JPH0715898B2 - Microwave plasma processing equipment - Google Patents

Microwave plasma processing equipment

Info

Publication number
JPH0715898B2
JPH0715898B2 JP59270895A JP27089584A JPH0715898B2 JP H0715898 B2 JPH0715898 B2 JP H0715898B2 JP 59270895 A JP59270895 A JP 59270895A JP 27089584 A JP27089584 A JP 27089584A JP H0715898 B2 JPH0715898 B2 JP H0715898B2
Authority
JP
Japan
Prior art keywords
microwave
sample
plasma processing
circular waveguide
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59270895A
Other languages
Japanese (ja)
Other versions
JPS61150219A (en
Inventor
則明 山本
史雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59270895A priority Critical patent/JPH0715898B2/en
Publication of JPS61150219A publication Critical patent/JPS61150219A/en
Publication of JPH0715898B2 publication Critical patent/JPH0715898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、マイクロ波プラズマ処理装置に関するもので
ある。
Description: FIELD OF APPLICATION OF THE INVENTION The present invention relates to a microwave plasma processing apparatus.

〔発明の背景〕[Background of the Invention]

マイクロ波プラズマ処理装置では、2.45GHzのマイクロ
波と900ガウス程度の磁場によって電子のサイクロトロ
ン共鳴運動を引起こしてプラズマを発生させる。このた
め、例えば、13.56MHzの高周波電力を印加する平行平板
型プラズマ処理装置に比べてプラズマ密度,電離度が数
桁高くなり、また、10-3〜10-4Torrという高真空下で放
電できることから高選択比,異方性,均一性プラズマ処
理が可能である。(特公昭56−37311号公報,特公昭59
−53430号公報) しかし、従来のマイクロ波プラズマ処理装置では、例え
ば、マイクロ波パワーを低くするとマイクロ波による電
場の不均一性のために、処理の均一性が低下し、また、
放電圧力を高くすると低マイクロ波パワーの影響をより
一層受け処理の均一性が更に低下するといった問題があ
る。
In the microwave plasma processing apparatus, plasma is generated by causing cyclotron resonance motion of electrons by a microwave of 2.45 GHz and a magnetic field of about 900 gauss. Therefore, for example, the plasma density and the ionization degree are several orders of magnitude higher than those of a parallel plate type plasma processing apparatus that applies a high frequency power of 13.56 MHz, and it is possible to discharge under a high vacuum of 10 -3 to 10 -4 Torr. Therefore, high selectivity, anisotropy, and uniform plasma processing are possible. (Japanese Patent Publication No. 56-37311, Japanese Patent Publication No. 59)
However, in the conventional microwave plasma processing apparatus, for example, when the microwave power is lowered, the uniformity of the processing is deteriorated due to the non-uniformity of the electric field due to the microwave, and
When the discharge pressure is increased, there is a problem that the uniformity of the processing is further deteriorated due to the influence of the low microwave power.

〔発明の目的〕[Object of the Invention]

本発明の目的は、マイクロ波パワー,放電圧力等によら
ず試料の被処理面上での放電を均一にすることで、マイ
クロ波パワー,放電圧力等の影響を受けずに処理の均一
性の低下を防止できるマイクロ波プラズマ処理装置を提
供することにある。
An object of the present invention is to make the discharge on the surface to be processed of the sample uniform without depending on the microwave power, the discharge pressure, etc., so that the uniformity of the processing can be improved without being affected by the microwave power, the discharge pressure, etc. An object of the present invention is to provide a microwave plasma processing apparatus capable of preventing the decrease.

〔発明の概要〕[Outline of Invention]

本発明は、マグネトロンで発生したマイクロ波を円形導
波管で放電管に導き、該放電管周囲に設けられた空芯ソ
レノイドコイルにより電子のサイクロトロン共鳴運動を
引起こし、該運動により処理ガスをプラズマ化して試料
を処理するマイクロ波プラズマ処理装置において、前記
マイクロ波を導く円形導波管の円周位置に、該導波管中
への差込み深さを調節可能な導体棒を複数本配置し、該
導体棒により前記試料の被処理面上の前記電場の分布を
コントロールするようにしたことを特徴とするもので、
試料の被処理面上の電場分布をコントロールすること
で、マイクロ波パワー,放電圧力等によらず試料の被処
理面上での放電を均一にするようにしたものである。
The present invention guides microwaves generated by a magnetron to a discharge tube with a circular waveguide, causes cyclotron resonance motion of electrons by an air-core solenoid coil provided around the discharge tube, and the motion causes plasma to process gas. In a microwave plasma processing apparatus for processing a sample by liquefying, at a circumferential position of a circular waveguide for guiding the microwave, a plurality of conductor rods having adjustable insertion depths into the waveguide are arranged, It is characterized in that the distribution of the electric field on the surface to be processed of the sample is controlled by the conductor rod,
By controlling the electric field distribution on the surface to be processed of the sample, the electric discharge on the surface to be processed of the sample is made uniform irrespective of microwave power, discharge pressure and the like.

