JPH07162081A - Optical element - Google Patents

Optical element

Info

Publication number
JPH07162081A
JPH07162081A JP30824793A JP30824793A JPH07162081A JP H07162081 A JPH07162081 A JP H07162081A JP 30824793 A JP30824793 A JP 30824793A JP 30824793 A JP30824793 A JP 30824793A JP H07162081 A JPH07162081 A JP H07162081A
Authority
JP
Japan
Prior art keywords
optical
type
layer
reflecting film
type gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30824793A
Other languages
Japanese (ja)
Other versions
JP2555962B2 (en
Inventor
Takaaki Numai
貴陽 沼居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5308247A priority Critical patent/JP2555962B2/en
Publication of JPH07162081A publication Critical patent/JPH07162081A/en
Application granted granted Critical
Publication of JP2555962B2 publication Critical patent/JP2555962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • H01S5/426Vertically stacked cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize a surface emitting type optical element wherein the oscillation threshold value is low and the external differential quantum effect is large. CONSTITUTION:On an N-type substrate 10, the following are formed; an N-type multilayered reflecting film 11, an N-type layer 20, an active layer 12, a P-type layer 21 and a P-type multilayered reflecting film 13 which constitute an optical amplifier, a high resistance layer 14 which electrically isolates the optical amplifier from a light emitting element, and an N-type layer 15, an N-type multilayered reflecting film 16, an N-type layer 22, an active layer 17, a P-type layer 23, and a P-type multilayered reflecting film 18 which constitute a semiconductor laser. As the electrodes for the optical amplifier, a cathode 30 on the substrate 10 and an anode 31 on the P-type multilayered reflecting film 13 are selectively formed. As the electrodes for the semiconductor laser, a cathode 32 on the N-type layer 15 and an anode 30 on the P-type multilayered reflecting film 18 are selectively formed. Thereby a surface emitting optical element of high efficiency wherein the optical output is 1mW and the electric power/light conversion efficiency is 50% when the injection current is 1mA can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光伝送や光情報処理用
の面発光型光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting optical device for optical transmission and optical information processing.

【0002】[0002]

【従来の技術】光伝送や光情報処理の光源である半導体
レーザの研究が進められている。近年では、半導体レー
ザをアレイ状に配置し、並列光伝送や並列光情報処理に
利用しようとする試みが行われるようになった。導波型
半導体レーザでは、1次元のアレイ集積のみが可能だ
が、さらに2次元状に集積可能なレーザとして、面型半
導体レーザの研究が活発になってきている。
2. Description of the Related Art Research on a semiconductor laser, which is a light source for optical transmission and optical information processing, is under way. In recent years, attempts have been made to arrange semiconductor lasers in an array and use them for parallel optical transmission and parallel optical information processing. In the waveguide type semiconductor laser, only one-dimensional array integration is possible, but as a laser that can be integrated in a two-dimensional form, research on a surface type semiconductor laser is becoming active.

【0003】これらの半導体レーザを集積化するために
は、個々の素子の消費電力が小さいことが必要である。
このための1つの重要な課題として、発振しきい値の低
減があげられる。導波型レーザでは、発振しきい電流値
として250μAが得られており、この結果は1992
年発行のチェン(Chen)他著のアプライド・フィジ
ックス・レターズ(Applied Physics
Letters)第60巻1782ページ記載の論文に
報告されている。今のところ、半導体レーザにおける最
小の発振しきい値は190μAであり、これは面発光レ
ーザで実現されている。この結果は、1993年発行の
沼居他著のジャパニーズ・ジャーナル・オブ・アプライ
ド・フィジックス・パート2(Japanese Jo
urnal of Applied Physics,
Part2)第32巻1533ページ記載の論文に報告
されている。
In order to integrate these semiconductor lasers, it is necessary that the power consumption of each element is small.
One important issue for this purpose is reduction of the oscillation threshold. In the waveguide laser, the oscillation threshold current value of 250 μA is obtained, and the result is 1992.
Applied Physics, by Chen et al., Published annually
Letters) Vol. 60, page 1782. At present, the minimum oscillation threshold of the semiconductor laser is 190 μA, which is realized by the surface emitting laser. The results are based on the Japanese Journal of Applied Physics Part 2 (Japanese Jo) published by Numai et al. In 1993.
internal of Applied Physics,
Part 2) Volume 32, page 1533.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
発振しきい値の低い発光素子には次のような課題が存在
する。発振しきい値を低減するためには、内部損失(吸
収損失、散乱損失、ミラー損失)等を低減することが必
要であるが、この中で最も発振しきい値の低減に効果が
あるのは、ミラー損失の低減である。そこで、従来の素
子では、ミラー損失を小さくする、すなわち、ミラーの
反射率を大きくすることによって、発振しきい値を低減
していた。しかし、反射率を大きくすると、光の共振器
外への取り出し効率が低下するため、外部微分量子効率
は小さくなってしまっていた。
However, the conventional light emitting element having a low oscillation threshold has the following problems. In order to reduce the oscillation threshold, it is necessary to reduce internal loss (absorption loss, scattering loss, mirror loss), etc., but the most effective reduction of the oscillation threshold is , Reduction of mirror loss. Therefore, in the conventional element, the oscillation threshold is reduced by reducing the mirror loss, that is, by increasing the reflectance of the mirror. However, when the reflectance is increased, the extraction efficiency of light to the outside of the resonator is reduced, and thus the external differential quantum efficiency is reduced.

