JPH07161801A - Substrate holder - Google Patents

Substrate holder

Info

Publication number
JPH07161801A
JPH07161801A JP32959393A JP32959393A JPH07161801A JP H07161801 A JPH07161801 A JP H07161801A JP 32959393 A JP32959393 A JP 32959393A JP 32959393 A JP32959393 A JP 32959393A JP H07161801 A JPH07161801 A JP H07161801A
Authority
JP
Japan
Prior art keywords
substrate
plate
metal plate
hollow portion
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32959393A
Other languages
Japanese (ja)
Inventor
Hideo Sugiura
英雄 杉浦
Ryuzo Iga
龍三 伊賀
Manabu Mitsuhara
学 満原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32959393A priority Critical patent/JPH07161801A/en
Publication of JPH07161801A publication Critical patent/JPH07161801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To reduce an error when the surface temperature of a substrate is measured by eliminating a fear that the substrate comes into contact with a metal plate. CONSTITUTION:A silicon plate is used as a back plate 4'. In addition to pins 3, three U-shaped wires 6 are installed around a hollow part 2-1 at intervals of 120 deg.. Light at a wavelength of 1100nm or lower out of radiant heat radiated from a heater 5 is absorbed by the back plate 4' composed of the silicon plate. As a result, the light at the wavelength of 1100nm or lower is not leaked to the side of a substrate 1 from a gap between the substrate and a metal plate 2, and it is possible to ignore the influence of light leaked from the heater 5 when a temperature is measured by using a pyrometer. In addition, the tip end of every U-shaped wire 6 comes into contact with the outer peripheral face of the substrate 1 so as to regulate the position of the substrate 1, and it is possible to prevent the substrate 1 from coming into contact with the metal plate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、真空容器内で化合物
半導体薄膜を形成する分子線エピタキシ法や有機金属分
子線エピタキシ法などに用いて好適な基板ホルダに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate holder suitable for use in a molecular beam epitaxy method or a metalorganic molecular beam epitaxy method for forming a compound semiconductor thin film in a vacuum container.

【0002】[0002]

【従来の技術】化合物半導体素子は、コンピュータ用の
高速素子ばかりでなく、光通信技術に不可欠な半導体レ
ーザなどの光素子として幅広く用いられている。これら
の半導体素子の作製には、有機金属気相成長法(MOV
PE)、分子線エピタキシ法(MBE)、有機金属分子
線エピタキシ法(MOMBE)などの薄膜形成法が用い
られている。この内、MBEとMOMBEは、真空容器
中内の加熱された基板に分子線状の原料を照射して薄膜
を蒸着する方法である。薄膜の品質は基板温度に敏感で
あるため、基板温度を精密に制御し、かつ基板全体を均
一に加熱する必要がある。前者(基板温度制御)につい
ては、パイロメータによって測定した表面温度をヒータ
電源にフィードバックすることによって、1℃以下の精
度が達成されている。一方、後者(基板の均一加熱)に
ついては、一様な熱接触を得るために、基板をモリブデ
ンでできた金属板にインジウムを用いて糊付けする方法
がとられている。この方法は、ウエーハサイズが小さい
場合および不定型の場合には有効であるが、2インチ基
板のような大きな基板には不向きである。また、成長の
前後においてインジウムの塗布と除去作業を伴うため、
MBEとMOMBEの実用化に大きな障害となる。
2. Description of the Related Art Compound semiconductor devices are widely used not only as high-speed devices for computers but also as optical devices such as semiconductor lasers, which are indispensable for optical communication technology. Metal organic vapor phase epitaxy (MOV
PE), molecular beam epitaxy (MBE), metalorganic molecular beam epitaxy (MOMBE) and the like are used. Among these, MBE and MOMBE are methods of irradiating a heated substrate in a vacuum container with a molecular beam source to deposit a thin film. Since the quality of the thin film is sensitive to the substrate temperature, it is necessary to precisely control the substrate temperature and heat the entire substrate uniformly. Regarding the former (substrate temperature control), an accuracy of 1 ° C. or less is achieved by feeding back the surface temperature measured by a pyrometer to the heater power supply. On the other hand, for the latter (uniform heating of the substrate), in order to obtain uniform thermal contact, a method of gluing the substrate on a metal plate made of molybdenum using indium is adopted. This method is effective when the wafer size is small and when the size is irregular, but it is not suitable for a large substrate such as a 2-inch substrate. In addition, since indium coating and removal work is required before and after growth,
This is a major obstacle to the practical application of MBE and MONBE.