〔発明の実施例〕Example of Invention

マイクロ波プラズマ処理装置では、試料の中心を軸にし
て空芯ソレノイドコイルと円形導波管とを設置して処理
の均一性を高くするようにしているが、しかし、部品加
工や組立上の誤差が積み重なるため、どうしても磁場や
電場が不均一になる。この現象は、低マイクロ波パワ
ー、即ち、低電場にて顕著に現われる。そこで、磁場や
電場を動かすことが考えられるが、磁場については、構
造上複雑で固難なため、本発明では、電場を動かすこと
にした。
In the microwave plasma processing apparatus, an air-core solenoid coil and a circular waveguide are installed with the center of the sample as an axis to improve the uniformity of processing. The magnetic fields and electric fields are inhomogeneous due to the stacking of. This phenomenon is prominent in low microwave power, that is, low electric field. Therefore, it is conceivable to move the magnetic field or the electric field. However, since the magnetic field is structurally complicated and difficult, in the present invention, the electric field is moved.

即ち、試料の被処理面上の電場分布をコントロールする
手段、例えば、外径φ6のアルミニウム製の導体棒を試
料の被処理面に対して直角に位置する円形導波管の円周
位置に配置してその中に差込んだところ試料の被処理面
上の放電状態を自由に変化させることができた。
That is, a means for controlling the electric field distribution on the surface to be processed of the sample, for example, an aluminum conductor rod with an outer diameter of φ6 is arranged at the circumferential position of the circular waveguide positioned at right angles to the surface to be processed of the sample. Then, when inserted into it, the discharge state on the surface to be processed of the sample could be freely changed.

以下、本発明の一実施例を第1図〜第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS.

第1図,第2図で、マグネトロン1で発生した2.45GHz
のマイクロ波は、アイソレータ2を介し矩形導波管3お
よび円形導波管4を伝わって絶縁性材料で形成された放
電管7の中に吸収される。一方、空芯ソレノイドコイル
5,6には電子のサイクロトロン共鳴運動を引起こすのに
必要な電流が印加される。真空室10は真空排気装置11を
用い、一例として処理ガスSF6にて放電圧力10mTorrに維
持されている。真空室10のSF6は、電子のサイクロトロ
ン共鳴運動によってプラズマ化される。真空室10内の試
料台9上に被処理面上向姿勢で設置された試料8の被処
理面はプラズマを用いて、この場合、エッチング処理さ
れる。円形導波管4の円周位置に配置された導体棒12a
〜12dを、試料8のエッチング処理時に円形導波管4の
中に差込むことで、試料8の被処理面上の放電は均一に
コントロールされる。
2.45GHz generated by magnetron 1 in Figs.
The microwave is transmitted through the rectangular waveguide 3 and the circular waveguide 4 via the isolator 2 and is absorbed in the discharge tube 7 made of an insulating material. On the other hand, air core solenoid coil
The current necessary to cause cyclotron resonance motion of electrons is applied to 5 and 6. The vacuum chamber 10 uses a vacuum exhaust device 11 and is maintained at a discharge pressure of 10 mTorr with the processing gas SF 6 as an example. SF 6 in the vacuum chamber 10 is turned into plasma by cyclotron resonance motion of electrons. The surface to be processed of the sample 8 placed on the sample table 9 in the vacuum chamber 10 in an upward posture of the surface to be processed is subjected to etching processing using plasma, in this case. Conductor rod 12a arranged at the circumferential position of circular waveguide 4
By inserting ~ 12d into the circular waveguide 4 during the etching process of the sample 8, the discharge on the surface to be processed of the sample 8 is uniformly controlled.