【0005】そこで、本発明は、2次元集積化に適した
面発光素子において、低発振しきい値で、かつ外部微分
量子効率の大きい、すなわち消費電力の小さい特性を実
現することを目的とする。
Therefore, an object of the present invention is to realize, in a surface-emitting device suitable for two-dimensional integration, a characteristic of a low oscillation threshold and a large external differential quantum efficiency, that is, a small power consumption. .

【0006】[0006]

【課題を解決するための手段】本発明の光素子は、3次
元の光共振器において少なくとも1次元のサイズが共振
波長程度である光共振器を有する面発光素子と、共振波
長にくらべて充分大きなサイズ光増幅器とが光の伝播方
向に沿って直列に配置されていることを特徴とする。
The optical element of the present invention has a surface emitting element having a three-dimensional optical resonator having an optical resonator having a size of at least one dimension of the resonance wavelength, and a surface emitting element which is sufficiently larger than the resonance wavelength. It is characterized in that a large size optical amplifier is arranged in series along the propagation direction of light.

【0007】あるいは、前記の光素子において、面発光
素子または光増幅素子が波長可変、受光、メモリ、しき
い値機能等の機能も有する光機能素子であることを特徴
とする。
Alternatively, in the above-mentioned optical element, the surface emitting element or the optical amplifying element is an optical functional element having functions such as wavelength tunability, light reception, memory, and threshold function.

【0008】あるいは、前述までの光素子が、1次元あ
るいは2次元上に集積して配置されたことを特徴とす
る。
Alternatively, it is characterized in that the above-mentioned optical elements are integrated and arranged one-dimensionally or two-dimensionally.

【0009】[0009]

【作用】本発明の光素子では、極めて小さい発振しきい
値を実現するために、ミラー損失を小さくするだけでな
く、共振波長と同程度のサイズの光共振器を用いる。こ
のような微小光共振器では、自然放出光のうち多くの部
分がレーザ発振モードに結合する。そのため、100μ
A以下の極めて低い発振しきい値が期待できる。しかし
ながら、光共振器が極めて小さい(発振波長1μm、屈
折率3.5とすると光共振器のサイズは0.29μm)
ことと、ミラーの反射率が極めて大きいため、レーザ光
の強度は、10μWのオーダーである。そこで、光強度
を増幅するために、レーザー光の伝播方向に沿って、面
発光素子と直列に光増幅器を配置する。単位面積あたり
の量子効率が一定であるとすると、高出力化には素子の
大面積化が有利である。そのため、光増幅器のサイズ
は、共振波長に比べて充分大きくする。たとえば、光増
幅器の光の伝播方向に垂直な断面の大きさを10μm×
10μmとする。面発光素子と光増幅器との間の回折に
よってレーザービームが広がるため、光増幅器の活性層
全体でレーザー光を増幅することができる。光増幅器の
構造は、基本的に半導体レーザと同じであるが、発振し
ない状態で使用するため、半導体レーザに比べてミラー
の反射率を下げてあることが多い。たとえば、光増幅器
が発振しきい値1mAでレーザ発振するように設計して
おき、光増幅器に0.98mAの電流(発振しきい値の
0.98倍)を流しておけば、光増幅器の利得は、10
μWの入射光に対して20dB以上であるので、光増幅
器からの光出力として1mW以上が得られることにな
る。
In the optical element of the present invention, in order to realize an extremely small oscillation threshold value, not only the mirror loss is reduced, but also an optical resonator having a size similar to the resonance wavelength is used. In such a micro optical resonator, most of spontaneous emission light is coupled to the laser oscillation mode. Therefore, 100μ
An extremely low oscillation threshold of A or less can be expected. However, the optical resonator is extremely small (assuming that the oscillation wavelength is 1 μm and the refractive index is 3.5, the size of the optical resonator is 0.29 μm).
In addition, since the reflectance of the mirror is extremely high, the intensity of the laser light is on the order of 10 μW. Therefore, in order to amplify the light intensity, an optical amplifier is arranged in series with the surface emitting element along the propagation direction of the laser light. If the quantum efficiency per unit area is constant, it is advantageous to increase the area of the device for higher output. Therefore, the size of the optical amplifier is made sufficiently larger than the resonance wavelength. For example, the size of the cross section perpendicular to the light propagation direction of the optical amplifier is 10 μm ×
10 μm. Since the laser beam is spread by the diffraction between the surface emitting element and the optical amplifier, the laser light can be amplified in the entire active layer of the optical amplifier. The structure of the optical amplifier is basically the same as that of the semiconductor laser, but since it is used in a state where it does not oscillate, the reflectance of the mirror is often lower than that of the semiconductor laser. For example, if the optical amplifier is designed to oscillate at the oscillation threshold of 1 mA and a current of 0.98 mA (0.98 times the oscillation threshold) is applied to the optical amplifier, the gain of the optical amplifier is increased. Is 10
Since it is 20 dB or more for incident light of μW, 1 mW or more is obtained as the optical output from the optical amplifier.

