JP2771407B2 - Flexible mesh gear meshing structure - Google Patents

Flexible mesh gear meshing structure

Info

Publication number
JP2771407B2
JP2771407B2 JP32409392A JP32409392A JP2771407B2 JP 2771407 B2 JP2771407 B2 JP 2771407B2 JP 32409392 A JP32409392 A JP 32409392A JP 32409392 A JP32409392 A JP 32409392A JP 2771407 B2 JP2771407 B2 JP 2771407B2
Authority
JP
Japan
Prior art keywords
gear
teeth
external
tooth
external gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32409392A
Other languages
Japanese (ja)
Other versions
JPH06174018A (en
Inventor
敏浩 石田
晃 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP32409392A priority Critical patent/JP2771407B2/en
Publication of JPH06174018A publication Critical patent/JPH06174018A/en
Application granted granted Critical
Publication of JP2771407B2 publication Critical patent/JP2771407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、小型の減速機、あるい
は増速機に適用するのに好適な、撓み噛合い式の歯車噛
合構造、即ちいわゆる波動歯車構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear meshing structure of a bending mesh type, that is, a so-called wave gear structure, which is suitable for being applied to a small reduction gear or a speed increasing gear.

【0002】[0002]

【従来の技術】従来、撓み噛合い式歯車噛合構造に関す
る技術として、例えば特開昭63−130949号公報
に記載のものが知られている。以下、これについて説明
する。
2. Description of the Related Art Conventionally, as a technique relating to a flexural meshing type gear meshing structure, for example, a technology described in Japanese Patent Application Laid-Open No. 63-130949 is known. Hereinafter, this will be described.

【0003】図3はこの従来技術の構造を示す断面図、
図4は図3のIV−IV線断面図である。この構造は一般に
波動歯車構造とも呼ばれている。
FIG. 3 is a sectional view showing the structure of the prior art.
FIG. 4 is a sectional view taken along line IV-IV of FIG. This structure is generally called a wave gear structure.

【0004】入力回転軸21には外スプライン22Aが
設けられており、該外スプライン22Aが、波動発生器
となる偏心体23に設けられた内スプライン22Bと結
合している。これらの偏心体23の外周には偏心体軸受
24が設けられている。偏心体軸受24の外周には外歯
歯車28が設けられており、該外歯歯車28はフランジ
部29、円環部30及び外歯部31とから構成されてい
る。外歯歯車28の外歯部31は偏心体軸受24の外輪
27の外周に位置している。
The input rotary shaft 21 is provided with an outer spline 22A, and the outer spline 22A is connected to an inner spline 22B provided on an eccentric body 23 serving as a wave generator. An eccentric body bearing 24 is provided on the outer periphery of these eccentric bodies 23. An external gear 28 is provided on the outer periphery of the eccentric bearing 24, and the external gear 28 includes a flange portion 29, a ring portion 30, and an external tooth portion 31. The external gear portion 31 of the external gear 28 is located on the outer periphery of the outer ring 27 of the eccentric bearing 24.

【0005】前記において、外輪27、円環部30及び
外歯部31は弾性変形可能となっている。外歯部31に
設けられた外歯31Aは、トロコイド歯形等からなって
おり、該外歯31Aは、内歯歯車32に回転可能に支持
されたピンにより構成された内歯33Aに噛合してい
る。
In the above description, the outer ring 27, the annular portion 30, and the external teeth 31 are elastically deformable. The external teeth 31A provided on the external tooth portion 31 have a trochoidal tooth shape or the like, and the external teeth 31A mesh with internal teeth 33A constituted by pins rotatably supported by the internal gear 32. I have.

【0006】内歯歯車32の内歯(ピン)33Aの数に
対して、外歯31Aの数は2歯だけ少なくなっている。
そして、外歯31Aの形状は、転円と基円の半径比が整
数であるエピトロコイド平行曲線の2個を、位相をずら
せて重ね合わせ、重なり合った個々の曲線のうち最も内
側にある曲線部分を歯形曲線としたものであり、特公昭
58−42382号(特許第1208548号)として
公知のものである。
The number of external teeth 31A is smaller by two than the number of internal teeth (pins) 33A of the internal gear 32.
The shape of the external teeth 31A is obtained by superposing two epitrochoid parallel curves in which the radius ratio of the inversion circle and the base circle is an integer with a phase shift, and arranging the innermost curve portion among the overlapping individual curves. Is a tooth profile curve, which is known as Japanese Patent Publication No. 58-42382 (Patent No. 1208548).