【0003】これを解決するために、インジウムを用い
ない基板ホルダ、いわゆるインジウムフリーホルダが検
討されている。このインジウムフリーホルダの断面構造
を図5に示す。同図において、1は化合物半導体基板
(以下、単に基板と言う)、2はリング状の金属板、3
はその一端部が金属板2の中空部2−1の縁面部に溶接
固定されたピン、4はPBN(熱分解ボロンナイトライ
ド)板よりなるバックプレート、5はヒータである。ピ
ン3は中空部2−1の周囲に120゜間隔で3つ設けら
れている。バックプレート4は金属板2の中空部2−1
にそのプレート面を臨ませて載置されている。また、基
板1は金属板2の中空部2−1に配置されており、その
表面がピン3の先端部で押さえられ、バックプレート4
のプレート面との間に挾圧保持されている。このインジ
ウムフリーホルダにおいて基板1はヒータ5の輻射熱に
よって加熱される。
In order to solve this, a so-called indium-free holder, which is a substrate holder that does not use indium, has been studied. The sectional structure of this indium-free holder is shown in FIG. In the figure, 1 is a compound semiconductor substrate (hereinafter, simply referred to as a substrate), 2 is a ring-shaped metal plate, 3
Is a pin whose one end is welded and fixed to the edge of the hollow portion 2-1 of the metal plate 2, 4 is a back plate made of a PBN (pyrolysis boron nitride) plate, and 5 is a heater. Three pins 3 are provided around the hollow portion 2-1 at 120 ° intervals. The back plate 4 is a hollow portion 2-1 of the metal plate 2.
It is placed with its plate surface facing. Further, the substrate 1 is arranged in the hollow portion 2-1 of the metal plate 2, and its surface is pressed by the tip portion of the pin 3 and the back plate 4
It is held between the plate surface and the plate. In this indium-free holder, the substrate 1 is heated by the radiant heat of the heater 5.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなインジウムフリーホルダによると、その構造上に2
つの不備がある。第1に、ピン3のバネ力が弱いため、
基板1が定まった位置に固定されず、基板1と金属板2
とが接触する虞れがある。第2に、基板1と金属版2と
の間には隙間があるが、バックプレート4がPBN板で
あって光の波長選択性がないため、この隙間部分からヒ
ータ5の輻射熱が漏れ、パイロメータによる基板1の表
面温度の測定に際し大きな測定誤差を与える。これを避
けるために隙間を小さくすると、基板1が金属板2に接
触する虞れがさらに高まる。基板1が金属板2に接触す
ると、接触部分の温度が10℃以上も上昇してしまい、
基板1全体を均一に加熱することができなくなる。
However, according to such an indium-free holder, the structure of the indium-free holder has two problems.
There are two flaws. Firstly, since the spring force of the pin 3 is weak,
The substrate 1 and the metal plate 2 are not fixed in a fixed position.
There is a risk of contact with. Secondly, although there is a gap between the substrate 1 and the metal plate 2, since the back plate 4 is a PBN plate and has no wavelength selectivity of light, the radiant heat of the heater 5 leaks from this gap portion, and the pyrometer. A large measurement error is given when the surface temperature of the substrate 1 is measured by. If the gap is reduced to avoid this, the possibility that the substrate 1 contacts the metal plate 2 is further increased. When the substrate 1 contacts the metal plate 2, the temperature of the contact portion rises by 10 ° C. or more,
The entire substrate 1 cannot be heated uniformly.

