JPH07157352A - Molded body of short carbon fiber reinforced hydraulic composite material - Google Patents

Molded body of short carbon fiber reinforced hydraulic composite material

Info

Publication number
JPH07157352A
JPH07157352A JP31056993A JP31056993A JPH07157352A JP H07157352 A JPH07157352 A JP H07157352A JP 31056993 A JP31056993 A JP 31056993A JP 31056993 A JP31056993 A JP 31056993A JP H07157352 A JPH07157352 A JP H07157352A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
span
molded body
bending strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31056993A
Other languages
Japanese (ja)
Inventor
Mitsuru Awata
満 粟田
Akira Shiraki
明 白木
Mitsuharu Tezuka
光晴 手塚
Hiromichi Sakai
廣道 坂井
Sanehiro Kube
修弘 久部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP31056993A priority Critical patent/JPH07157352A/en
Publication of JPH07157352A publication Critical patent/JPH07157352A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

PURPOSE:To suppress the reduction of bending strength and improve flexibility by specifying the bending strength. CONSTITUTION:Water is added to a mixture of 0.2-1.0vol.% carbon fibers each having >=300kg/mm<2> tensile strength, 4-10mum fiber diameter and an aspect ratio of 1,000-4,000 with 0.2-2.0wt.% fiber binding agent, 0.2-2wt.% epoxy emulsion not contg. a curing agent, 100 pts.wt. cement, 20-30 pts.wt. aggregate, a dispersant and 1-4 pts.wt. water reducing agent and they are kneaded and molded to obtain the objective molded body of a short carbon fiber reinforced hydraulic composite material having >=2m intrasurface max. length. The bending strength of this molded body in >=2m span is >=90% of that in 30cm span.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として土木、建築分野
において使用される強度の優れた炭素繊維強化水硬性複
合材料成形体に関する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced hydraulic composite material molded article having excellent strength, which is mainly used in the fields of civil engineering and construction.

【0002】[0002]

【従来の技術】炭素繊維強化水硬性複合材料は通常のモ
ルタルの強度不足を、炭素繊維のもつ引張強度と弾性率
を利用して補うために開発されたものであり、使用する
炭素繊維の物性、収束剤、配合方法等につき数多くの提
案が成されてきた。たとえば、特開昭63−16255
9号公報には引張強度約200kg/mm2 の炭素繊維
を、水溶性ポリマーを用いて集束し水硬性材料に単糸分
散させた複合材料が約300kg/cm2 (スパン10
cm)の曲げ強度を示すことが記載されている。この様
に炭素繊維強化水硬性複合材料を用いて得られる成形体
は従来の水硬性材料に比し曲げ強度、引張強度、靱性に
優れているものの、尚一層の改良がのぞまれている。た
とえば、このような炭素繊維強化水硬性複合材料の成形
体は大型になるにしたがいその曲げ強度が低下する。す
なわち、大型強度試験体に於いてスパンが30cmから
1m,2m,3mと長くなるに従い曲げ強度が低下する
所謂スパン効果が避けられないものであった。また、可
撓性も従来の水硬性材料に比し向上しているものの、ス
パンが1mの場合で約2%、2mで約3%、3mで約8
%の撓み量であり、可撓性の成形体とは言い難たかっ
た。
2. Description of the Related Art A carbon fiber reinforced hydraulic composite material was developed to compensate for the lack of strength of ordinary mortar by utilizing the tensile strength and elastic modulus of carbon fiber. A number of proposals have been made regarding sizing agents, blending methods, and the like. For example, JP-A-63-16255
No. 9 discloses a composite material in which carbon fibers having a tensile strength of about 200 kg / mm 2 are bundled using a water-soluble polymer and dispersed in a single yarn in a hydraulic material to give about 300 kg / cm 2 (span 10
(cm) flexural strength is described. As described above, the molded product obtained by using the carbon fiber reinforced hydraulic composite material is excellent in bending strength, tensile strength and toughness as compared with conventional hydraulic materials, but further improvement is desired. For example, the bending strength of a molded product of such a carbon fiber reinforced hydraulic composite material decreases as the size increases. That is, in the large-sized strength test piece, the so-called span effect, in which the bending strength decreases as the span increases from 30 cm to 1 m, 2 m, and 3 m, is unavoidable. The flexibility is also improved compared to the conventional hydraulic material, but about 2% when the span is 1 m, about 3% when the span is 2 m, and about 8 when 3 m.
The bending amount was%, and it was difficult to call it a flexible molded body.