【0007】入力回転軸21の回転は波動発生器(偏心
体23)の回転となり、偏心体23は偏心体軸受24を
介して外歯歯車28の外歯部31を変形させる。偏心体
23の突部により変形させられた外歯部31は、その外
歯31Aが内歯(ピン)33Aと噛合し、偏心体23の
1回転の間に外歯31Aとピン33Aとの歯数差だけ位
相がずれ、そのずれが外歯歯車28の回転となって出力
軸34に伝達される。本例では具体的には外歯31Aが
100歯、内歯(ピン)33Aが102歯あり、その歯
数差は2であり減速比は(−2/100=−1/50)
となる。
The rotation of the input rotary shaft 21 is the rotation of the wave generator (eccentric body 23), and the eccentric body 23 deforms the external teeth 31 of the external gear 28 via the eccentric bearing 24. The external teeth 31 deformed by the projections of the eccentric body 23 have their external teeth 31A meshed with the internal teeth (pins) 33A, and the teeth of the external teeth 31A and the pins 33A during one rotation of the eccentric body 23. The phase is shifted by the number difference, and the shift is transmitted to the output shaft 34 as the rotation of the external gear 28. Specifically, in this example, there are 100 external teeth 31A and 102 internal teeth (pins) 33A, the difference in the number of teeth is 2 and the reduction ratio is (−2 / 100 = −1 / 50).
Becomes

【0008】内歯歯車32はこの実施例では固定されて
いる。しかしながら、外歯歯車28と内歯歯車32とは
一方を固定すると他方が出力側となる相対的なものであ
り、又、入力回転軸は出力軸を入力側とすれば増速して
取り出す出力軸ともなる。
The internal gear 32 is fixed in this embodiment. However, the external gear 28 and the internal gear 32 are relative to each other when one is fixed and the other is on the output side. When the output shaft is on the input side, the output rotational speed is increased and the output is taken out. It is also an axis.

【0009】この様な従来公知の歯車装置では、内歯歯
車32の円弧歯形部分である内歯(ピン)33Aとトロ
コイド歯形等からなる外歯歯車28の外歯31Aを噛み
合わせるようにしたものであるため、内歯歯車32と外
歯歯車28は一つの接触点をもって接触する。
In such a conventionally known gear device, an internal tooth (pin) 33A which is an arc-shaped tooth portion of the internal gear 32 is meshed with an external tooth 31A of an external gear 28 having a trochoid tooth shape or the like. Therefore, the internal gear 32 and the external gear 28 come into contact with one contact point.

【0010】したがって、同一半径の円弧歯形よりなる
内歯歯車32では、歯面の面圧の制限に応じて、概ねそ
の負荷荷重が決まってしまい、波動歯車装置の小型化、
高負荷容量化には限界があった。
Therefore, in the internal gear 32 having the arcuate teeth of the same radius, the applied load is generally determined according to the restriction of the contact pressure on the tooth surface, so that the wave gear device can be downsized.
There was a limit to high load capacity.

【0011】一方、内歯歯車の歯形に円弧歯形(外ピ
ン)を用い、更に剛性を有する外歯歯車の歯形にトロコ
イド系歯形を用いた「歯数差1」の遊星歯車減速機(出
願人所有に係る登録商標<サイクロ減速機>として周
知)において、例えば特公昭63−4056号(特許第
1467598号)に示されるように、歯形の改良によ
り前述の問題(歯面の負荷荷重の制限)の解決を図った
技術が提案されている。
On the other hand, a planetary gear reducer having a "difference in the number of teeth" of 1 using an arc tooth profile (outer pin) as the tooth profile of the internal gear and a trochoidal tooth profile as the tooth profile of the rigid external gear further. As described in Japanese Patent Publication No. Sho 63-4056 (Japanese Patent No. 1467598), the above-mentioned problem (restriction of the load applied to the tooth surface) has been described in Japanese Patent Publication No. 63-4056 (Japanese Patent No. 1467598). A technique for solving the problem has been proposed.

【0012】この技術内容を、図5〜図9を用いて簡単
に説明する。
The technical contents will be briefly described with reference to FIGS.

【0013】図5は、この遊星歯車減速機の一部を破断
して示した全体概略図である。図6は、図5のVI−VI線
に沿った断面図に相当し、図7、図8、図9は、図6の
荷重伝達に有効なa 、b 、c 部分を拡大して示したもの
である。
FIG. 5 is an overall schematic view showing a part of the planetary gear reducer in a cutaway manner. FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5, and FIGS. 7, 8, and 9 are enlarged views of a, b, and c portions effective for load transmission of FIG. Things.

【0014】これらの図面から明らかなように、内歯歯
車1′は、相隣接する円弧歯形部分P、Pと、外歯歯車
2の歯形がエピトロコイド平行曲線であるときの相手歯
形として求めた内歯歯車1′の歯形部分Qとから合成し
た、両端に円弧歯形を含むトロコイド内包絡線を歯形と
したものである。
As is clear from these drawings, the internal gear 1 'was determined as the mating tooth profile when the adjacent arc tooth profile portions P, P and the tooth profile of the external gear 2 are epitrochoid parallel curves. The tooth profile is a trochoid internal envelope including arcuate teeth at both ends, synthesized from the tooth profile portion Q of the internal gear 1 '.

【0015】このような内歯歯車1′とエピトロコイド
平行曲線を歯形とする外歯歯車2とを噛合させると、内
歯歯車1′と外歯歯車2とは、両者の接触点(噛合点)
が荷重伝達に有効な位置において内歯歯車1′の歯形を
構成する包絡線の円弧歯形部分Pの接触点の他に、歯形
部分Qにおいても接触点を持つ2点接触で噛合する。
When the internal gear 1 'is meshed with the external gear 2 having an epitrochoid parallel curve as a tooth profile, the internal gear 1' and the external gear 2 are brought into contact with each other (meshing point). )
At the position effective for load transmission, in addition to the contact point of the arc-shaped tooth portion P of the envelope forming the tooth profile of the internal gear 1 ', the tooth profile portion Q meshes with the two-point contact having the contact point.