例えば、エッチング処理条件として、マイクロ波パワー
を100W,放電圧力を10mTorr,処理ガスをSF6,処理ガス流
量を70SCCMとし、また、導体棒12a〜12dの円形導波管4
中への差込み深さを第3図のように、導体棒12aで5mm,
導体棒12bで10mm,導体棒12cで17mm,導体棒12dで20mmと
して単結晶シリコンをエッチング処理した結果、第4図
に示すように、エッチング処理の均一性として±1.8%
を得ることができた。
For example, as the etching processing conditions, microwave power is 100 W, discharge pressure is 10 mTorr, processing gas is SF 6 , processing gas flow rate is 70 SCCM, and the circular waveguide 4 of the conductor rods 12a to 12d is used.
As shown in Fig. 3, the insertion depth is 5mm with the conductor rod 12a,
The conductor rod 12b was 10 mm, the conductor rod 12c was 17 mm, and the conductor rod 12d was 20 mm. As a result of etching the single crystal silicon, the uniformity of the etching treatment was ± 1.8% as shown in FIG.
I was able to get

本実施例では、円形導波管の円周位置に4本配置された
導体棒の円形導波管中への差込み深さを調整すること
で、マイクロ波パワー,放電圧力等によらず試料の被処
理面上の放電を均一にコントロールできるので、マイク
ロ波パワー,放電圧力等の影響を受けずにエッチング処
理の均一性の低下を防止できる。
In the present embodiment, by adjusting the insertion depth of the four conductor rods arranged at the circumferential position of the circular waveguide into the circular waveguide, it is possible to adjust the depth of the sample regardless of the microwave power, the discharge pressure, or the like. Since the discharge on the surface to be processed can be uniformly controlled, it is possible to prevent the deterioration of the uniformity of the etching process without being affected by the microwave power, the discharge pressure and the like.

なお、本実施例では、円形導波管中に導体棒を4本差込
んでいるが、これに特に限定されるものではなく、マイ
クロ波を導く導波管中に試料の被処理面上の電場分布を
コントロール可能に導体棒を本数に依らず差込むように
すればよい。
In this embodiment, four conductor rods are inserted in the circular waveguide, but the present invention is not particularly limited to this, and the conductor on the surface to be processed of the sample is introduced in the waveguide for guiding the microwave. It suffices to insert the conductor rods regardless of the number so that the electric field distribution can be controlled.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように、マイクロ波パワー,放
電圧力等によらず試料の被処理面上での放電を均一にで
きるので、マイクロ波パワー,放電圧力等の影響を受け
ずに処理の均一性の低下を防止できるという効果があ
る。また、任意モードにおける電界の歪を導体棒により
微調整できるという効果もある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, since the discharge on the surface to be processed of the sample can be made uniform regardless of the microwave power, the discharge pressure, etc., the processing can be performed without being affected by the microwave power, the discharge pressure, etc. This has the effect of preventing a decrease in uniformity. There is also an effect that the distortion of the electric field in the arbitrary mode can be finely adjusted by the conductor rod.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明によるマイクロ波プラズマ処理装置の
一実施例を示す構成図、第2図は、第1図の平面図、第
3図は、第2図での導体棒の差込み状態図、第4図は、
第1図のマイクロ波プラズマ処理装置を使用し得た試料
内のx軸,y軸方向のシリコンエッチレート分布図であ
る。 1……マグネトロン、4……円形導波管、5,6……空芯
ソレノイドコイル、7……放電管、8……試料、10……
真空室、12aないし12d……導体棒
FIG. 1 is a configuration diagram showing an embodiment of a microwave plasma processing apparatus according to the present invention, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a state diagram of a conductor rod inserted in FIG. , Fig. 4 shows
FIG. 3 is a silicon etch rate distribution diagram in the x-axis and y-axis directions in a sample obtained by using the microwave plasma processing apparatus of FIG. 1. 1 ... Magnetron, 4 ... Circular waveguide, 5,6 ... Air core solenoid coil, 7 ... Discharge tube, 8 ... Sample, 10 ...
Vacuum chamber, 12a to 12d ... conductor rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マグネトロンで発生したマイクロ波を円形
導波管で放電管に導き、該放電管周囲に設けられた空芯
ソレノイドコイルにより、前記マイクロ波による電場に
磁場を直交させて電子のサイクロトロン共鳴運動を引起
こし、該運動により処理ガスをプラズマ化して試料を処
理するマイクロ波プラズマ処理装置において、前記マイ
クロ波を導く円形導波管の円周位置に、該導波管中への
差込み深さを調節可能な導体棒を複数本配置し、該導体
棒により前記試料の被処理面上の前記電場の分布をコン
トロールするようにしたことを特徴とするマイクロ波プ
ラズマ処理装置。
1. A cyclotron of electrons in which a microwave generated by a magnetron is guided to a discharge tube by a circular waveguide, and an air-core solenoid coil provided around the discharge tube makes a magnetic field orthogonal to an electric field generated by the microwave. In a microwave plasma processing apparatus for causing a resonance motion and processing the sample by converting the processing gas into a plasma by the motion, a depth of insertion into the waveguide at a circumferential position of the circular waveguide for guiding the microwave. A microwave plasma processing apparatus, wherein a plurality of conductor rods whose height is adjustable are arranged, and the distribution of the electric field on the surface to be treated of the sample is controlled by the conductor rods.
JP59270895A 1984-12-24 1984-12-24 Microwave plasma processing equipment Expired - Lifetime JPH0715898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59270895A JPH0715898B2 (en) 1984-12-24 1984-12-24 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59270895A JPH0715898B2 (en) 1984-12-24 1984-12-24 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPS61150219A JPS61150219A (en) 1986-07-08
JPH0715898B2 true JPH0715898B2 (en) 1995-02-22