【0003】[0003]

【発明が解決しようとする課題】本発明は強度及び靱性
が更に優れた炭素繊維強化水硬性複合材料の成形体を開
発することを目的とするものである。特に、曲げ強度の
低下が少なく、可撓性に優れた長尺の成形体を目的とす
るものである。
SUMMARY OF THE INVENTION It is an object of the present invention to develop a molded product of a carbon fiber reinforced hydraulic composite material which is further excellent in strength and toughness. In particular, the present invention aims at a long-sized molded body that is excellent in flexibility with little decrease in bending strength.

【0004】[0004]

【課題を解決するための手段】本発明者等は鋭意検討の
結果、水硬性複合材料の成形体がスパンが2m以上でも
曲げ強度の低下が極めて小さく且つ、3mのときでも曲
げ強度が100kg/cm2 以上という従来予想されな
かった成形体を得、本発明を達成した。即ち本発明の要
旨は、面内最大長さが2.0m以上の成形体であって、
スパン2m以上における曲げ強度がスパン30cmのと
きの曲げ強度の90%以上であることを特徴とする炭素
短繊維強化水硬性複合材料成形体に存する。以下、本発
明を詳細に説明する。
Means for Solving the Problems As a result of intensive studies by the present inventors, the bending strength of the molded body of the hydraulic composite material is extremely small even when the span is 2 m or more, and the bending strength is 100 kg / m even when it is 3 m. The present invention has been achieved by obtaining a molded body of cm 2 or more, which has not been expected in the past. That is, the gist of the present invention is a molded product having an in-plane maximum length of 2.0 m or more,
The short carbon fiber reinforced hydraulic composite material molded body is characterized in that the bending strength at a span of 2 m or more is 90% or more of the bending strength at a span of 30 cm. Hereinafter, the present invention will be described in detail.

【0005】本発明に係わる成形体は、炭素繊維、セメ
ント、骨材、分散剤、減水剤その他の添加剤を配合した
炭素短繊維強化水硬性複合材料を水に分散させ常法にし
たがって成形、乾燥させて得られる面内最大長さが2m
以上の成形体である。曲げ強度はJIS A 1408
コンクリートの曲げ強度試験方法に準じて測定され
る。尚、面内最大長さとは、成形体のある面の中に引け
る直線のうち、最も長いものの長さをいう。曲げ強度は
従来、スパンが大きくなるに従い急速に低下するが、本
発明の成形体はスパンが30cmの時の値に比しスパン
が2m以上になっても90%以上の強度を示す、所謂ス
パン効果のほとんど無い状態の成形体である。歪みは上
記曲げ強度試験のさいの撓み量の成形体の厚み(高さ)
にたいする割合で示される。本発明の成形体はスパン2
mで通常15%以上である。かかる大きな撓み量は、面
内最大長さが約5m程度まで好適に得られる。
The molded product according to the present invention is formed by dispersing a short carbon fiber reinforced hydraulic composite material containing carbon fiber, cement, aggregate, dispersant, water reducing agent and other additives in water according to a conventional method, Maximum in-plane length obtained by drying is 2 m
It is the above-mentioned molded body. Bending strength is JIS A 1408
It is measured according to the bending strength test method for concrete. The maximum in-plane length refers to the length of the longest straight line that can be drawn in the surface of the molded body. Conventionally, the bending strength rapidly decreases as the span increases, but the molded product of the present invention exhibits a strength of 90% or more even when the span is 2 m or more as compared with the value when the span is 30 cm, a so-called span. It is a molded product with almost no effect. The strain is the thickness (height) of the molded body corresponding to the amount of bending in the above bending strength test.
It is shown as a ratio to. The molded product of the present invention has a span 2
It is usually 15% or more in m. Such a large bending amount can be suitably obtained up to a maximum in-plane length of about 5 m.