【0016】そして、この2つの接触部分は共に歯車の
機構学的な歯形の条件を満足しているため、各々の2つ
の接触点は動力伝達に有効に作用する。この結果、歯面
の負荷荷重の向上を達成しているものである。
Since the two contact portions both satisfy the conditions of the mechanical tooth profile of the gear, each of the two contact points effectively acts on power transmission. As a result, the load applied to the tooth surface is improved.

【0017】[0017]

【発明が解決しようとする課題】今、前述した波動歯車
装置に、上記特公昭63−4056の歯形(歯数差1の
場合の2点接触歯形)を適用する場合を考える。
Now, consider the case where the tooth profile of the above-mentioned Japanese Patent Publication No. Sho 63-4056 (two-point contact tooth profile with a difference in the number of teeth of 1) is applied to the above-mentioned wave gear device.

【0018】この場合、上記遊星歯車減速機では外歯歯
車と内歯歯車の歯数差が1であるのに対し、波動歯車装
置では歯数差を2以上の整数にする必要がある。これは
波動歯車装置においては、動力学的なバランスから歯数
差は、波動発生器となる偏心体23の突部の整数倍であ
ることが望ましいためである。即ち、偏心体23の突部
が荷重をバランスさせる為に一般に2以上であるので、
歯数差も2以上の整数が望ましいということになるため
である。
In this case, in the planetary gear reducer, the difference in the number of teeth between the external gear and the internal gear is 1, whereas in the wave gear device, the difference in the number of teeth needs to be an integer of 2 or more. This is because, in the wave gear device, the difference in the number of teeth is desirably an integral multiple of the protrusion of the eccentric body 23 serving as a wave generator from the viewpoint of dynamic balance. That is, since the protrusion of the eccentric body 23 is generally two or more in order to balance the load,
This is because the difference in the number of teeth is preferably an integer of 2 or more.

【0019】従って、このままでは上記2点接触歯形を
波動歯車装置に直接適用することはできない。
Therefore, the two-point contact tooth profile cannot be directly applied to the wave gear device.

【0020】本発明者らは、このような点に鑑み、従来
の遊星歯車減速機において用いられている歯数差1の2
点接触歯形を基本にして内歯と外歯の歯形を構成するこ
とにより、歯数差が2以上となる撓み噛合式歯車噛合構
造への適用を可能とし、軽量、コンパクトで高性能な減
速機あるいは増速機を実現できるようにした撓み噛合い
式歯車噛合構造を先に提案した(特願平4−14251
5:平成4年6月3日)。
In view of such a point, the present inventors consider that the difference in the number of teeth 1 used in the conventional planetary gear reducer is 2
Lightweight, compact and high-performance reduction gears that can be applied to a flexible meshing gear meshing structure where the difference in the number of teeth is 2 or more by configuring the tooth profile of the internal teeth and the external teeth based on the point contact tooth profile. Alternatively, a bending-mesh type gear meshing structure capable of realizing a gearbox was previously proposed (Japanese Patent Application No. 4-142251).
5: June 3, 1992).

【0021】この構造は、剛性を有した内歯歯車と、該
内歯歯車に内接噛合する可撓性を有した外歯歯車と、該
外歯歯車を撓ませて変形させる波動発生器と、を備えた
撓み噛合い式歯車噛合構造において、前記外歯歯車と内
歯歯車の歯数差をi (i :2以上の整数)とし、前記外
歯歯車の歯形は、i 個のエピトロコイド平行曲線を互い
に位相をずらせて重ね合わせた時にできる最も内側の曲
線を基準にして構成し、又、前記内歯歯車の歯形は、前
記エピトロコイド平行曲線と噛合うi 個のトロコイド内
包絡線を互いに前記外歯歯車と同量だけ位相をずらせて
重ね合わせた時にできる最も内側の曲線を基準にして構
成したものである。
This structure comprises an internal gear having rigidity, an external gear having flexibility which is internally meshed with the internal gear, and a wave generator which deflects and deforms the external gear. , The difference between the number of teeth of the external gear and the number of teeth of the internal gear is i (i: an integer of 2 or more), and the tooth shape of the external gear is i epitrochoids. The parallel curves are constructed on the basis of the innermost curve formed when they are superposed out of phase with each other, and the tooth profile of the internal gear has i trochoid inner envelopes meshing with the epitrochoid parallel curve. The configuration is based on the innermost curve formed when the external gears are overlapped with the phase shifted by the same amount as the external gear.

【0022】この結果、前記特公昭63−4056号公
報に記載の歯数差1の2点接触歯形を歯数差が2以上の
波動歯車装置にも良好に適用することができ、外歯歯車
の外歯と内歯歯車の内歯とを、荷重伝達に有効な位置に
おいて多点接触(噛合)させることができるようになっ
た。
As a result, the two-point contact tooth profile with a tooth difference of 1 described in JP-B-63-4056 can be applied to a wave gear device having a tooth difference of 2 or more. The external teeth and the internal teeth of the internal gear can be brought into multipoint contact (engagement) at a position effective for load transmission.

