 前記仮想外歯歯車の歯形は、N個のエピトロコイド平行
曲線を位相をずらせて重ね合わせた時にできる最も内側
の曲線により構成されたN個の仮想外歯歯形曲線を、前
記エピトロコイド平行曲線における1歯の1/Nずつ位
相をずらせて重ね合わせた時にできる最も外側の曲線を
基準にして構成し、 又、前記内歯歯車の歯形は、前記エピトロコイド平行曲
線と噛合うN個のトロコイド内包絡線を前記外歯歯車と
同じだけ位相をずらせて重ね合わせた時にできる最も内
側の曲線により構成されたN個の仮想内歯歯形曲線を、
前記トロコイド内包絡線における1歯の1/Nずつ位相
をずらせて重ね合わせた時にできる最も外側の曲線を基
準にして構成したことを特徴とする撓み噛合い式歯車構
造。
3. An internal gear having rigidity, an external gear having flexibility capable of being internally meshed with the internal gear, and the internal gear having the external gear flexibly deformed. In a flexural meshing gear meshing structure including a wave generator that achieves internal meshing with an external gear, when the difference in the number of teeth between the internal gear and the external gear is I,
When the difference in the number of teeth from the internal gear is N larger than I (I <
N), and assuming a virtual external gear having rigidity to be internally meshed with the internal gear, the tooth profile of the external gear is a portion that meshes with the internal gear as a result of bending of the external gear. In the same shape as the tooth profile of the virtual external gear, and the deformation curvature in the portion of the external gear that meshes with the internal gear is set to be equal to the curvature of the virtual external gear. The tooth profile of the gear has N virtual external tooth profile curves formed by the innermost curves formed when N epitrochoid parallel curves are superposed with the phases shifted from each other. / N is configured with reference to the outermost curve formed when the phases are overlapped by shifting by N, and the tooth profile of the internal gear has N trochoid internal envelopes that mesh with the epitrochoid parallel curve. Same as external gear N virtual internal tooth tooth profile curves composed of the innermost curves that can be created by shifting the phase by
A flexible mesh type gear structure, characterized in that it is configured with reference to an outermost curve formed when the teeth are overlapped by shifting the phase by 1 / N of one tooth in the trochoidal envelope.
JP31202993A 1993-12-13 1993-12-13 Internally meshing planetary gear structure and flexible meshing gear meshing structure Expired - Lifetime JP2828580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31202993A JP2828580B2 (en) 1993-12-13 1993-12-13 Internally meshing planetary gear structure and flexible meshing gear meshing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31202993A JP2828580B2 (en) 1993-12-13 1993-12-13 Internally meshing planetary gear structure and flexible meshing gear meshing structure

Publications (2)

Publication Number Publication Date
JPH07167227A true JPH07167227A (en) 1995-07-04
JP2828580B2 JP2828580B2 (en) 1998-11-25

Family

ID=18024369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31202993A Expired - Lifetime JP2828580B2 (en) 1993-12-13 1993-12-13 Internally meshing planetary gear structure and flexible meshing gear meshing structure

Country Status (1)

Country Link
JP (1) JP2828580B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002318A (en) * 2010-06-18 2012-01-05 Sumitomo Heavy Ind Ltd Flexible meshing-type gear device
JP5698333B1 (en) * 2013-10-28 2015-04-08 上銀科技股▲分▼有限公司 Harmonic reducer
CN107314085A (en) * 2017-08-21 2017-11-03 戴高楠 A kind of few teeth difference slowing-down structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002318A (en) * 2010-06-18 2012-01-05 Sumitomo Heavy Ind Ltd Flexible meshing-type gear device
JP5698333B1 (en) * 2013-10-28 2015-04-08 上銀科技股▲分▼有限公司 Harmonic reducer
CN107314085A (en) * 2017-08-21 2017-11-03 戴高楠 A kind of few teeth difference slowing-down structure

Also Published As

Publication number Publication date
JP2828580B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP3481335B2 (en) Inner mesh planetary gear
KR0157217B1 (en) Planetary gear speed changer
US3021731A (en) Planetary gear transmission
EP0693640B1 (en) Internally meshing planetary gear structure of the flexible gear type
JP4112461B2 (en) Inscribed mesh planetary gear mechanism
EP0501522B1 (en) Wave gear drive
US6905432B2 (en) Chain drive arrangement
JP3441160B2 (en) Overlapping contact tooth profile flexing gear system
JPS63254251A (en) Planetary gear speed variation gear
JP2003172419A (en) Ball type transmission
WO2006038901A1 (en) Planetary gear transmission
JP2828546B2 (en) Inner mesh planetary gear structure
JP2828580B2 (en) Internally meshing planetary gear structure and flexible meshing gear meshing structure
JPH05332404A (en) Flexure mesh type gear meshing structure
JP4107895B2 (en) Inscribed mesh planetary gear mechanism
JPH0534537B2 (en)
JP3034630B2 (en) Trochoid tooth type inscribed planetary gear structure
JPH06213287A (en) Flexible meshing type gear meshing construction
JP2808306B2 (en) Planetary gearbox
JP2000249200A (en) Internal engagement planetary gear device
JP2686337B2 (en) Inner mesh planetary gear structure
JPH03239842A (en) Internal mesh planet gear structure
JP2771407B2 (en) Flexible mesh gear meshing structure
JP2888699B2 (en) Flexible mesh gear meshing structure
JP4163043B2 (en) Internally meshing planetary gear structure with eccentric cam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090918

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14