【0010】また、前述の光素子において、面発光素子
または光増幅素子が波長可変、受光、メモリ、しきい値
機能等の機能も有する光機能素子であれば、単なる光伝
送だけでなく、スイッチングやルーティングなどの機能
を比較的簡単な駆動回路で構成することが可能となる。
さらに、前述までの光素子を1次元あるいは2次元上に
集積して配置すれば、並列光伝送、光接続、光情報処理
が可能となる。
Further, in the above-mentioned optical element, if the surface emitting element or the optical amplifying element is an optical functional element having functions such as wavelength tunability, light reception, memory, and threshold function, not only simple optical transmission but also switching. Functions such as routing and routing can be configured with a relatively simple drive circuit.
Furthermore, if the above-described optical elements are integrated and arranged in one dimension or two dimensions, parallel optical transmission, optical connection, and optical information processing become possible.

【実施例】図面を参照して、本実施例を詳細に説明す
る。図1は、本発明の第1の実施例の面光型光素子の構
造を示す断面図である。n形GaAs基板10上に光増
幅器を構成するn形GaAs/AlAs多層反射膜(D
BR)11、n形GaAs層20、In0 . 2 Ga
0 . 8 As活性層12、p形GaAs層21、p形Ga
As/AlAs多層反射膜(DBR)13、光増幅器と
発光素子とを電気的に分離する高抵抗GaAs14、半
導体(発光素子)を構成するn形GaAs層15、n形
GaAs/AlAs多層反射膜(DBR)16、n形G
aAs層22、In0 . 2 Ga0 . 8 As活性層17、
p形GaAs層23、p形GaAs/AlAs多層反射
膜(DBR)18を形成してある。光増幅器用の電極と
して基板10上にカソード30を、p形GaAs/Al
As多層反射膜13上にアノード31をそれぞれ選択的
に形成してある。一方、半導体レーザ(発光素子)用の
電極としてn形GaAs層15上にカソード32を、p
形GaAs/AlAs多層反射膜18上にアノード33
をそれぞれ選択的に形成してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS This embodiment will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing the structure of a surface light type optical element according to the first embodiment of the present invention. On the n-type GaAs substrate 10, an n-type GaAs / AlAs multilayer reflection film (D
BR) 11, n-type GaAs layer 20, In 0. 2 Ga
0.8 As active layer 12, p-type GaAs layer 21, p-type Ga
As / AlAs multilayer reflection film (DBR) 13, high resistance GaAs 14 for electrically separating an optical amplifier and a light emitting element, n-type GaAs layer 15 constituting a semiconductor (light emitting element), n-type GaAs / AlAs multilayer reflection film ( DBR) 16, n type G
aAs layer 22, In 0. 2 Ga 0 . 8 As active layer 17,
A p-type GaAs layer 23 and a p-type GaAs / AlAs multilayer reflective film (DBR) 18 are formed. A cathode 30 is formed on the substrate 10 as an electrode for an optical amplifier, and p-type GaAs / Al.
Anodes 31 are selectively formed on the As multilayer reflective film 13. On the other hand, a cathode 32 is formed on the n-type GaAs layer 15 as an electrode for a semiconductor laser (light emitting device),
Anode 33 on the GaAs / AlAs multilayer reflective film 18
Are selectively formed.