【0006】本発明の成形体を製造するための炭素短繊
維強化水硬性複合材料は特に限定されないがたとえば水
硬性材料中に、引張強度が300kg/mm2 以上、糸
径が4−10μmの炭素繊維を体積比で0.2−1.0
%混合分散してなる炭素短繊維強化水硬性複合材料を使
用することにより製造される。本発明におけるセメント
原料としては普通ポルトランドセメント、早強ポルトラ
ンドセメント、高炉セメント、アルミナセメントおよび
低収縮セメントのいずれでも良く、好ましくは低収縮セ
メントおよび早強ポルトランドセメントを用いる。
The short carbon fiber reinforced hydraulic composite material for producing the molded product of the present invention is not particularly limited, but for example, in the hydraulic material, carbon having a tensile strength of 300 kg / mm 2 or more and a yarn diameter of 4-10 μm is used. Volume ratio of fiber is 0.2-1.0
% Carbon short fiber reinforced hydraulic composite material prepared by mixing and dispersing. As the cement raw material in the present invention, any of ordinary portland cement, early strength portland cement, blast furnace cement, alumina cement and low shrinkage cement may be used, and preferably low shrinkage cement and early strength portland cement are used.

【0007】本発明で用いられる炭素繊維としては、引
張強度が300kg/mm2 以上好ましくは400kg
/mm2 以上であれば特に限定されることなく使用で
き、例えばコールタールピッチ、石油ピッチ、石炭液化
物、ポリアクリロニトリル、セルロース等を原料とした
炭素繊維を用いることができる。炭素繊維の糸径として
は、4〜10μm、好ましくは5〜8μmのものが用い
られる。炭素繊維の繊維長としては、アスペクト比とし
て1000〜4000のものが用いられる。炭素繊維の
アスペクト比が1000未満であると、添加量が多くて
も引き抜けの抵抗力が小さいため硬化体の強度は低下す
る。4000より大きいと、混練が困難なため、繊維の
分散不良をおこし、流動性が低下し、硬化体の強度低下
が生じる。
The carbon fiber used in the present invention has a tensile strength of 300 kg / mm 2 or more, preferably 400 kg.
It can be used without particular limitation as long as it is / mm 2 or more, and for example, carbon fiber made from coal tar pitch, petroleum pitch, coal liquefaction, polyacrylonitrile, cellulose or the like can be used. The diameter of the carbon fiber used is 4 to 10 μm, preferably 5 to 8 μm. As the fiber length of the carbon fibers, those having an aspect ratio of 1000 to 4000 are used. If the carbon fiber has an aspect ratio of less than 1000, the strength of the cured product decreases because the pull-out resistance is small even if the addition amount is large. When it is more than 4000, the kneading is difficult, resulting in poor dispersion of the fibers, the fluidity is lowered, and the strength of the cured product is lowered.

【0008】炭素繊維の添加量は炭素繊維強化水硬性複
合材料に対して0.2〜1.0%が好ましい。添加量が
0.2%未満であると補強効果がなく、1.0%を超え
ると繊維の数が多すぎ分散不良になってしまう。更に、
この種複合材料に通常配合される種々の材料が配合され
る。繊維の集束剤は、モルタルにしたときに、チョップ
ドストランド状の炭素繊維が単糸分散することを可能と
させる集束剤が用いられ、例えば、硬化剤未添加のエポ
キシエマルジョンや、ポリビニルアルコール系として、
未ケン化ポリ酢酸ビニル、部分ケン化ポリビニルアルコ
ール、完全ケン化ポリビニルアルコールがある。また、
メチルセルロース、エチルセルロース、カルボキシルエ
チルセルロース、ヒドロキシエチルセルロース等のセル
ロース誘導体、可溶性デンプン等のデンプン誘導体も用
いられる。好ましくは硬化剤未添加のエポキシエマルジ
ョンが用いられる。本発明で用いられるエポキシエマル
ジョンとしては、以下のエポキシ化合物を界面活性剤で
エマルジョン化したものが使用できる。エポキシ化合物
とは、例えば、ビスフェノール型、リボラック型、脂環
族型、レゾール型、アミノ型などのエポキシ化合物のモ
ノマー、低重合物が挙げられ、中でも、ビスフェノール
A型で分子量が470以下、あるいはノボラック型で分
子量が600以下のエポキシ化合物が好ましい。例え
ば、シェル化学社製“エピコート”815、827、8
28および834、CIBA−GEIGY(チバーガイ
ギー)社製“アラルダイト”ECN−1235である。
The amount of carbon fiber added is preferably 0.2 to 1.0% with respect to the carbon fiber reinforced hydraulic composite material. If the addition amount is less than 0.2%, there is no reinforcing effect, and if it exceeds 1.0%, the number of fibers is too large, resulting in poor dispersion. Furthermore,
Various materials usually blended with this kind of composite material are blended. The fiber sizing agent is a sizing agent that allows the chopped strand-shaped carbon fibers to be dispersed in a single yarn when made into a mortar.For example, a curing agent-free epoxy emulsion or a polyvinyl alcohol-based sizing agent,
There are unsaponified polyvinyl acetate, partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol. Also,
Cellulose derivatives such as methyl cellulose, ethyl cellulose, carboxyethyl cellulose, hydroxyethyl cellulose and starch derivatives such as soluble starch are also used. An epoxy emulsion without a curing agent is preferably used. As the epoxy emulsion used in the present invention, the following epoxy compounds emulsified with a surfactant can be used. Epoxy compounds include, for example, bisphenol-type, ribolac-type, alicyclic-type, resol-type, amino-type, and other epoxy compound monomers and low-polymerization products. Among them, bisphenol A-type and molecular weight 470 or less, or novolac An epoxy compound having a type and a molecular weight of 600 or less is preferable. For example, Shell Chemical Co. "Epicote" 815, 827, 8
28 and 834, "Araldite" ECN-1235 manufactured by CIBA-GEIGY.