【0005】本発明はこのような課題を解決するために
なされたもので、その目的とするところは、基板と金属
板とが接触する虞れがなく、基板全体を常に均一に加熱
することが可能で、またパイロメータによる精密温度制
御も可能なインジウムフリーの基板ホルダを提供するこ
とにある。
The present invention has been made in order to solve such a problem, and an object of the present invention is to constantly and uniformly heat the entire substrate without fear of contact between the substrate and the metal plate. An object of the present invention is to provide an indium-free substrate holder capable of performing precise temperature control using a pyrometer.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、中空部の形成された金属板と、こ
の金属板の中空部にそのプレート面を臨ませて配置され
たシリコン板よりなるバックプレートと、金属板の中空
部に配置された基板と、その一端部が金属板の中空部の
縁面部に固定され、その先端部が基板の表面に接触し
て、基板をバックプレートのプレート面との間に挾圧保
持する複数の金属製のピンと、その一端部が金属板の中
空部の縁面部に固定され、その先端部が基板の外周面に
接触して、基板の中空部における位置を規制する複数の
金属製のワイヤとを備えたものである。
In order to achieve the above object, the present invention is directed to a metal plate having a hollow portion, and the metal plate is disposed so that the plate surface faces the hollow portion of the metal plate. The back plate made of a silicon plate, the substrate placed in the hollow portion of the metal plate, one end of which is fixed to the edge surface portion of the hollow portion of the metal plate, and the tip of which is in contact with the surface of the substrate, A plurality of metal pins that hold pressure against the plate surface of the back plate, one end of which is fixed to the edge of the hollow part of the metal plate, and the tip of which is in contact with the outer peripheral surface of the substrate, And a plurality of metal wires that regulate the position in the hollow portion.

【0007】[0007]

【作用】したがってこの発明によれば、シリコン板より
なるバックプレートが波長1100nm以下の光を吸収
するため、基板と金属版との間の隙間から波長1100
nm以下の光が基板側に漏れることがない。また、ワイ
ヤの先端部が基板の外周面に接触して基板の位置を規制
するので、基板と金属板とが接触することがない。
Therefore, according to the present invention, since the back plate made of the silicon plate absorbs the light having the wavelength of 1100 nm or less, the wavelength of 1100 is obtained from the gap between the substrate and the metal plate.
Light of nm or less does not leak to the substrate side. Further, since the tip of the wire contacts the outer peripheral surface of the substrate to regulate the position of the substrate, the substrate and the metal plate do not come into contact with each other.

【0008】[0008]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。図1はこの発明の一実施例を示すインジウムフリー
ホルダの断面構造図である。同図において、1は基板
(化合物半導体基板)、2はリング状の金属板、3はそ
の一端部が金属板2の中空部2−1の縁面部に溶接固定
されたピン、4’はシリコン板よりなるバックプレー
ト、5はヒータ、6はその一端部が金属板2の中空部2
−1の縁面部に溶接固定されたU字型ワイヤである。本
実施例において、基板1は2インチ基板、バックプレー
ト4’は3インチのシリコンウエーハを用いている。ま
た、金属板2,ピン3およびU字型ワイヤ6はモリブデ
ンを用いている。
EXAMPLES The present invention will now be described in detail based on examples. FIG. 1 is a sectional structural view of an indium-free holder showing an embodiment of the present invention. In the figure, 1 is a substrate (compound semiconductor substrate), 2 is a ring-shaped metal plate, 3 is a pin whose one end is fixed by welding to the edge of the hollow portion 2-1 of the metal plate 2, and 4'is silicon. A back plate made of a plate, 5 is a heater, and 6 is a hollow part 2 of a metal plate 2 at one end thereof.
It is a U-shaped wire welded and fixed to the edge portion of -1. In this embodiment, the substrate 1 is a 2-inch substrate and the back plate 4'is a 3-inch silicon wafer. Also, molybdenum is used for the metal plate 2, the pin 3 and the U-shaped wire 6.

【0009】図2は図1におけるA方向矢視図である。
ピン3およびU字型ワイヤ6は中空部2−1の周囲に1
20゜間隔でそれぞれ3つ設けられている。バックプレ
ート4’は金属板2の中空部2−1にそのプレート面を
臨ませて載置されている。また、基板1は金属板2の中
空部2−1に配置されており、その表面がピン3の先端
部で押さえられて、バックプレート4’のプレート面と
の間に挾圧保持されている。なお、3つのピン3の基板
1との接触点は、直径44mmの円周上に位置してい
る。また、3つのU字型ワイヤ6の先端部は、基板1の
外径と等しいかあるいはそれよりも若干大きい円周上に
位置している。これにより、U字型ワイヤ6の先端部が
基板1の外周面に接触し、基板1の中空部2−1におけ
る位置を規制する。すなわち、基板1の位置がU字型ワ
イヤ6で中空部2−1の略中央に固定され、基板1と金
属板2との接触が阻止される。この場合、基板1とピン
3およびU字型ワイヤ6との接触は点接触であるため、
金属板2からの基板1への熱伝導は殆ど無視することが
できる。
FIG. 2 is a view in the direction of arrow A in FIG.
The pin 3 and the U-shaped wire 6 are placed around the hollow portion 2-1.
Three are provided at 20 ° intervals. The back plate 4 ′ is placed in the hollow portion 2-1 of the metal plate 2 with its plate surface facing. Further, the substrate 1 is arranged in the hollow portion 2-1 of the metal plate 2, and the surface thereof is pressed by the tip end portion of the pin 3 so as to be sandwiched and held between the plate surface of the back plate 4 '. . The contact points of the three pins 3 with the substrate 1 are located on the circumference of a diameter of 44 mm. Further, the tips of the three U-shaped wires 6 are located on the circumference that is equal to or slightly larger than the outer diameter of the substrate 1. As a result, the tip portion of the U-shaped wire 6 comes into contact with the outer peripheral surface of the substrate 1 and regulates the position of the substrate 1 in the hollow portion 2-1. That is, the position of the substrate 1 is fixed to the substantially center of the hollow portion 2-1 by the U-shaped wire 6, and the contact between the substrate 1 and the metal plate 2 is prevented. In this case, the contact between the substrate 1 and the pin 3 and the U-shaped wire 6 is point contact,
The heat conduction from the metal plate 2 to the substrate 1 can be almost ignored.

【0010】図3は基板1に2インチのInP基板を用
いたときの温度分布である。測定にはパイロメータを用
い、観測波長は950+20nmとした。ヒータ5から
放射される輻射熱のうち波長1100nm以下の光はす
べてシリコン板よりなるバックプレート4’によって吸
収される。このため、基板1と金属版2との間の隙間か
ら波長1100nm以下の光が基板1側に漏れることが
なく、パイロメータを用いた温度測定に際してヒータ5
からの漏れ光の影響を無視することができる。図3から
基板1の中央部直径40mmの領域で温度が+1℃以内
に分布していることが分かる。
FIG. 3 shows the temperature distribution when a 2-inch InP substrate is used as the substrate 1. A pyrometer was used for the measurement, and the observation wavelength was 950 + 20 nm. Of the radiant heat emitted from the heater 5, all light having a wavelength of 1100 nm or less is absorbed by the back plate 4'made of a silicon plate. Therefore, light having a wavelength of 1100 nm or less does not leak to the substrate 1 side through the gap between the substrate 1 and the metal plate 2, and the heater 5 is used for temperature measurement using a pyrometer.
The effect of light leaking from can be neglected. It can be seen from FIG. 3 that the temperature is distributed within + 1 ° C. in the region of the central portion of the substrate 1 having a diameter of 40 mm.

【0011】なお、図3では、基板1の外周縁に向かう
につれて温度が上昇しているが、これは見かけ上のもの
である。すなわち、パイロメータの空間分解能が直径5
mmであり、基板1の外周縁ではInP以外の熱源すな
わち金属板2やピン3からの輻射の寄与分が増加するた
めである。
Incidentally, in FIG. 3, the temperature rises toward the outer peripheral edge of the substrate 1, but this is apparent. That is, the spatial resolution of the pyrometer is 5
This is because the contribution of the heat source other than InP, that is, the radiation from the metal plate 2 and the pin 3 increases at the outer peripheral edge of the substrate 1.

【0012】図4はInP基板1にInGaAsP膜を
MOMBE成長した場合のフォトルミネッセンスピーク
の面内分布のヒストグラムである。波長は非常に均一に
分布しており、標準偏差はわずか3nmである。また、
多重量子井戸レーザ構造を作製した場合、そのしきい値
電流密度のばらつきは2インチ基板1の全面にわたって
10%以内であった。また、金属板2やピン3などの材
質としてタンタルを用いたときにも均一な温度分布と組
成の均一なInGaAsP膜が得られた。
FIG. 4 is a histogram of the in-plane distribution of photoluminescence peaks when the InGaAsP film is grown on the InP substrate 1 by MONBE. The wavelengths are very evenly distributed with a standard deviation of only 3 nm. Also,
When the multiple quantum well laser structure was produced, the variation in the threshold current density was within 10% over the entire surface of the 2-inch substrate 1. Further, when tantalum was used as the material for the metal plate 2 and the pins 3, an InGaAsP film having a uniform temperature distribution and a uniform composition was obtained.

【0013】なお、上述においては、基板1をInP基
板としたが、GaAsをはじめとする他の化合物半導体
基板でもよい。また、実施例では基板1を2インチの基
板としたが、ホルダサイズを大きくすることによって3
インチの基板にも適用することが可能であり、2インチ
以下の基板であっても同様にして適用することができる
ことは言うまでもない。また、金属板2を大きくし、こ
の金属板2に中空部2−1を多数形成し、これらの中空
部2−1に基板1を各個に配置し、図1と同様の構造と
して各基板1を保持するものとしてもよい。また、実施
例では、ワイヤ6をU字型としたが、V字型などとして
もよい。また、金属板2は中空部2−1があれば、リン
グ状でなくてもよい。
Although the substrate 1 is an InP substrate in the above description, other compound semiconductor substrates such as GaAs may be used. In addition, although the substrate 1 is a 2-inch substrate in the embodiment, it is possible to increase the size of the substrate by increasing the holder size.
It is needless to say that the invention can be applied to an inch substrate, and even a substrate of 2 inches or less can be similarly applied. In addition, the metal plate 2 is made large, a large number of hollow portions 2-1 are formed in the metal plate 2, and the substrates 1 are individually arranged in these hollow portions 2-1, and each substrate 1 has the same structure as in FIG. May be held. Further, although the wire 6 is U-shaped in the embodiment, it may be V-shaped or the like. Further, the metal plate 2 need not have a ring shape as long as it has the hollow portion 2-1.

【0014】[0014]

【発明の効果】以上説明したことから明らかなように本
発明によれば、シリコン板よりなるバックプレートが波
長1100nm以下の光を吸収するため、基板と金属版
との間の隙間から波長1100nm以下の光が基板側に
漏れることがなく、基板の表面温度測定に際しての誤差
を小さくすることができ、パイロメータによる精密温度
制御が可能となる。また、ワイヤの先端部が基板の外周
面に接触して基板の位置を規制するので、基板と金属板
とが接触することがなく、基板全体を常に均一に加熱す
ることが可能となる。
As is apparent from the above description, according to the present invention, since the back plate made of the silicon plate absorbs the light having the wavelength of 1100 nm or less, the wavelength of 1100 nm or less is generated from the gap between the substrate and the metal plate. Light does not leak to the substrate side, an error in measuring the surface temperature of the substrate can be reduced, and precise temperature control by a pyrometer becomes possible. Further, since the tip of the wire contacts the outer peripheral surface of the substrate to regulate the position of the substrate, the substrate and the metal plate do not come into contact with each other, and the entire substrate can be heated uniformly at all times.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すインジウムフリーホル
ダの断面構造図である。
FIG. 1 is a sectional structural view of an indium-free holder showing an embodiment of the present invention.

【図2】図1におけるA方向矢視図である。FIG. 2 is a view on arrow A in FIG.

【図3】基板として2インチのInP基板を用いたとき
の温度分布を示す図である。
FIG. 3 is a diagram showing a temperature distribution when a 2-inch InP substrate is used as a substrate.

【図4】InP基板にInGaAsP膜をMOMBE成
長した場合のフォトルミネッセンスピークの面内分布の
ヒストグラムを示す図である。
FIG. 4 is a diagram showing a histogram of the in-plane distribution of photoluminescence peaks when an InGaAsP film is grown on an InP substrate by MOMBE.

【図5】従来検討されているインジウムフリーホルダの
断面構造図である。
FIG. 5 is a cross-sectional structure diagram of an indium-free holder which has been conventionally studied.

【符号の説明】[Explanation of symbols]

1 基板(化合物半導体基板) 2 金属板 2−1 中空部 3 ピン 4’バックプレート 5 ヒータ 6 U字型ワイヤ 1 substrate (compound semiconductor substrate) 2 metal plate 2-1 hollow part 3 pin 4'back plate 5 heater 6 U-shaped wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中空部の形成された金属板と、 この金属板の中空部にそのプレート面を臨ませて配置さ
れたシリコン板よりなるバックプレートと、 前記金属板の中空部に配置された化合物半導体基板と、 その一端部が前記金属板の中空部の縁面部に固定され、
その先端部が前記化合物半導体基板の表面に接触して、
前記化合物半導体基板を前記バックプレートのプレート
面との間に挾圧保持する複数の金属製のピンと、 その一端部が前記金属板の中空部の縁面部に固定され、
その先端部が前記化合物半導体基板の外周面に接触し
て、前記化合物半導体基板の前記中空部における位置を
規制する複数の金属製のワイヤとを備えたことを特徴と
する基板ホルダ。
1. A metal plate having a hollow portion, a back plate made of a silicon plate arranged so that the plate surface faces the hollow portion of the metal plate, and a back plate arranged in the hollow portion of the metal plate. A compound semiconductor substrate, one end of which is fixed to an edge portion of the hollow portion of the metal plate,
The tip portion contacts the surface of the compound semiconductor substrate,
A plurality of metal pins that hold the compound semiconductor substrate between the plate surface of the back plate and the plate surface, and one end thereof is fixed to an edge surface portion of the hollow portion of the metal plate,
A substrate holder comprising: a plurality of metal wires whose tip portions contact the outer peripheral surface of the compound semiconductor substrate to regulate the position of the compound semiconductor substrate in the hollow portion.
JP32959393A 1993-12-02 1993-12-02 Substrate holder Pending JPH07161801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32959393A JPH07161801A (en) 1993-12-02 1993-12-02 Substrate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32959393A JPH07161801A (en) 1993-12-02 1993-12-02 Substrate holder

Publications (1)

Publication Number Publication Date
JPH07161801A true JPH07161801A (en) 1995-06-23

Family

ID=18223086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32959393A Pending JPH07161801A (en) 1993-12-02 1993-12-02 Substrate holder

Country Status (1)

Country Link
JP (1) JPH07161801A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730320A (en) * 1980-07-29 1982-02-18 Fujitsu Ltd Substrate holder for molecular beam epitaxy
JPS6081820A (en) * 1983-10-11 1985-05-09 Rohm Co Ltd Wafer mounting device for molecular beam epitaxial equipment
JPS6214415A (en) * 1985-07-12 1987-01-23 Hitachi Ltd Substrate holder
JPS62279624A (en) * 1986-05-28 1987-12-04 Hitachi Ltd Substrate holder for molecular beam epitaxy
JPH05179428A (en) * 1991-05-23 1993-07-20 Matsushita Electric Ind Co Ltd Thin film forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730320A (en) * 1980-07-29 1982-02-18 Fujitsu Ltd Substrate holder for molecular beam epitaxy
JPS6081820A (en) * 1983-10-11 1985-05-09 Rohm Co Ltd Wafer mounting device for molecular beam epitaxial equipment
JPS6214415A (en) * 1985-07-12 1987-01-23 Hitachi Ltd Substrate holder
JPS62279624A (en) * 1986-05-28 1987-12-04 Hitachi Ltd Substrate holder for molecular beam epitaxy
JPH05179428A (en) * 1991-05-23 1993-07-20 Matsushita Electric Ind Co Ltd Thin film forming device

Similar Documents

Publication Publication Date Title
KR920007848B1 (en) Low pressure vapor phase growth apparatus
US7847218B2 (en) System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
US20170316963A1 (en) Direct optical heating of substrates
JPH10265294A (en) Single crystal pulling up device and method therefor
TWI737715B (en) Optically heated substrate support assembly with removable optical fibers
JPH08222797A (en) Semiconductor device and manufacture thereof
JPH0936049A (en) Vapor phase growth device and compound semiconductor device manufactured with said device
CN113991426A (en) Method for producing semiconductor chips
JP3115775B2 (en) Manufacturing method of semiconductor laser
JPH07161801A (en) Substrate holder
KR20160003082A (en) Low emissivity electrostatic chuck
US4877573A (en) Substrate holder for wafers during MBE growth
US4514250A (en) Method of substrate heating for deposition processes
Gillgrass et al. Impact of thermal oxidation uniformity on 150 mm GaAs-and Ge-substrate VCSELs
JP2002343727A (en) Method and device for growing crystal and method for manufacturing semiconductor device
CN101300666A (en) Semiconductor production apparatus and semiconductor device
JP2001185605A (en) Substrate holding mechanism and method for manufacturing compound semiconductor by using the same
Gurary et al. Application of emissivity compensated pyrometry for temperature measurement and control during compound semiconductors manufacturing
JPH01234391A (en) Substrate holder
Sugiura et al. Metalorganic molecular beam epitaxial growth of highly uniform InGaAsP quantum well structures using an indium-free holder
US20220013976A1 (en) High-energy laser apparatus for thin film temperture sensing
JPH04164382A (en) Semiconductor-array laser device
JP2688365B2 (en) Board holder
JP2023502353A (en) Method for joining two substrates
JP3157866B2 (en) Substrate holder for molecular beam crystal growth and molecular beam crystal growth method