【0011】この発光素子では、n形多層反射膜16と
p形多層反射膜18との間隔、すなわち共振器長が0.
3μmであり、円筒の直径は2μmである。発振しきい
値50μAでレーザ発振し、100μA電流を流したと
きに光出力は10μWである。なお、発振波長は1μm
である。一方、光増幅器の円筒部の直径は10μmであ
り、0.9mA電流を注入するとこの光増幅器もレーザ
発振する。発振しきい値の0.98倍、すなわち、0.
88mAの電流を注入すると、光利得20dBが得ら
れ、その結果1mWの光出力が基板10を通して出射さ
れる。駆動電圧は、いずれも2Vであり、電力変換効率
として50%という高い値が得られる。
In this light emitting device, the distance between the n-type multilayer reflective film 16 and the p-type multilayer reflective film 18, that is, the cavity length is 0.
3 μm and the diameter of the cylinder is 2 μm. When the laser is oscillated with an oscillation threshold of 50 μA and a current of 100 μA is applied, the optical output is 10 μW. The oscillation wavelength is 1 μm
Is. On the other hand, the diameter of the cylindrical portion of the optical amplifier is 10 μm, and when a 0.9 mA current is injected, this optical amplifier also oscillates a laser. 0.98 times the oscillation threshold, that is, 0.
When a current of 88 mA is injected, an optical gain of 20 dB is obtained, and as a result, an optical output of 1 mW is emitted through the substrate 10. The drive voltage is 2 V in each case, and a high value of 50% is obtained as the power conversion efficiency.

【0012】図2は、本発明の第2の実施例の面発光型
光素子の構造を示す断面図である。図1との違いは、光
増幅器に波長可変機能を設けるため、n形多層反射膜1
1上に電流注入用の電極34を設けたことである。電極
34とカソード30との間に電流を流すことによってn
形多層反射膜11のブラッグ波長が変化するため、光増
幅器の波長可変動作を実現することができる。
FIG. 2 is a sectional view showing the structure of a surface emitting optical element according to the second embodiment of the present invention. The difference from FIG. 1 is that the n-type multilayer reflective film 1 is provided because the optical amplifier has a wavelength variable function.
That is, the electrode 34 for current injection is provided on the first electrode 1. By passing an electric current between the electrode 34 and the cathode 30,
Since the Bragg wavelength of the multi-layer reflective film 11 changes, the wavelength variable operation of the optical amplifier can be realized.

【0013】図3は、本発明の第3の実施例の面発光型
光素子の構造を示す断面図である。図1との違いは、光
増幅器に波長可変機能を設けるため、n形多層反射膜1
6上に電流注入用の電極35を設けたことである。電極
35とカソード32との間に電流を流すことによってn
形多層反射膜16のブラック波長が変化するため、光増
幅器の波長可変動作を実現することができる。
FIG. 3 is a sectional view showing the structure of a surface emitting optical element according to the third embodiment of the present invention. The difference from FIG. 1 is that the n-type multilayer reflective film 1 is provided because the optical amplifier has a wavelength variable function.
That is, the electrode 35 for current injection is provided on the electrode 6. By passing an electric current between the electrode 35 and the cathode 32,
Since the black wavelength of the multi-layer reflective film 16 changes, the wavelength variable operation of the optical amplifier can be realized.

【0014】図4は、本発明の第4の実施例の面発光型
光素子の構造を示す断面図である。図1との違いは、光
増幅器が、n形GaAs層40、p形GaAs層41、
活性層12、n形GaAs層42、p形GaAs層43
からなるpnpn構造をとっており、光増幅だけでなく
受光、メモリ、しきい値機能を持つことができる。
FIG. 4 is a sectional view showing the structure of a surface emitting optical element according to the fourth embodiment of the present invention. The difference from FIG. 1 is that the optical amplifier has an n-type GaAs layer 40, a p-type GaAs layer 41,
Active layer 12, n-type GaAs layer 42, p-type GaAs layer 43
It has a pnpn structure and is capable of not only light amplification but also light reception, memory, and threshold function.