Family

ID=17492465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59270895A Expired - Lifetime JPH0715898B2 (en) 1984-12-24 1984-12-24 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JPH0715898B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729347A1 (en) * 1986-09-05 1988-03-17 Mitsubishi Electric Corp PLASMA PROCESSOR
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
JPH0672306B2 (en) 1987-04-27 1994-09-14 株式会社半導体エネルギー研究所 Plasma processing apparatus and plasma processing method
US4830700A (en) * 1987-07-16 1989-05-16 Texas Instruments Incorporated Processing apparatus and method
US4877757A (en) * 1987-07-16 1989-10-31 Texas Instruments Incorporated Method of sequential cleaning and passivating a GaAs substrate using remote oxygen plasma
US4844773A (en) * 1987-07-16 1989-07-04 Texas Instruments Incorporated Process for etching silicon nitride film
US4832779A (en) * 1987-07-16 1989-05-23 Texas Instruments Incorporated Processing apparatus
US4832777A (en) * 1987-07-16 1989-05-23 Texas Instruments Incorporated Processing apparatus and method
US4904621A (en) * 1987-07-16 1990-02-27 Texas Instruments Incorporated Remote plasma generation process using a two-stage showerhead
US4816098A (en) * 1987-07-16 1989-03-28 Texas Instruments Incorporated Apparatus for transferring workpieces
US4838984A (en) * 1987-07-16 1989-06-13 Texas Instruments Incorporated Method for etching films of mercury-cadmium-telluride and zinc sulfid
US4822450A (en) * 1987-07-16 1989-04-18 Texas Instruments Incorporated Processing apparatus and method
US4818326A (en) * 1987-07-16 1989-04-04 Texas Instruments Incorporated Processing apparatus
US4874723A (en) * 1987-07-16 1989-10-17 Texas Instruments Incorporated Selective etching of tungsten by remote and in situ plasma generation
US4842686A (en) * 1987-07-17 1989-06-27 Texas Instruments Incorporated Wafer processing apparatus and method
JPH0199219A (en) * 1987-10-13 1989-04-18 Fuji Electric Co Ltd Microwave device
JPH01107538A (en) * 1987-10-21 1989-04-25 Hitachi Ltd Method and apparatus for plasma-processing microwave
US5032202A (en) * 1989-10-03 1991-07-16 Martin Marietta Energy Systems, Inc. Plasma generating apparatus for large area plasma processing
KR930011413B1 (en) 1990-09-25 1993-12-06 가부시키가이샤 한도오따이 에네루기 겐큐쇼 Plasma cvd method for using pulsed waveform

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526036Y2 (en) * 1975-10-03 1980-06-23
JPS59114798A (en) * 1982-12-22 1984-07-02 島田理化工業株式会社 Microwave plasma device

Also Published As

Publication number Publication date
JPS61150219A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
JPH0715898B2 (en) Microwave plasma processing equipment
TW312815B (en)
US5401351A (en) Radio frequency electron cyclotron resonance plasma etching apparatus
KR940008368B1 (en) Plasma treating apparatus using plasma generated by microwave
US6332947B1 (en) Plasma processing apparatus and plasma processing method using the same
JPH06283470A (en) Plasma processing device
JPH0770532B2 (en) Plasma processing device
JP2570090B2 (en) Dry etching equipment
JPH11135438A (en) Semiconductor plasma processing apparatus
US5413663A (en) Plasma processing apparatus
JP3254069B2 (en) Plasma equipment
JP2004047695A (en) Method and apparatus for plasma doping
JPH088235B2 (en) Plasma reactor
JPS60154620A (en) Treatment of microwave plasma
JP3294839B2 (en) Plasma processing method
JP2001015297A (en) Plasma device
JPH076998A (en) Microwave plasma processing equipment
JP3192352B2 (en) Plasma processing equipment
JP3685461B2 (en) Plasma processing equipment
JPS5867870A (en) Magnetically attached magnetron-type apparatus for high-speed plasma etching or reactive ion etching
JP3205542B2 (en) Plasma equipment
JP2877398B2 (en) Dry etching equipment
JPH025413A (en) Plasma processor
JP2002343773A (en) Method and device for plasma processing
JPH0521391A (en) Microwave plasma device