【0023】ところで、図10は歯数差i =2の場合を
示したものであるが、各々のエピトロコイド平行曲線に
ついて見ると、曲線の谷にあたる部分のみが外歯131
Aを形成していることが分かる。
FIG. 10 shows the case where the number of teeth is i = 2. When looking at each epitrochoid parallel curve, only the portion corresponding to the valley of the curve is the outer teeth 131.
It can be seen that A is formed.

【0024】図11は、エピトロコイド平行曲線のう
ち、実際に外歯を形成する部分が曲線の重ね合せの数i
によってどう変化するを示したものである。図11中の
点Aが谷の最凹部、点Fが山の最凸部を示し、曲線A
F、AE、AD、AC、ABが、各々i =1、2、4、
6、8の場合に外歯を形成する部分となる。
FIG. 11 shows that, of the epitrochoid parallel curves, the part that actually forms the external teeth is the number i of the superposition of the curves.
It shows how it changes according to. Point A in FIG. 11 indicates the most concave portion of the valley, point F indicates the most convex portion of the peak, and curve A
F, AE, AD, AC, and AB are i = 1, 2, 4,
In the cases of 6 and 8, the outer teeth are formed.

【0025】このように、撓み噛合い式歯車噛合構造で
は動力学的なバランスをとるため、あるいは噛合部1歯
当りの負担を低減するため、i 箇所で内歯歯車と外歯歯
車とを噛合させることが多く、従って内歯歯車と外歯歯
車の歯数差i も2以上となり、該歯数差i はどうしても
大きくなり易い。
As described above, in order to achieve a dynamic balance or reduce the load per tooth of the meshing portion, the internal gear and the external gear are meshed at the point i in the bending mesh type gear meshing structure. In many cases, the difference i between the number of teeth of the internal gear and the number of teeth of the external gear is 2 or more, and the difference i is likely to be large.

【0026】しかるに、このように歯数差i が大きくな
る程、谷付近の限られた部分のみが現実に歯形を形成し
て前述の噛合に利用されるようになるという問題が発生
する。しかも、2点接触噛合の場合、図7、図8、図9
で示されるように、噛合の浅い状態では1つであった接
触点が、噛合が深くなっていく過程のある時点から2つ
に分かれ、各々山側と谷側に移動していくものである。
このため、歯数差i が2より大きく、噛合が更に深くな
ると、山側の接触点は、エピトロコイド平行曲線のうち
実際に歯形としては利用されない仮想部分に入ってしま
うため、接触点は谷側のみの1つに戻ることになり、結
局2点接触噛合という特徴を十分に活かすことが現実と
してできなくなる。
However, as the difference i in the number of teeth increases, a problem arises in that only a limited portion near the valley actually forms a tooth profile and is used for the above-described meshing. In addition, in the case of two-point contact meshing, FIGS.
As shown by, the contact point which was one in the state of shallow meshing is divided into two from a certain point in the process of deepening meshing, and moves toward the peak side and the valley side, respectively.
For this reason, when the tooth number difference i is larger than 2 and the meshing is further deepened, the contact point on the mountain side enters a virtual part of the epitrochoid parallel curve which is not actually used as the tooth shape, and the contact point is on the valley side. In this case, it becomes impossible to make full use of the feature of the two-point contact engagement.

【0027】本発明は、このような問題に鑑みて成され
たものであって、歯数差i が大きく、従って2点接触噛
合の歯形構造を有効利用できないような状況にあって
も、これをより有効に利用することができ、1歯1歯が
より大きな負荷荷重に耐え得るような撓み噛合い式歯車
噛合構造を提供することを目的とする。
The present invention has been made in view of such a problem, and even in a situation where the difference in the number of teeth i is large and the tooth structure of two-point contact meshing cannot be used effectively, It is an object of the present invention to provide a flexible meshing gear meshing structure in which each tooth can be used more effectively and each tooth can withstand a larger load.

【0028】[0028]

【課題を解決するための手段】本発明は、剛性を有した
内歯歯車と、該内歯歯車に内接噛合可能な可撓性を有し
た外歯歯車と、該外歯歯車と撓み変形させることによっ
て前記内歯歯車と外歯歯車との内接噛合を実現させる波
動発生器と、を備えた撓み噛合い式歯車噛合構造におい
て、前記内歯歯車と外歯歯車との歯数差をi としたとき
に、前記内歯歯車との歯数差がi 未満のj で(i >j
)、且つ該内歯歯車と内接噛合する剛性を有した仮想
外歯歯車を想定し、前記内歯歯車の歯形を、該想定した
仮想外歯歯車と2点接触噛合する形状に形成すると共
に、前記外歯歯車の歯形を、該外歯歯車が撓んだ結果、
内歯歯車と噛合する部分において前記仮想外歯歯車の歯
形と等しくなる形状に形成したことにより、上記課題を
解決したものである。
SUMMARY OF THE INVENTION The present invention provides an internal gear having rigidity, a flexible external gear which can be internally meshed with the internal gear, and a flexible deformation of the external gear. And a wave generator that realizes internal meshing between the internal gear and the external gear by causing the internal gear and the external gear to have a tooth mesh difference. i, the difference in the number of teeth from the internal gear is j less than i (i> j
Assuming a virtual external gear having rigidity that meshes internally with the internal gear, the tooth profile of the internal gear is formed into a shape that meshes with the assumed virtual external gear at two points. The tooth profile of the external gear, as a result of the external gear flexing,
The above-mentioned problem has been solved by forming a portion that meshes with the internal gear in a shape that is equal to the tooth profile of the virtual external gear.