【0015】図5は、本発明の第5の実施例の面発光型
光素子の構造を示す断面図である。これは、第4の実施
例において、電極34を設けることにより第2の実施例
と同様な波長可変動作を実現したものである。
FIG. 5 is a sectional view showing the structure of a surface emitting optical element according to the fifth embodiment of the present invention. This is because the wavelength tunable operation similar to that of the second embodiment is realized by providing the electrode 34 in the fourth embodiment.

【0016】図6は、本発明の第6の実施例の面発光型
光素子の構造を示す断面図である。これは第4の実施例
において、電極35を設けて、第3の実施例と同様な波
長可変動作を実現したものである。
FIG. 6 is a sectional view showing the structure of a surface emitting optical element according to the sixth embodiment of the present invention. This is achieved by providing the electrode 35 in the fourth embodiment and realizing the same wavelength tunable operation as in the third embodiment.

【0017】図7は、本発明の第7の実施例の面発光型
光素子の構造を示す断面図である。図1との違いは、発
光素子が、n形GaAs層50、p形GaAs層51、
活性層17、n形GaAs層52、p形GaAs層53
からなるpnpn構造をとっており、発光だけでなく受
光、メモリ、しきい値機能を持つことができる。
FIG. 7 is a sectional view showing the structure of a surface emitting optical element according to the seventh embodiment of the present invention. The difference from FIG. 1 is that the light emitting element is composed of an n-type GaAs layer 50, a p-type GaAs layer 51,
Active layer 17, n-type GaAs layer 52, p-type GaAs layer 53
It has a pnpn structure and is capable of not only light emission but also light reception, memory, and threshold function.

【0018】図8は、本発明の第8の実施例の面発光型
光素子の構造を示す断面図である。これは、第7の実施
例において、第2の実施例と同様な波長可変動作を実現
したものである。
FIG. 8 is a sectional view showing the structure of a surface emitting optical element according to the eighth embodiment of the present invention. This realizes the same wavelength tunable operation as in the second embodiment in the seventh embodiment.

【0019】図9は、本発明の第8の実施例の面発光型
光素子の構造を示す断面図である。これは第7の実施例
において、第3の実施例と同様な波長可変動作を実現し
たものである。
FIG. 9 is a sectional view showing the structure of a surface emitting optical element according to the eighth embodiment of the present invention. In the seventh embodiment, the wavelength tunable operation similar to that of the third embodiment is realized.

【0020】図10は、本発明の第10の実施例の面発
光型光素子の構造を示す上面図である。これは、第1の
実施例の素子を2次元状に配列したもものである。これ
により、並列の光伝送を行うことができる。第2から第
9の実施例の素子を図10と同様に2次元状に配列すれ
ば、光交換や光機能接続なども可能となる。
FIG. 10 is a top view showing the structure of a surface emitting optical element according to the tenth embodiment of the present invention. This is a two-dimensional array of the elements of the first embodiment. This allows parallel optical transmission. By arranging the elements of the second to ninth embodiments two-dimensionally as in the case of FIG. 10, optical exchange and optical functional connection can be performed.

【0021】なお、半導体材料については上述のGaA
s系に限定する必要はなく、例えばAlを含んだ系やI
nP系の材料であってもよい。
Regarding the semiconductor material, the above-mentioned GaA is used.
It is not necessary to limit to s system, for example, a system containing Al or I
It may be an nP-based material.

【0022】[0022]

【発明の効果】光素子として、2次元集積化に適した消
費電力の小さい素子(光出力1mW時に電力/光変換効
率50%)を実現することができる。
As an optical element, an element with low power consumption suitable for two-dimensional integration (power / optical conversion efficiency of 50% at an optical output of 1 mW) can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光素子の構造を示す断
面図である。
FIG. 1 is a cross-sectional view showing the structure of an optical device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の光素子の構造を示す断
面図である。
FIG. 2 is a sectional view showing the structure of an optical device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の光素子の構造を示す断
面図である。
FIG. 3 is a sectional view showing the structure of an optical device according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の光素子の構造を示す断
面図である。
FIG. 4 is a sectional view showing the structure of an optical device according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例の光素子の構造を示す断
面図である。
FIG. 5 is a sectional view showing the structure of an optical device according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例の光素子の構造を示す断
面図である。
FIG. 6 is a sectional view showing the structure of an optical device according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施例の光素子の構造を示す断
面図である。
FIG. 7 is a sectional view showing the structure of an optical device according to a seventh embodiment of the present invention.

【図8】本発明の第8の実施例の光素子の構造を示す断
面図である。
FIG. 8 is a sectional view showing the structure of an optical device according to an eighth embodiment of the present invention.