【0009】これらをエマルジョン化する界面活性剤と
しては、ポリオキシメチレンのヒマシ油エーテル、ノニ
ルフェニルエーテル、スチレン化フェニルエーテルなど
のポリオキシエチレンアルキルエーテルまたはポリオキ
シエチレンアルキルアリルエーテルおよびポリビニルア
ルコールなどの中から選ばれた少なくとも1種類の界面
活性剤が挙げられる。
Surfactants for emulsifying these include polyoxymethylene castor oil ethers, nonylphenyl ethers, polyoxyethylene alkyl ethers such as styrenated phenyl ethers, polyoxyethylene alkyl allyl ethers and polyvinyl alcohols. At least one surfactant selected from

【0010】集束剤の濃度は0.2〜2.0wt%、好
ましくは0.5〜1.5wt%に調節する。添着の方法
は、水に集束剤を混入して規定の濃度にし、その溶液に
炭素繊維を長繊維のまま滑車を通じて含浸させる。含浸
後の炭素繊維は100〜120℃で乾燥、切断される。
繊維長は5〜20mmが好ましい。エマルジョンタイプ
のエポキシの場合、その添着量が0.1wt%以下で
は、無添着の場合とほとんど変化がなく、通常のモルタ
ルミキサーでは繊維を充分分散させることが困難で、オ
ムニミキサーのような特殊なミキサーが必要とされ、使
用した際も繊維の毛羽立ちは目立つ。また2〜5wt%
の場合は、炭素繊維の周りにエポキシエマルジョンが多
すぎて炭素繊維とマトリックスの結合が弱くなるため、
逆にCFRCの強度は落ちる。さらに、5wt%以上に
なると、混練時、水を添加した後も炭素繊維はストラン
ド状態のままで単糸分散は起こらないため、繊維による
補強効果は極めて少なくなる。エポキシエマルジョンの
場合0.2〜2wt%が好ましい。
The concentration of the sizing agent is adjusted to 0.2 to 2.0 wt%, preferably 0.5 to 1.5 wt%. As the method of impregnation, a sizing agent is mixed in water to a prescribed concentration, and the solution is impregnated with carbon fibers as long fibers through pulleys. The carbon fiber after impregnation is dried and cut at 100 to 120 ° C.
The fiber length is preferably 5 to 20 mm. In the case of emulsion type epoxy, if the amount of the impregnated is 0.1 wt% or less, there is almost no difference from the case of no impregnation, and it is difficult to sufficiently disperse the fibers with a normal mortar mixer, and it is not possible to use a special type such as an omni mixer. A mixer is required and fiber fluff is noticeable when used. 2-5 wt%
In the case of, since there is too much epoxy emulsion around the carbon fiber and the bond between the carbon fiber and the matrix becomes weak,
On the contrary, the strength of CFRC decreases. Further, when the content is 5 wt% or more, the carbon fiber remains in a strand state even after water is added during kneading and single yarn dispersion does not occur, so that the reinforcing effect by the fiber becomes extremely small. In the case of an epoxy emulsion, 0.2-2 wt% is preferable.