【0029】[0029]

【作用】本発明では、外歯歯車と内歯歯車との歯数差が
i であったときに、当該歯数差i に着目して内歯歯車及
び外歯歯車の歯形を決定するという従来の設計思想を改
め、この歯数差i よりも小さな歯数差j となるような外
歯歯車を仮想的に想定するようにした。
According to the present invention, the difference in the number of teeth between the external gear and the internal gear is determined.
In the case of i, the conventional design concept of determining the tooth profile of the internal gear and the external gear by paying attention to the tooth number difference i is revised, and the tooth number difference j smaller than the tooth number difference i is obtained. Such an external gear is assumed virtually.

【0030】この仮想外歯歯車は、剛性を有するもの
で、従って、タイプとしては、例えば前述の特公昭60
−4056に示されるような遊星歯車減速機(サイクロ
減速機:登録商標)の外歯歯車に相当するものと考えて
よい。
This virtual external gear has rigidity, and therefore, as a type, for example, the aforementioned Japanese Patent Publication No.
It may be considered to correspond to an external gear of a planetary gear reducer (cyclo speed reducer: registered trademark) as indicated by -4056.

【0031】内歯歯車の歯形は、この想定した仮想外歯
歯車と2点接触噛合する形状に形成される。この仮想外
歯歯車と内歯歯車との歯数差j は、前述の外歯歯車と内
歯歯車との歯数差i よりも小さいため、この2点接触噛
合する形状は歯数差i を基準としたものよりも有効範囲
が非常に拡大されたものとなる。
The tooth profile of the internal gear is formed into a shape that meshes with the assumed virtual external gear at two points. Since the difference j in the number of teeth between the virtual external gear and the internal gear is smaller than the difference i in the number of teeth between the external gear and the internal gear described above, the shape of the two-point contact meshing has the difference i. The effective range is much larger than the standard one.

【0032】なお、例えばj として「1」を選択した場
合、内歯歯車の歯形として前記歯数差1の特公昭63−
4056の2点接触歯形がそのまま適用できる。j とし
て「2」を選択したようなときは2点接触歯形として前
述の特願平4−142515で提案されたような2点接
触歯形を採用すればよい。
When "1" is selected as j, for example, the tooth profile of the internal gear has a tooth number difference of 1 as disclosed in JP-B-63-63.
The 4056 two-point contact tooth profile can be applied as it is. When "2" is selected as j, a two-point contact tooth profile as proposed in the aforementioned Japanese Patent Application No. 4-142515 may be adopted as the two-point contact tooth profile.

【0033】一方、前述の外歯歯車の歯形は、該外歯歯
車が撓んだ結果内歯歯車と噛合する部分において、想定
された仮想外歯歯車の歯形と等しくなる形状に形成す
る。この結果、現実の噛合は、あたかも小さな値の歯数
差j のセットである内歯歯車と外歯歯車が噛合するよう
な態様を取ることになり、2点接触噛合の歯形を非常に
有効に利用することができるようになる。
On the other hand, the tooth profile of the above-described external gear is formed to have a shape that is equal to the assumed tooth profile of the virtual external gear at a portion where the external gear is meshed with the internal gear as a result of bending. As a result, the actual meshing takes a mode in which the internal gear and the external gear, which are a set of the tooth number difference j of a small value, mesh with each other. Can be used.

【0034】即ち、本発明は、外歯歯車が撓むというこ
とを逆に利用し、本来ならば歯数差j に相当する剛性の
ある内歯歯車と剛性のある外歯歯車のセットにおいて、
両者が2点接触噛合するような歯形を形成し、その上で
外歯歯車を一度切断し、(i−j )に相当する数だけの
歯を切除した後、再び繋ぎ合わせることによって歯数差
i の内歯歯車と外歯歯車とのセットを実現したとも換言
できるものである。
That is, the present invention utilizes the fact that the external gear bends in a reverse manner, and provides a set of a rigid internal gear and a rigid external gear that normally correspond to the tooth number difference j.
A tooth profile is formed so that the two mesh with each other at two-point contact, and then the external gear is cut once, the number of teeth corresponding to (i-j) is cut off, and the two teeth are joined again to form a tooth difference.
It can be said that the set of the internal gear and the external gear of i is realized.

【0035】これにより、噛合する部分ではあくまで小
さな歯数差j の状態で、即ち、2点接触の歯形が有効に
機能するような状態で両者が噛合すると共に、全体とし
てはより大きな歯数差i を有する撓み噛合い式歯車噛合
構造ができるものである。
As a result, the two gears mesh with each other in a state where the tooth number difference j is small at the meshing portion, that is, in a state where the two-point contact tooth shape functions effectively. i, and a flexible meshing gear meshing structure having i.