【図9】本発明の第9の実施例の光素子の構造を示す断
面図である。
FIG. 9 is a sectional view showing the structure of an optical device according to a ninth embodiment of the present invention.

【図10】本発明の第10の実施例の光素子の構造を示
す断面図である。
FIG. 10 is a sectional view showing the structure of an optical device according to a tenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 n形GaAs基板 11 n形GaAs/AlAs多層反射膜 12 In0 . 2 Ga0 . 8 As活性層 13 p形GaAs/AlAs多層反射膜 14 高抵抗GaAs層 15 n形GaAs層 16 n形GaAs/AlAs多層反射膜 17 In0 . 2 Ga0 . 8 As活性層 18 p形GaAs/AlAs多層反射膜 20 n形GaAs層 21 p形GaAs層 22 n形GaAs層 23 p形GaAs層 30 カソード 31 アノード 32 カソード 33 アノード 34 電極 35 電極 40 n形GaAs層 41 p形GaAs層 42 n形GaAs層 43 p形GaAs層 50 n形GaAs層 51 p形GaAs層 52 n形GaAs層 53 p形GaAs層10 n-type GaAs substrate 11 n-type GaAs / AlAs multilayer reflective film 12 In 0. 2 Ga 0. 8 As active layer 13 p-type GaAs / AlAs multilayer reflective film 14 a high resistance GaAs layer 15 n-type GaAs layer 16 n-type GaAs / AlAs multilayer reflective film 17 In 0. 2 Ga 0. 8 As active layer 18 p-type GaAs / AlAs multilayer reflective film 20 n-type GaAs layer 21 p-type GaAs layer 22 n-type GaAs layer 23 p-type GaAs layer 30 cathode 31 anode 32 Cathode 33 Anode 34 Electrode 35 Electrode 40 n-type GaAs layer 41 p-type GaAs layer 42 n-type GaAs layer 43 p-type GaAs layer 50 n-type GaAs layer 51 p-type GaAs layer 52 n-type GaAs layer 53 p-type GaAs layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3次元の光共振器において少なくとも1
次元のサイズが共振波長程度である光共振器を有する面
発光素子と、共振波長にくらべて充分大きなサイズの光
増幅器とが光の伝播方向に沿って直列に配置されている
ことを特徴とする光素子。
1. At least one in a three-dimensional optical resonator.
It is characterized in that a surface emitting element having an optical resonator whose dimension size is approximately the resonance wavelength and an optical amplifier having a size sufficiently larger than the resonance wavelength are arranged in series along the light propagation direction. Optical element.
【請求項2】 請求項1の光素子において、前記面発光
素子または、光増幅素子が波長可変、または受光、また
はメモリ、またはしきい値機能の機能も有する光機能素
子であることを特徴とする光素子。
2. The optical element according to claim 1, wherein the surface emitting element or the optical amplifying element is an optical functional element having a wavelength tunable property, a light receiving property, a memory, or a threshold function. Optical element to do.
【請求項3】 請求項1または請求項2の光素子が、1
次元あるいは2次元上に配置されたことを特徴とする集
積光素子。
3. The optical element according to claim 1 or 2,
An integrated optical device characterized by being arranged in one dimension or two dimensions.
JP5308247A 1993-12-08 1993-12-08 Optical element Expired - Lifetime JP2555962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5308247A JP2555962B2 (en) 1993-12-08 1993-12-08 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5308247A JP2555962B2 (en) 1993-12-08 1993-12-08 Optical element

Publications (2)

Publication Number Publication Date
JPH07162081A true JPH07162081A (en) 1995-06-23
JP2555962B2 JP2555962B2 (en) 1996-11-20

Family

ID=17978715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5308247A Expired - Lifetime JP2555962B2 (en) 1993-12-08 1993-12-08 Optical element

Country Status (1)

Country Link
JP (1) JP2555962B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164981A (en) * 2011-01-24 2012-08-30 Soraa Inc Laser package with plural emitters constructed on substrate member
US8638828B1 (en) 2010-05-17 2014-01-28 Soraa, Inc. Method and system for providing directional light sources with broad spectrum
US8717505B1 (en) 2009-05-29 2014-05-06 Soraa Laser Diode, Inc. Laser based display method and system
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
JP2020141095A (en) * 2019-03-01 2020-09-03 富士ゼロックス株式会社 Semiconductor optical amplification element, semiconductor optical amplifier, optical output device, and distance measuring device
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10904506B1 (en) 2009-05-29 2021-01-26 Soraa Laser Diode, Inc. Laser device for white light
US8717505B1 (en) 2009-05-29 2014-05-06 Soraa Laser Diode, Inc. Laser based display method and system
US8749719B2 (en) 2009-05-29 2014-06-10 Soraa Laser Diode, Inc. Laser based display method and system
US8837546B1 (en) 2009-05-29 2014-09-16 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US11088507B1 (en) 2009-05-29 2021-08-10 Kyocera Sld Laser, Inc. Laser source apparatus
US8908731B1 (en) 2009-05-29 2014-12-09 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling device and method
US9013638B2 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Laser based display method and system
US9014229B1 (en) 2009-05-29 2015-04-21 Soraa Laser Diode, Inc. Gallium nitride based laser dazzling method
US9019437B2 (en) 2009-05-29 2015-04-28 Soraa Laser Diode, Inc. Laser based display method and system
US11101618B1 (en) 2009-05-29 2021-08-24 Kyocera Sld Laser, Inc. Laser device for dynamic white light
US9100590B2 (en) 2009-05-29 2015-08-04 Soraa Laser Diode, Inc. Laser based display method and system
US11619871B2 (en) 2009-05-29 2023-04-04 Kyocera Sld Laser, Inc. Laser based display system
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US11796903B2 (en) 2009-05-29 2023-10-24 Kyocera Sld Laser, Inc. Laser based display system
US10297977B1 (en) 2009-05-29 2019-05-21 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11817675B1 (en) 2009-05-29 2023-11-14 Kyocera Sld Laser, Inc. Laser device for white light
US10205300B1 (en) 2009-05-29 2019-02-12 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10084281B1 (en) 2009-05-29 2018-09-25 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US11016378B2 (en) 2009-05-29 2021-05-25 Kyocera Sld Laser, Inc. Laser light source
US9829778B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source
US9837790B1 (en) 2010-05-17 2017-12-05 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9362720B1 (en) 2010-05-17 2016-06-07 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10923878B1 (en) 2010-05-17 2021-02-16 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US8638828B1 (en) 2010-05-17 2014-01-28 Soraa, Inc. Method and system for providing directional light sources with broad spectrum
US8848755B1 (en) 2010-05-17 2014-09-30 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9106049B1 (en) 2010-05-17 2015-08-11 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US10122148B1 (en) 2010-05-17 2018-11-06 Soraa Laser Diodide, Inc. Method and system for providing directional light sources with broad spectrum
US11791606B1 (en) 2010-05-17 2023-10-17 Kyocera Sld Laser, Inc. Method and system for providing directional light sources with broad spectrum
US10505344B1 (en) 2010-05-17 2019-12-10 Soraa Laser Diode, Inc. Method and system for providing directional light sources with broad spectrum
US9371970B2 (en) 2011-01-24 2016-06-21 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US11543590B2 (en) 2011-01-24 2023-01-03 Kyocera Sld Laser, Inc. Optical module having multiple laser diode devices and a support member
US9810383B2 (en) 2011-01-24 2017-11-07 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9835296B2 (en) 2011-01-24 2017-12-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US10247366B2 (en) 2011-01-24 2019-04-02 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US11573374B2 (en) 2011-01-24 2023-02-07 Kyocera Sld Laser, Inc. Gallium and nitrogen containing laser module configured for phosphor pumping
JP2012164981A (en) * 2011-01-24 2012-08-30 Soraa Inc Laser package with plural emitters constructed on substrate member
US10655800B2 (en) 2011-01-24 2020-05-19 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9716369B1 (en) 2011-04-04 2017-07-25 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US11742634B1 (en) 2011-04-04 2023-08-29 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US10587097B1 (en) 2011-04-04 2020-03-10 Soraa Laser Diode, Inc. Laser bar device having multiple emitters
US10050415B1 (en) 2011-04-04 2018-08-14 Soraa Laser Diode, Inc. Laser device having multiple emitters
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US11005234B1 (en) 2011-04-04 2021-05-11 Kyocera Sld Laser, Inc. Laser bar device having multiple emitters
US10506210B2 (en) 2015-10-08 2019-12-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US11172182B2 (en) 2015-10-08 2021-11-09 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US11800077B2 (en) 2015-10-08 2023-10-24 Kyocera Sld Laser, Inc. Laser lighting having selective resolution
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11277204B2 (en) 2017-09-28 2022-03-15 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US10873395B2 (en) 2017-09-28 2020-12-22 Soraa Laser Diode, Inc. Smart laser light for communication
US11121772B2 (en) 2017-09-28 2021-09-14 Kyocera Sld Laser, Inc. Smart laser light for a vehicle
US11153011B2 (en) 2017-09-28 2021-10-19 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11870495B2 (en) 2017-09-28 2024-01-09 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11677468B2 (en) 2017-09-28 2023-06-13 Kyocera Sld Laser, Inc. Laser based white light source configured for communication
US10880005B2 (en) 2017-09-28 2020-12-29 Soraa Laser Diode, Inc. Laser based white light source configured for communication
US10784960B2 (en) 2017-09-28 2020-09-22 Soraa Laser Diode, Inc. Fiber delivered laser based white light source configured for communication
US11502753B2 (en) 2017-09-28 2022-11-15 Kyocera Sld Laser, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
US11249189B2 (en) 2017-12-13 2022-02-15 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11287527B2 (en) 2017-12-13 2022-03-29 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US11841429B2 (en) 2017-12-13 2023-12-12 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machine applications
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10649086B2 (en) 2017-12-13 2020-05-12 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US11867813B2 (en) 2017-12-13 2024-01-09 Kyocera Sld Laser, Inc. Distance detecting systems for use in mobile machines including gallium and nitrogen containing laser diodes
US10338220B1 (en) 2017-12-13 2019-07-02 Soraa Laser Diode, Inc. Integrated lighting and LIDAR system
US10345446B2 (en) 2017-12-13 2019-07-09 Soraa Laser Diode, Inc. Integrated laser lighting and LIDAR system
US11231499B2 (en) 2017-12-13 2022-01-25 Kyocera Sld Laser, Inc. Distance detecting systems for use in automotive applications including gallium and nitrogen containing laser diodes
US11199628B2 (en) 2017-12-13 2021-12-14 Kyocera Sld Laser, Inc. Distance detecting systems including gallium and nitrogen containing laser diodes
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11811189B1 (en) 2018-04-10 2023-11-07 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US11294267B1 (en) 2018-04-10 2022-04-05 Kyocera Sld Laser, Inc. Structured phosphors for dynamic lighting
US10809606B1 (en) 2018-04-10 2020-10-20 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
US11788699B2 (en) 2018-12-21 2023-10-17 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11594862B2 (en) 2018-12-21 2023-02-28 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
JP2020141095A (en) * 2019-03-01 2020-09-03 富士ゼロックス株式会社 Semiconductor optical amplification element, semiconductor optical amplifier, optical output device, and distance measuring device
CN111641105A (en) * 2019-03-01 2020-09-08 富士施乐株式会社 Semiconductor optical amplifying element and amplifier, optical output device and distance measuring device