【0011】骨材としては、砂、ケイ石、砂利、シラス
バルーンフライアッシュ等が挙げられる。平均粒径が6
mmで好ましくは珪砂5号を、軽量骨材は平均粒径40
μmの中空シリカを用い、セメント100部に対して合
計20〜30部混入する。また、繊維の分散剤としては
通常一般に使用されているものが使用でき、例えば、メ
チルセルロース、ヒドロキシエチルセルロース等のセル
ロース誘導体、ポリアミド型、ポリアミン型、アルキル
ピコリニウム塩型、アルキルアミンの水溶性酸型等のカ
チオン界面活性剤、アルキルアミンオキサイド型ノニオ
ン性界面活性剤、アルキルアラニン型、アルキルアミン
オキサイド型ノニオン性界面活性剤、アルキルグリシン
型、アルキルアラニン型、アルキルベタイン型、アルキ
ルイミダゾリン型等の両性界面活性剤のうちいずれか1
種または2種以上の混合物が使用される。
Examples of aggregates include sand, silica stone, gravel, and Shirasu balloon fly ash. Average particle size is 6
mm preferably silica sand No. 5, lightweight aggregate has an average particle size of 40
Using hollow silica of μm, a total of 20 to 30 parts is mixed with 100 parts of cement. Further, as the fiber dispersant, those generally used can be used, for example, cellulose derivatives such as methyl cellulose and hydroxyethyl cellulose, polyamide type, polyamine type, alkyl picolinium salt type, alkyl amine water-soluble acid type and the like. Cationic surfactants, alkylamine oxide-type nonionic surfactants, alkylalanine-type, alkylamine oxide-type nonionic surfactants, alkylglycine-type, alkylalanine-type, alkylbetaine-type, and alkylimidazoline-type amphoteric surfactants One of the agents
One kind or a mixture of two or more kinds is used.

【0012】減水剤としてはトリアジン環系高縮合物塩
を主成分とする特殊界面活性剤、特殊スルホン基カルボ
キシル基含有多元ポリマー、アニオン型特殊高分子活性
剤、ナフタレンスルホン酸縮合物リグニンスルホン酸誘
導体等が挙げられる。添加量はセメント100部に対し
て1〜4部混入する。また、分散剤、減水剤の他に消泡
剤、発泡剤等の混和剤も適宜添加できる。セメント原料
と炭素繊維、水、その他助剤を混練する混合機として
は、通常用いられる全ての混合機が使用でき、パドル
型、プロペラ型、櫂型、タービン型、パン型、リボン
型、スクリュー型、ワーナ型、ニーダー型等の撹拌翼を
有する混合機の場合は、炭素繊維とセメント原料とを水
を加えずにまず混合し、ついで水を加えて混練する。成
形体の製造は任意の方法に従って製造できる。
As the water-reducing agent, a special surfactant containing a triazine ring-based high condensation product salt as a main component, a special polymer having a special sulfone group and a carboxyl group, an anionic special polymer surfactant, a naphthalenesulfonic acid condensate ligninsulfonic acid derivative Etc. The addition amount is 1 to 4 parts with respect to 100 parts of cement. Further, in addition to the dispersant and the water reducing agent, an admixture such as an antifoaming agent and a foaming agent can be appropriately added. As a mixer for kneading the cement raw material, carbon fiber, water and other auxiliaries, all commonly used mixers can be used, including paddle type, propeller type, paddle type, turbine type, pan type, ribbon type, screw type In the case of a mixer having a stirring blade such as a warner type or a kneader type, the carbon fiber and the cement raw material are first mixed without adding water, and then water is added and kneaded. The molded body can be manufactured according to any method.

【0013】[0013]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1 エポキシ水エマルジョンを1%添着した引張強度が45
0kg/mm2 の炭素繊維を体積率で0.5%、内容積
50リットルのオムニミキサーに投入し、さらに低収縮
セメント100重量部、ケイ砂12.5重量部、軽量骨
材12.5重量部、メチルセルロース0.25重量部添
加し、30秒乾式混合し、短繊維が充分分散した混合物
を得、ついで水を50重量部加えて30秒混練した後そ
れぞれ、高さ、厚み、長さが10×10×40、10×
30×140、10×30×240、10×30×34
0cmの型枠に流し込んで、炭素繊維強化水硬性複合材
料を製造した。翌日、脱型を行い、気中に4週間養生
後、JIS A 1408コンクリートの曲げ強度試験
方法に準じて3点曲げ試験を行った。なお、載荷速度は
0.01mm/minである。試験体数は、スパン30
cmを15体で行い、1、2および3mのものは3体で
行った。
The present invention will be described in more detail with reference to the following examples. Example 1 Tensile strength of 45% with 1% epoxy water emulsion attached
Carbon fiber of 0 kg / mm 2 was added to an omni mixer having a volume ratio of 0.5% and an internal volume of 50 liters, and further 100 parts by weight of low shrinkage cement, 12.5 parts by weight of silica sand, and 12.5 parts by weight of lightweight aggregate. Parts, 0.25 parts by weight of methyl cellulose, and dry-mixed for 30 seconds to obtain a mixture in which short fibers are sufficiently dispersed. Then, 50 parts by weight of water is added and kneaded for 30 seconds, and then the height, thickness, and length are respectively increased. 10 x 10 x 40, 10 x
30 x 140, 10 x 30 x 240, 10 x 30 x 34
The carbon fiber reinforced hydraulic composite material was manufactured by pouring into a 0 cm mold. The next day, the mold was removed, and after curing for 4 weeks in the air, a 3-point bending test was carried out according to the bending strength test method of JIS A 1408 concrete. The loading speed is 0.01 mm / min. The number of test specimens is span 30
cm was performed with 15 bodies, and those with 1, 2 and 3 m were performed with 3 bodies.

【0014】比較例1 ポリビニルアルコールを1.5wt%添着した引張強度
が188kg/mm2の炭素繊維を体積率で0.5%、
内容積50リットルのオムニミキサーに投入し、さらに
低収縮セメント100重量部、ケイ砂12.5重量部、
軽量骨材12.5重量部、メチルセルロース0.25重
量部添加し、30秒乾式混合し、短繊維が充分分散した
混合物を得、ついで水を50重量部加えて30秒混練し
た後、それぞれ高さ、厚み、長さが10×10×40、
10×30×140、10×30×240、10×30
×340cmの型枠に流し込んで、炭素繊維強化水硬性
複合材料を製造した。翌日、脱型を行い、気中に4週間
養生後3点曲げ試験を行った。なお、載荷速度は0.0
1mm/minである。試験体数は、スパン30cmが
n=35で行い、1、2および3mのものはそれぞれn
=10、15、5で行った。また曲げ強度測定の際、最
大荷重までの歪み(撓み量)を測定し高さに対する比率
を計算した。結果を表1に示す。
Comparative Example 1 Polyvinyl alcohol impregnated with 1.5 wt% of carbon fiber having a tensile strength of 188 kg / mm 2 in a volume ratio of 0.5%,
Add to an omni-mixer with an internal volume of 50 liters, and further add 100 parts by weight of low shrinkage cement, 12.5 parts by weight of silica sand,
12.5 parts by weight of lightweight aggregate and 0.25 parts by weight of methyl cellulose were added and dry-mixed for 30 seconds to obtain a mixture in which short fibers were sufficiently dispersed. Then, 50 parts by weight of water was added and kneaded for 30 seconds, and then each was mixed with high Thickness, thickness, length 10 × 10 × 40,
10 x 30 x 140, 10 x 30 x 240, 10 x 30
It was poured into a mold of × 340 cm to produce a carbon fiber-reinforced hydraulic composite material. The next day, the mold was removed, and after being cured in the air for 4 weeks, a 3-point bending test was performed. The loading speed is 0.0
It is 1 mm / min. The number of test specimens was n = 35 for a span of 30 cm, and n was 1, 2 and 3 m, respectively.
= 10,15,5. When measuring the bending strength, the strain (deflection amount) up to the maximum load was measured and the ratio to the height was calculated. The results are shown in Table 1.

【0015】[0015]

【表1】 なお、図1に、スパンに対する曲げ強度を示す。[Table 1] In addition, the bending strength with respect to the span is shown in FIG.

【0016】[0016]

【発明の効果】以上説明したように本発明、スパンが2
mのときの曲げ強度が30cmの時に比べ、その保持率
が90%以上であることを特徴とする炭素繊維強化水硬
性複合材料を製造することによって、実大のパネルにお
いても強度が極めて高いものが得られる。
As described above, the present invention has a span of 2
Bending strength when m is 30 cm, retention rate is 90% or more, by manufacturing a carbon fiber reinforced hydraulic composite material, the strength is extremely high even in a full-scale panel Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例の成形体のスパンと曲げ強度
の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a span and a bending strength of molded articles of Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 14:02 B 24:38) A 103:40 (72)発明者 坂井 廣道 福岡県北九州市八幡西区黒崎城石1番1号 三菱化成株 式会社黒崎工場内 (72)発明者 久部 修弘 福岡県北九州市八幡西区黒崎城石1番1号 三菱化成株 式会社黒崎工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C04B 14:02 B 24:38) A 103: 40 (72) Inventor Hiromichi Sakai Kitakyushu City, Fukuoka Prefecture Kurosaki Shiroishi No. 1-1, Hachiman Nishi-ku Inside the Mitsubishi Chemical Co., Ltd. Kurosaki Plant (72) Inventor Nobuhiro Kube No. 1 Kurosaki Shiroishi, Yawatanishi-ku, Kitakyushu, Fukuoka Prefecture Inside the Mitsubishi Chemical Co., Ltd. Kurosaki Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 面内最大長さが2m以上の成形体であっ
て、スパン2m以上における曲げ強度がスパン30cm
のときの曲げ強度の90%以上であることを特徴とする
炭素短繊維強化水硬性複合材料成形体。
1. A molded product having a maximum in-plane length of 2 m or more, and a bending strength in a span of 2 m or more, a span of 30 cm.
90% or more of the bending strength at that time, a short carbon fiber reinforced hydraulic composite material molded body.
【請求項2】 面内最大長さが2m以上の成形体であっ
て、曲げ強度がスパン3mにおいて、100kg/cm
2 以上である請求項1の炭素短繊維強化水硬性複合材料
成形体。
2. A molded product having a maximum in-plane length of 2 m or more and a bending strength of 100 kg / cm at a span of 3 m.
The short carbon fiber reinforced hydraulic composite material molded body according to claim 1, which is 2 or more.
JP31056993A 1993-12-10 1993-12-10 Molded body of short carbon fiber reinforced hydraulic composite material Pending JPH07157352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31056993A JPH07157352A (en) 1993-12-10 1993-12-10 Molded body of short carbon fiber reinforced hydraulic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31056993A JPH07157352A (en) 1993-12-10 1993-12-10 Molded body of short carbon fiber reinforced hydraulic composite material

Publications (1)

Publication Number Publication Date
JPH07157352A true JPH07157352A (en) 1995-06-20

Family

ID=18006822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31056993A Pending JPH07157352A (en) 1993-12-10 1993-12-10 Molded body of short carbon fiber reinforced hydraulic composite material

Country Status (1)

Country Link
JP (1) JPH07157352A (en)

Similar Documents

Publication Publication Date Title
RU2036886C1 (en) Method for preparation of mixture for production of composite material products from composite materials
CA2119007C (en) Workable cementitious compositions
US5686181A (en) Carbon fibers for reinforcement of cement and cement composite material
US20020019465A1 (en) Self-compacting engineered cementitious composite (ECC)
CA2165526A1 (en) Carbon fiber-reinforced concrete and method for preparing the same
US5062897A (en) Carbon fiber-reinforced hydraulic composite material
US5679149A (en) Short carbon fiber chopped strands and short carbon fiber reinforced hydraulic composite materials
JPH09295877A (en) Staple fiber-reinforced concrete
JP4451083B2 (en) Mortar manufacturing method
JPH07157352A (en) Molded body of short carbon fiber reinforced hydraulic composite material
JPH07279312A (en) Concrete filler member
JPH07233591A (en) Hydraulic compound material of carbon short fiber-chopped strand reinforced with carbon short fibers
JP2004315251A (en) High strength/high toughness cement compound material and method of manufacturing the same
JP2660143B2 (en) Carbon fiber and cement composite for cement reinforcement
JPH1179804A (en) Carbon fiber-reinforced concrete
JP2004189512A (en) Composition of mortar
JPH0465338A (en) Production of carbon fiber reinforced concrete or similar composition
JPH08225357A (en) Carbon fiber-reinforced concrete and its production
JPH07165452A (en) Carbon fiber-reinforced hydraulic composite material
JPH0977539A (en) Fiber reinforced concrete
JP3107656B2 (en) Concrete composition
JPH06329454A (en) Artificial rock reinforced with carbon fiber
JPH101341A (en) Short fiber strand and short fiber reinforced concrete
JPH08294912A (en) Manufacture of fiber-reinforced concrete
JPH101340A (en) Short fiber strand and short fiber reinforced concrete