【0036】[0036]

【実施例】以下、本発明の一実施例を図1、図2を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0037】本実施例の歯車噛合構造では、外歯歯車の
歯形及び内歯歯車の歯形及び両歯車の歯数の関係、及び
これに対応して偏心体の形状が図3、図4に示した従来
技術(特開昭63−130949)と異なるだけで、基
本的な構造は該従来技術と同一である。よって重複説明
は省略し、当該異なる部分のみ符号を置き換えて説明す
る。
In the gear meshing structure of this embodiment, the relationship between the tooth profile of the external gear, the tooth profile of the internal gear, and the number of teeth of both gears, and the shape of the eccentric body corresponding thereto are shown in FIGS. The basic structure is the same as that of the prior art except for the conventional technology (Japanese Patent Laid-Open No. 63-130949). Therefore, the overlapping description will be omitted, and the description will be made with only the different parts replaced with the reference numerals.

【0038】図1は、本実施例の構造の主要部断面図で
あり、図3のIV−IV線断面に相当するのである。又、図
2は、内歯歯車132及び仮想外歯歯車134との噛合
関係を示したものである。
FIG. 1 is a sectional view of a main part of the structure of this embodiment, and corresponds to a section taken along line IV-IV of FIG. FIG. 2 shows the meshing relationship with the internal gear 132 and the virtual external gear 134.

【0039】外歯歯車128、内歯歯車132、及び仮
想外歯歯車134の関係は、以下のようになっている。
The relationship among the external gear 128, the internal gear 132, and the virtual external gear 134 is as follows.

【0040】まず、外歯歯車128の外歯131Aの歯
数(60)に対して、内歯歯車132の内歯133Aの
歯数(62)は2歯多い。即ち、歯数差i =62−60
=2である。
First, the number of teeth (62) of the internal teeth 133A of the internal gear 132 is two more than the number of teeth (60) of the external teeth 131A of the external gear 128. That is, the tooth number difference i = 62-60
= 2.

【0041】一方、仮想外歯歯車134の歯数(61)
は、内歯歯車132の歯数(62)よりも1歯だけ少な
い。即ち、j =62−61=1である。
On the other hand, the number of teeth of the virtual external gear 134 (61)
Is smaller by one tooth than the number of teeth (62) of the internal gear 132. That is, j = 62−61 = 1.

【0042】内歯歯車132の内歯133Aの形状は、
エピトロコイド平行曲線の歯形140Aをもつ仮想外歯
歯車134と歯数差1をもって2点接触噛合するもので
あり、前述した特公昭63−4056号(特許第146
7598号)において開示された歯形と全く同一のもの
である。
The shape of the internal teeth 133A of the internal gear 132 is as follows.
The two-point contact meshes with a virtual external gear 134 having a tooth profile 140A of an epitrochoid parallel curve with a difference in the number of teeth being one, as described in JP-B-63-4056 described above (Patent No. 146).
No. 7598).

【0043】即ち、図5〜図9を用いて既に説明したよ
うに、内歯歯車132(図5〜9の内歯歯車1′)の内
歯133Aは、相隣接する円弧歯形部分P、Pと、仮想
外歯歯車134(図5〜図9の外歯歯車2)の歯形14
0Aがエピトロコイド平行曲線であるときの相手歯形と
して求めた内歯歯車の歯形部分Qとから合成した、両端
に円弧歯形を含むトロコイド内包絡線を歯形としたもの
である。
That is, as already described with reference to FIGS. 5 to 9, the internal gear 133A of the internal gear 132 (the internal gear 1 'in FIGS. 5 to 9) has adjacent arc-shaped tooth portions P, P And the tooth shape 14 of the virtual external gear 134 (the external gear 2 in FIGS. 5 to 9)
The tooth profile is a trochoid internal envelope including arcuate teeth at both ends, synthesized from the tooth profile part Q of the internal gear determined as the mating tooth profile when 0A is an epitrochoid parallel curve.

【0044】このような内歯歯車132(1′)とエピ
トロコイド平行曲線を歯形とする仮想外歯歯車134
(2)とを噛合させると、内歯歯車132(1′)と仮
想外歯歯車134(2)とは、両者の接触点(噛合点)
が荷重伝達に有効な位置において内歯歯車132
(1′)の歯形を構成する包絡線の円弧歯形部分Pの接
触点の他に、歯形部分Qにおいても接触点を持つ2点接
触で噛合する。
Such an internal gear 132 (1 ') and a virtual external gear 134 having an epitrochoid parallel curve as a tooth profile.
When (2) is meshed, the internal gear 132 (1 ') and the virtual external gear 134 (2) come into contact with each other (meshing point).
Is in a position where it is effective for load transfer.
In addition to the contact point of the arc-shaped tooth portion P of the envelope forming the tooth shape of (1 '), the tooth shape portion Q is meshed by two-point contact having a contact point.

【0045】そして、この2つの接触部分は共に歯車の
機構学的な歯形の条件を満足しているため、各々の2つ
の接触点は動力伝達に有効に作用する。しかも図11に
示されるように、歯数差i の小さな噛合(曲線AFが利
用される噛合)となるため歯面の負荷荷重のより一層の
向上が達成される。
Since both of the two contact portions satisfy the conditions of the mechanical tooth profile of the gear, each of the two contact points effectively acts on power transmission. In addition, as shown in FIG. 11, the meshing with a small difference in the number of teeth i (the meshing using the curve AF) results in further improvement of the load applied to the tooth surface.