Also Published As

Publication number Publication date
JP2555962B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JP2555962B2 (en) Optical element
US5052016A (en) Resonant-periodic-gain distributed-feedback surface-emitting semiconductor laser
US4881236A (en) Wavelength-resonant surface-emitting semiconductor laser
US7254155B1 (en) High power single mode vertical cavity surface emitting laser
US5295147A (en) Vertical cavity, surface-emitting laser with expanded cavity
US20020075935A1 (en) Lateral optical pumping of vertical cavity surface emitting laser
JP2004503118A (en) VCSEL and VCSEL array with integrated microlenses for use in semiconductor laser pumped solid-state laser systems
JP3288573B2 (en) Surface light laser
EP0397691B1 (en) Current injection laser
JPH06196681A (en) Light-receiving-and-emitting integrated element
JP2001223429A (en) Semiconductor laser device
US6813296B2 (en) GaSb-clad mid-infrared semiconductor laser
US20040013156A1 (en) Edge emitting lasers using photonic crystals
US6717974B2 (en) Apparatus and method for improving electrical conduction structure of a vertical cavity surface emitting laser
US5263041A (en) Surface emitting semiconductor laser
US8693894B2 (en) Gain clamped optical device for emitting LED mode light
JP2007227860A (en) Semiconductor light-emitting device
JPS63116489A (en) Optical integrated circuit
JP4967615B2 (en) Semiconductor light emitting device
JP3223047B2 (en) Quantum wire laser
JPS5979591A (en) Semiconductor light emitting device
WO2007100341A2 (en) Grazing incidence slab semiconductor laser system and method
US6587492B2 (en) Bipolar cascade arrow laser
JPWO2005096463A1 (en) Surface emitting laser and driving method thereof
JPH01108789A (en) Surface emission semiconductor laser element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960709