【0046】一方、外歯歯車128の外歯131Aは、
該外歯歯車128の一部が撓み変形によって仮想外歯歯
車134と同じピッチ径をもつようになったときに、そ
の部分で仮想外歯歯車134の外歯140Aを形成する
前記エピトロコイド平行曲線と一致するような形状とさ
れる。即ち、外歯歯車128が撓んだ結果、内歯歯車1
32と噛合する部分において仮想外歯歯車134の外歯
140Aと等しくなるような形状とされている。
On the other hand, the external teeth 131A of the external gear 128 are
When a part of the external gear 128 has the same pitch diameter as the virtual external gear 134 due to bending deformation, the epitrochoid parallel curve forming the external teeth 140A of the virtual external gear 134 at that part. And a shape that matches That is, as a result of the bending of the external gear 128, the internal gear 1
The outer gear 140 is shaped so as to be equal to the external teeth 140A of the virtual external gear 134 at a portion that meshes with the external gear 32.

【0047】このことは、換言すると、外歯歯車128
は、仮想外歯歯車134の1歯を取り去り、切り口を引
き寄せて接合したかの如きものであると言える。
This means that the external gear 128
Can be said as if one tooth of the virtual external gear 134 was removed, the cut end was drawn and joined.

【0048】なお、偏心体123の形状は、歯車に噛合
を生じさせる長軸の近傍において、外歯歯車128に仮
想外歯歯車134と同じピッチ径をもつような曲率を与
えるような形状とされている。
The eccentric body 123 is shaped so as to give the external gear 128 a curvature near the long axis where the gear meshes with the external gear 128 so as to have the same pitch diameter as the virtual external gear 134. ing.

【0049】この実施例では、以上のような構成とした
ため、内歯歯車及び外歯歯車は、その歯数差i が実際は
2でありながら、あたかも歯数差が1のときのように、
エピトロコイド平行曲線のうち、実際に歯形を形成する
部分の割合の大きな2点接触噛合を行うことができ、そ
れだけ1歯あたりの荷重伝達能力の向上を図ることがで
きるようになる。
In this embodiment, since the above-described configuration is adopted, the internal gear and the external gear have the difference in the number of teeth i, which is actually two, but as if the difference in the number of teeth is one.
In the epitrochoid parallel curve, two-point contact meshing in which the proportion of the part that actually forms the tooth profile is large can be performed, and accordingly, the load transmission capability per tooth can be improved.

【0050】なお、この実施例では、内歯歯車132の
内歯133Aの数(62)と、外歯歯車128の外歯1
31Aの数(60)との差i を2としていたが、本発明
では必ずしもこれに限定されず、作用の項で述べたよう
に、2以上の適宜の数でよい。又、仮想外歯歯車134
の歯数は、外歯歯車128の外歯131Aの数よりも多
ければ、即ちi >j の関係を満たすならば適宜の数でよ
い。
In this embodiment, the number (62) of the internal teeth 133A of the internal gear 132 and the external teeth 1 of the external gear 128 are set.
Although the difference i from the number (60) of 31A is set to 2, the present invention is not necessarily limited to this, and an appropriate number of 2 or more may be used as described in the section of operation. Also, the virtual external gear 134
May be an appropriate number as long as it is larger than the number of the external teeth 131A of the external gear 128, that is, if the relationship i> j is satisfied.

【0051】[0051]

【発明の効果】以上説明した通り、本発明によれば、撓
み噛合い式歯車噛合構造において、その歯数差を多く設
定した場合であっても、2点接触噛合構造の歯形構造を
より有効利用することができるようになり、1歯当りの
負荷荷重をそれだけ増大させることができるようになる
という優れた効果が得られる。
As described above, according to the present invention, the tooth mesh structure of the two-point contact meshing structure is more effective even in the case where the number of teeth is set to be large in the bending meshing gear meshing structure. This makes it possible to utilize the present invention, and it is possible to obtain an excellent effect that the applied load per tooth can be increased accordingly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用された撓み噛合い式歯車噛合構造
の主要部を示す図4相当の断面図
FIG. 1 is a cross-sectional view corresponding to FIG. 4, showing a main part of a flexible meshing gear meshing structure to which the present invention is applied.

【図2】上記実施例における内歯歯車と仮想外歯歯車と
の噛合図
FIG. 2 is an engagement diagram of an internal gear and a virtual external gear in the embodiment.

【図3】従来の撓み噛合い式歯車噛合構造の一例の全体
構造を示す断面図(本実施例も歯数、歯形等を除けば基
本構造は同じ)
FIG. 3 is a cross-sectional view showing the entire structure of an example of a conventional flexible meshing gear meshing structure (the basic structure is the same in this embodiment except for the number of teeth, tooth shape, etc.).

【図4】図3の矢示IV−IV線に沿う断面図FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3;

【図5】従来公知のトロコイド系遊星歯車減速機の部分
的断面図(本実施例でも歯形の技術のみ流用)
FIG. 5 is a partial cross-sectional view of a conventionally known trochoid-based planetary gear reducer (only the tooth profile technology is used in this embodiment).

【図6】図5の矢示VI−VI線に沿う断面図6 is a sectional view taken along the line VI-VI of FIG. 5;

【図7】図6の矢示a 部分の拡大図FIG. 7 is an enlarged view of a portion indicated by an arrow a in FIG. 6;

【図8】図6の矢示b 部分の拡大図FIG. 8 is an enlarged view of a portion indicated by an arrow b in FIG. 6;

【図9】図6の矢示c 部分の拡大図9 is an enlarged view of a portion indicated by an arrow c in FIG. 6;

【図10】エピトロコイド平行曲線の重ね合せによる外
歯形成に関する技術を示す線図
FIG. 10 is a diagram showing a technique relating to external tooth formation by superposition of epitrochoid parallel curves.

【図11】エピトロコイド平行曲線の重ね合せ数と曲線
の内外歯を形成する部分の関係を示す線図
FIG. 11 is a diagram showing the relationship between the number of superimposed epitrochoidal parallel curves and the portion forming the inner and outer teeth of the curve.

【符号の説明】[Explanation of symbols]

123…偏心体(波動発生器) 128…外歯歯車 131A…外歯 132…内歯歯車 133A…内歯 134…仮想外歯歯車 140A…仮想外歯歯車の外歯 123: Eccentric body (wave generator) 128: External gear 131A: External tooth 132: Internal gear 133A: Internal tooth 134: Virtual external gear 140A: External tooth of virtual external gear

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】剛性を有した内歯歯車と、該内歯歯車に内
接噛合可能な可撓性を有した外歯歯車と、該外歯歯車を
撓み変形させることによって前記内歯歯車と外歯歯車と
の内接噛合を実現させる波動発生器と、を備えた撓み噛
合い式歯車噛合構造において、 前記内歯歯車と外歯歯車との歯数差をi としたときに、
前記内歯歯車との歯数差がi 未満のj で(i >j )、且
つ該内歯歯車と内接噛合する剛性を有した仮想外歯歯車
を想定し、 前記内歯歯車の歯形を、該想定した仮想外歯歯車と2点
接触噛合する形状に形成すると共に、 前記外歯歯車の歯形を、該外歯歯車が撓んだ結果、内歯
歯車と噛合する部分において前記仮想外歯歯車の歯形と
等しくなる形状に形成したことを特徴とする撓み噛合い
式歯車噛合構造。
An internal gear having rigidity, a flexible external gear which can be in-meshed with said internal gear, and said internal gear by bending and deforming said external gear. A wave generator that realizes internal meshing with the external gear, and a flexible meshing gear meshing structure including: a tooth number difference between the internal gear and the external gear is i,
Assuming a virtual external gear having a rigidity in which the difference in the number of teeth from the internal gear is less than i (i> j) and the internal gear meshes with the internal gear, the tooth profile of the internal gear is The virtual external gear is formed into a shape that meshes with the assumed virtual external gear in two-point contact, and the tooth profile of the external gear is changed at the portion that meshes with the internal gear as a result of bending of the external gear. A flexion-type gear meshing structure formed in a shape that is equal to the gear tooth profile.
JP32409392A 1992-12-03 1992-12-03 Flexible mesh gear meshing structure Expired - Fee Related JP2771407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32409392A JP2771407B2 (en) 1992-12-03 1992-12-03 Flexible mesh gear meshing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32409392A JP2771407B2 (en) 1992-12-03 1992-12-03 Flexible mesh gear meshing structure

Publications (2)

Publication Number Publication Date
JPH06174018A JPH06174018A (en) 1994-06-21
JP2771407B2 true JP2771407B2 (en) 1998-07-02

Family

ID=18162087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32409392A Expired - Fee Related JP2771407B2 (en) 1992-12-03 1992-12-03 Flexible mesh gear meshing structure

Country Status (1)

Country Link
JP (1) JP2771407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9470301B2 (en) 2013-10-21 2016-10-18 Hiwin Technologies Corp. Harmonic drive gear reduction mechanism

Also Published As

Publication number Publication date
JPH06174018A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
EP0693640B1 (en) Internally meshing planetary gear structure of the flexible gear type
US7694607B2 (en) Wave gear drive with continuous meshing, high ratcheting torque tooth profile
JP3481335B2 (en) Inner mesh planetary gear
JP2639847B2 (en) Planetary gearbox
EP0501522B1 (en) Wave gear drive
CA2183251C (en) Silk hat type flexible mesh engagement gear device
JPH0784896B2 (en) Flexible mesh type gear device
EP0252156A1 (en) Tooth profile in intermeshing mechanism
JP3132777B2 (en) Flexible mesh gear
JP2771407B2 (en) Flexible mesh gear meshing structure
WO2005121597A1 (en) Wave gear device having high ratcheting torque tooth profile
JP2828546B2 (en) Inner mesh planetary gear structure
JP2828542B2 (en) Flexible mesh gear meshing structure
JP2828580B2 (en) Internally meshing planetary gear structure and flexible meshing gear meshing structure
JP2771415B2 (en) Flexible mesh gear meshing structure
JP2888699B2 (en) Flexible mesh gear meshing structure
JPS634056B2 (en)
JP4132113B2 (en) Flexure meshing gear unit
JPH11247950A (en) Reduction gear
JPS6011749A (en) Section circular tooth type face gearing
JP2727494B2 (en) Reduction gear
JPH05141485A (en) Cup type wave motion gear device having low speed reduction ratio
JPH0592557U (en) Resin harmonic drive speed reducer
JPH10148240A (en) Warp mesh type bearing device
TWM580638U (en) A speed reducer with inner teeth flexspline

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080417

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090417

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100417

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees