JPH07151540A - Method for measuring position - Google Patents

Method for measuring position

Info

Publication number
JPH07151540A
JPH07151540A JP20745392A JP20745392A JPH07151540A JP H07151540 A JPH07151540 A JP H07151540A JP 20745392 A JP20745392 A JP 20745392A JP 20745392 A JP20745392 A JP 20745392A JP H07151540 A JPH07151540 A JP H07151540A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
reflected
point
transmitter
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20745392A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yugawa
川 浩 行 湯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20745392A priority Critical patent/JPH07151540A/en
Publication of JPH07151540A publication Critical patent/JPH07151540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure the self-position by radiating an electromagnetic wave never influenced by meteorological condition, selecting the electromagnetic wave reflected by a reflecting plate or the newly emitted electromagnetic wave, and comparing it with the directly received electromagnetic wave. CONSTITUTION:A transmitting device 2 is set in a fixed position to emit an electromagnetic wave in a sector direction to be measured. A measuring point 1 directly receives the electromagnetic wave in the radiated electromagnetic waves, also receives the electromagnetic wave reflected by a reflecting plate 3 set in a fixed position or the newly emitted electromagnetic wave by receiving the electromagnetic wave of the transmitting device 2. The measurement results for the angle and delay time between both the electromagnetic waves is subjected to trigonmetric calculation with the distance between the transmitting device 2 and the reflecting plate 3 set in the fixed positions as the base to measure the position of the measuring point 1 to the transmitting device 2 and the reflecting plate 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、作業領域内を自由に動
き回る作業車が作業の基準となる自己の正確な位置を知
るための測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring method for a work vehicle that freely moves around in a work area to know its own accurate position which is a reference for work.

【0002】[0002]

【従来の技術】自己の現在位置を知るために従来よりも
っとも広く用いられているのは天文学による測量で、今
日では天候に左右されない人工衛星を使った方法が用い
られている。 地上での作業はより正確さを要求される
ため光学測量あるいは電磁波またはレザー光線による測
量が用いられている。
2. Description of the Related Art Astronomy has been the most widely used method for finding one's current position. Today, a satellite-based method that is not affected by the weather is used. Since the work on the ground requires more accuracy, optical surveying or surveying by electromagnetic waves or laser rays is used.

【0003】光学測量は目視によるため作業が遅く測量
結果をもって操作回路に接続するのは困難である。電磁
波を発信させ反射波を測定する電磁波測距儀で距離を算
出する方法は、電気回路のためそのまま操作回路に接続
できる利点を持っているが、付近の物体に反射する影響
を受けるため光学的に目標を定めなければならない。
Since optical surveying is visual, the work is slow and it is difficult to connect the surveying result to the operating circuit. The method of calculating the distance with an electromagnetic wave rangefinder that emits electromagnetic waves and measures reflected waves has the advantage that it can be connected to the operation circuit as it is because it is an electric circuit, but it is optically affected by reflection from nearby objects. Have to set goals.

【0004】レザー光線の直進性を利用して目標物に対
する角度を測定する方法はもっとも正確であるが、距離
が遠くなると空中に浮遊する塵埃により光線が散逸し地
表面における気温斑により空気密度が斑となって直進性
が損なわれ正確さを欠く。
The most accurate method is to measure the angle of the laser beam with respect to the target object by utilizing the straightness of the beam. However, when the distance is long, the light beam is scattered by the dust floating in the air and the air density is increased by the temperature unevenness on the ground surface. It becomes spotted and impairs straightness and lacks accuracy.

【0005】[0005]

【発明が解決しようとする課題】物象的影響を受けない
電磁波を使用し、目標物外の不要な反射波を無視できる
点である。
The point is that the electromagnetic waves that are not physically influenced are used and unnecessary reflected waves outside the target object can be ignored.

【0006】[0006]

【課題を解決するための手段】作業領域の一端に電磁波
を「ふく射」する発信装置を備え、一定距離をもった他
端に電磁波を反射させる反射板を設置して、発信装置よ
り「ふく射」された電磁波の一は直接測定点に達し、他
の一は反射板により反射してより測定点に達する。
[Means for Solving the Problems] A transmitter for "radiating" electromagnetic waves is provided at one end of the work area, and a reflector for reflecting the electromagnetic waves is installed at the other end with a certain distance, so that "radiating" from the transmitter. One of the generated electromagnetic waves directly reaches the measurement point, and the other one is reflected by the reflection plate and further reaches the measurement point.

【0007】二方向より入力した電磁波は到達距離の差
から時間差が生じ電磁波の伝播速度から換算して到達距
離の差を知り、到達方向より二方向間の角度を測定して
三角法の原理より測定点の位置を知ることを実現した。
Electromagnetic waves input from two directions have a time difference due to the difference in the reaching distance, and the difference in the reaching distance is known by converting from the propagation velocity of the electromagnetic wave. The angle between the two directions is measured from the reaching direction, and the principle of trigonometry is used. It was realized to know the position of the measurement point.

【0008】[0008]

【実施例】図1は、測定点における測定方法の構成を示
したもので、図2は、本発明により作業車の行動を実施
例として説明したものである。 図3(イ)および
(ロ)はそれぞれ発信装置より発射される電磁波の二形
態を示したもので、図4および図5は測定点における受
信波形の形態を示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of a measuring method at a measuring point, and FIG. 2 illustrates the behavior of a work vehicle as an embodiment according to the present invention. 3 (a) and 3 (b) respectively show two forms of the electromagnetic wave emitted from the transmitter, and FIGS. 4 and 5 show the form of the received waveform at the measurement point.

【0009】図1に示したように、固定した発信装置2
より電磁波を発信し、測定点1で直接飛来する電磁波7
と、固定させた反射板3に向かった電磁波5が反射して
測定点1に至る反射波6を受信して、測定点1で到来し
た電磁波7と反射波6の比較により相互の遅延時間と電
磁波の到来方向より角度4を測定する。
As shown in FIG. 1, the fixed transmitter 2 is fixed.
Electromagnetic wave 7 that directly emits electromagnetic waves at measurement point 1
Then, the electromagnetic wave 5 directed to the fixed reflector 3 is reflected to receive the reflected wave 6 reaching the measurement point 1, and the electromagnetic wave 7 arrived at the measurement point 1 and the reflected wave 6 are compared to determine the mutual delay time. Angle 4 is measured from the arrival direction of the electromagnetic wave.

【0010】発信装置2より発射される電磁波の形態の
実施例として図3に示した。図中(イ)は、距離測定の
ためパルス38を発射する電磁波の先頭におき後尾に方
向探知のための特定周波39を続けて発射する形態を示
し、図中(ロ)は、方向探知の特定周波39の途中に距
離測定のためのパルス38を設けた形態を示した。
An example of the form of electromagnetic waves emitted from the transmitter 2 is shown in FIG. In the figure, (a) shows a form in which the electromagnetic wave which emits the pulse 38 for distance measurement is placed at the beginning and a specific frequency 39 for direction detection is continuously emitted at the back, and (b) in the figure shows the direction detection. The form in which the pulse 38 for distance measurement is provided in the middle of the specific frequency 39 is shown.

【0011】図4は、発射装置2より図3(イ)の形態
による電磁波が発射され測定点1における受信波形の形
態を示したもので、電磁波7より入力した受信波形はパ
ルス40および特定周波42となり、反射波6より入力
した受信波形は距離の差により生じた遅延時間44のず
れをもってパルス41と特定周波43となって現出す
る。
FIG. 4 shows the form of the received waveform at the measurement point 1 when the electromagnetic wave of the form shown in FIG. 3 (a) is emitted from the emission device 2. The received waveform inputted from the electromagnetic wave 7 is the pulse 40 and the specific frequency. 42, the received waveform input from the reflected wave 6 appears as a pulse 41 and a specific frequency 43 with a delay time 44 difference caused by the difference in distance.

【0012】同様に発信装置2より図3(ロ)の形態に
よる電磁波が発射され測定点1における受信波形の形態
は図5に示したように直接受信したパルス45と特定周
波47および遅延した反射波のパルス46と特定周波4
8によって現出される。
Similarly, an electromagnetic wave of the form shown in FIG. 3B is emitted from the transmitting device 2, and the form of the received waveform at the measuring point 1 is as shown in FIG. 5, the pulse 45 received directly, the specific frequency 47 and the delayed reflection. Wave pulse 46 and specific frequency 4
Revealed by 8.

【0013】遅延時間は、発信装置2から測定点1に至
る距離よりも発信装置2から反射板3を介して測定点1
に至る距離のほうが長いので、電磁波の伝播速度より遅
延時間を双方の距離の差に換算できる。
The delay time is measured from the transmitting device 2 through the reflecting plate 3 to the measuring point 1 rather than the distance from the transmitting device 2 to the measuring point 1.
Since the distance to is longer, the delay time can be converted into the difference between the two distances rather than the propagation speed of electromagnetic waves.

【0014】固定された発信装置2と反射板3の設置距
離はあらかじめ定めた距離8を有しその数値は測定点1
に計算の基数として与えられている。
The fixed transmitter 8 and the reflector 3 are installed at a predetermined distance 8 and the numerical value is the measurement point 1.
Is given as the radix of calculation.

【0015】測定点1では遅延時間より算出した距離の
差と固定した距離8および角度4をもって三角法の定理
である余弦定理と正弦定理を使って未知であった反射波
6および電磁波7が伝播する距離を導き出すことがで
き、同時に角度9および10を知り得るので、測定点1
は固定した発信装置2と固定した反射板3を基準にその
位置を知ることができる。
At the measurement point 1, the reflected wave 6 and the electromagnetic wave 7 which are unknown by using the cosine theorem and the sine theorem which are trigonometric theorems propagate with the distance difference calculated from the delay time and the fixed distance 8 and angle 4. The distance to be measured can be derived and the angles 9 and 10 can be known at the same time.
Can know its position based on the fixed transmitter 2 and the fixed reflector 3.

【0016】測定点1は最初に受信する電磁波7を基準
とし次に受信する反射波6との間で遅延時間を測定する
ので、測定点1、発信装置2、反射板3により形成され
る三角形の範囲内および電磁波5と反射波6を加えた電
磁波到達距離より短い距離をもつ位置に電磁波を反射す
る物体があってはならない。
Since the measuring point 1 measures the delay time between the first received electromagnetic wave 7 and the reflected wave 6 received next, the triangle formed by the measuring point 1, the transmitter 2 and the reflector 3 is measured. There must be no object that reflects the electromagnetic wave within the range of ## EQU1 ## or at a position having a shorter distance than the electromagnetic wave reaching distance of the electromagnetic wave 5 and the reflected wave 6.

【0017】図2により作業領域11の中の作業車を該
測定点として実施例を説明すれば、作業領域11の各隅
に電磁波が作業領域内に向かってのみ「ふく射」する発
信装置12、13、14、15を設置し発信装置13お
よび14の中間に反射板16を発信装置12および15
の中間に反射板17をそれぞれ設置する。
Referring to FIG. 2, the working vehicle in the work area 11 will be used as the measurement point to explain the embodiment. In the transmitter 12, the electromagnetic waves "radiate" only into the work area at each corner of the work area 11. 13, 14 and 15 are installed, and a reflector 16 is provided between the transmitters 13 and 14 and the transmitters 12 and 15 are provided.
Reflector plates 17 are installed in the middle of the above.

【0018】作業車18は、発信装置15が「ふく射」
する電磁波19と電磁波20が反射した反射波21によ
り自己の位置を知ることができる。正常に測定を行なう
ときの作業車22は、発信装置13が「ふく射」する電
磁波23と電磁波24および反射した反射波25により
自己の位置を測定する。
In the work vehicle 18, the transmitter 15 "radiates".
The position of one's own can be known by the reflected wave 21 which is the reflected electromagnetic wave 19 and the reflected electromagnetic wave 20. The work vehicle 22 at the time of performing the normal measurement measures its own position by the electromagnetic waves 23 and 24 that the transmitter 13 "radiates" and the reflected waves 25 that are reflected.

【0019】もし、発信装置13が設置されず、作業車
は発信装置12により自己の位置を測定しようとした場
合、電磁波26、27および反射波28により測定する
ことができるが、作業領域を通り越した所に電磁波29
を反射する不要な物体30が存在して反射波31が生
じ、電磁波27に反射波28を加えた電磁波到達距離よ
りも短い距離で反射波31を受信すると作業車22は反
射波28を見失い自己の位置を判断することができな
い。
If the transmitter 13 is not installed and the work vehicle tries to measure its own position by the transmitter 12, the work vehicle can measure the electromagnetic waves 26 and 27 and the reflected wave 28, but the work vehicle passes through the work area. Electromagnetic waves 29 where
When there is an unnecessary object 30 that reflects the reflected wave 31, a reflected wave 31 is generated, and when the reflected wave 31 is received at a distance shorter than the reaching distance of the electromagnetic wave 27 including the reflected wave 28, the work vehicle 22 loses sight of the reflected wave 28 and Can not determine the position of.

【0020】作業領域11の外に存在する物体による不
要な反射波の現出を防止するため電磁的境界線32およ
び33により領域11をブロック34、35、36、3
7の4個のブロックに分別した。
The area 11 is blocked 34, 35, 36, 3 by electromagnetic boundaries 32 and 33 in order to prevent the appearance of unwanted reflected waves by objects outside the working area 11.
It was divided into 4 blocks of 7.

【0021】各ブロックは概略正方形に近くなるように
分別され、ブロック34は発信装置13と反射板16に
より測定し、ブロック35は発信装置12と反射板17
により測定し、ブロック36は発信装置14と反射板1
6により測定し、ブロック37は発信装置15と反射板
17により測定する。
The blocks are sorted so as to be close to a substantially square shape, the block 34 is measured by the transmitter 13 and the reflector 16, and the block 35 is measured by the transmitter 12 and the reflector 17.
The block 36 indicates the transmitter 14 and the reflector 1
6 and the block 37 is measured by the transmitter 15 and the reflector 17.

【0022】各ブロックに対比する発信装置は作業車が
存在するブロックのみ発信装置を働かせることにより、
不要な反射波は常に正規の反射波よりも長い遅延時間を
もつので、最初に受信した電磁波の次に正規の反射波を
受信し双方の時間差を測定することが可能である。
The transmitting device in comparison with each block operates only in the block where the work vehicle exists,
Since the unnecessary reflected wave always has a longer delay time than the regular reflected wave, it is possible to receive the regular reflected wave after the first received electromagnetic wave and measure the time difference between them.

【0023】以上説明したように、測定しようとする周
辺に本発明の構成と無関係で電磁波を反射させる反射物
体が可能な限り存在してはならないが、作業領域の都合
で不要な反射物体を取り除くことができない場合もあ
る。
As described above, there should be as few reflective objects as possible that reflect electromagnetic waves in the vicinity of the area to be measured irrespective of the configuration of the present invention, but unnecessary reflective objects are removed due to the work area. In some cases it is not possible.

【0024】周辺の不要な反射物体が撤去不能であれ
ば、発信装置より「ふく射」を受けることで新規な電磁
波を発射する装置を該反射板にかえて設置し、受信して
より新規の電磁波を発射するまでの遅延時間を固定させ
る。
If unnecessary peripheral reflecting objects cannot be removed, a device for emitting a new electromagnetic wave by receiving "radiation" from a transmitting device is installed in place of the reflecting plate, and a new electromagnetic wave is received. Fix the delay time before firing.

【0025】このようにして二ヶ所より発射された電磁
波は測定点に至り、新規の電磁波を発射させる遅延時間
を計算に加えて該反射板による測定同様に測定点の位置
を算出し得る。
In this way, the electromagnetic waves emitted from the two places reach the measurement point, and the position of the measurement point can be calculated in the same manner as the measurement by the reflector, by adding the delay time for emitting a new electromagnetic wave to the calculation.

【0026】[0026]

【発明の効果】以上説明したように、本発明を利用すれ
ば領域内で作業する作業車は常に自己の位置を知ること
ができ、作業車を遠隔操作で働かせるときは操縦者の意
志に加えて自動で細かい作業位置を決めたり、操縦者に
作業車の位置を報知することで操縦が容易となる。 ま
た、作業車にコンピュータを乗せることで作業車は無人
化され、プログラムされた内容を作業領域内で自己の位
置を測定しながら作業を進めることができるので今日の
人的資源の不足を補うことができ社会貢献に大なる効果
を発揮する。
As described above, by using the present invention, the working vehicle working in the area can always know its own position, and when the working vehicle is operated by remote control, in addition to the intention of the operator. The operation can be facilitated by automatically determining the fine work position and notifying the operator of the position of the work vehicle. In addition, by putting a computer on the work vehicle, the work vehicle is unmanned, and it is possible to proceed with the work while measuring the position of the programmed contents in the work area, thus compensating for the lack of human resources today. It is possible to exert a great effect on social contribution.

【図面の簡単な説明】[Brief description of drawings]

【図1】「ふく射」された電磁波を直接受信と反射波の
受信により位置測定する構成を示した説明図である。
FIG. 1 is an explanatory diagram showing a configuration for measuring the position of “radiated” electromagnetic waves by direct reception and reception of reflected waves.

【図2】作業領域に設置する発信装置の配置と、位置測
定する作業車の関係を示した説明図である。
FIG. 2 is an explanatory diagram showing the relationship between the arrangement of transmitters installed in a work area and a work vehicle whose position is to be measured.

【図3】発信装置より「ふく射」される電磁波の波形形
態を表わした説明図である。
FIG. 3 is an explanatory diagram showing a waveform form of an electromagnetic wave “radiated” from a transmitting device.

【図4】受信した電磁波の波形形態の一を表わした説明
図である。
FIG. 4 is an explanatory diagram showing an example of a waveform form of a received electromagnetic wave.

【図5】受信した電磁波の波形形態の他の一を表わした
説明図である。
FIG. 5 is an explanatory diagram showing another example of the waveform form of the received electromagnetic wave.

【符号の説明】[Explanation of symbols]

1 測定点 2 発信装置 3 反射板 4 電磁波と反射波がなす狭角 5 反射板に向かう電磁波 6 反射した電磁波 7 測定点に直接向かう電磁波 8 発信装置と反射板との間の距離 9 発信装置より測定点と反射板を望んだ狭角 10 反射板より測定点と発信装置を望んだ狭角 11 作業の領域 12 発信装置 13 発信装置 14 発信装置 15 発信装置 16 中間に設置した反射板 17 中間に設置した反射板 18 測定点である作業車 19 作業車に直接向かう電磁波 20 反射板に向かう電磁波 21 反射した電磁波 22 誤差動する作業車 23 作業車に直接向かう電磁波 24 反射板に向かう電磁波 25 反射板により反射した電磁波 26 発信装置より作業車に向かう電磁波 27 反射板に向かう電磁波 28 反射板により反射した電磁波 29 発信装置より測定外反射物に向かう電磁波 30 測定外反射物 31 測定外反射物より反射した電磁波 32 測定範囲を決めるための境界 33 測定範囲を決めるための境界 34 4分割したブロックの一 35 4分割したブロックの一 36 4分割したブロックの一 37 4分割したブロックの一 38 遅延時間測定用パルス 39 伝播方向探知用電磁波 40 直接受信した遅延時間測定用パルス 41 反射波を受信した遅延時間測定用パルス 42 直接受信した伝播方向探知用電磁波 43 反射波を受信した伝播方向探知用電磁波 44 直接受信パルスと反射波受信パルスの遅延時間 45 直接受信した異形態電磁波の遅延時間測定用パ
ルス 46 反射波を受信した異形態電磁波の遅延時間測定
用パルス 47 直接受信した異形態電磁波の伝播方向探知用電
磁波 48 反射波を受信した異形態電磁波の伝播方向探知
用電磁波
1 Measurement point 2 Transmitter 3 Reflector 4 Narrow angle formed by electromagnetic wave and reflected wave 5 Electromagnetic wave toward reflector 6 Electromagnetic wave reflected 7 Electromagnetic wave directly toward measuring point 8 Distance between transmitter and reflector 9 From transmitter Narrow angle 10 I wanted a measuring point and a reflector 10 Narrow angle I wanted a measuring point and a transmitter from a reflector 11 Working area 12 Transmitter 13 Transmitter 14 Transmitter 15 Transmitter 16 Reflector 17 installed in the middle Reflector installed 18 Work vehicle 19 Measurement point 19 Electromagnetic wave directly directed to work vehicle 20 Electromagnetic wave directed to reflector 21 Reflected electromagnetic wave 22 Work vehicle with error 23 Electromagnetic wave directed directly to work vehicle 24 Electromagnetic wave directed to reflector 25 Reflector Electromagnetic wave 26 reflected from the transmitter 26 Electromagnetic wave toward the work vehicle 27 Electromagnetic wave toward the reflector 28 Electromagnetic wave 29 reflected from the reflector Electromagnetic waves directed from the device to non-measured reflectors 30 Non-measured reflectors 31 Electromagnetic waves reflected from non-measured reflectors 32 Boundaries for determining the measurement range 33 Boundaries for determining the measurement range 34 One of the divided blocks 35 4 Divided One of blocks 36 One of four divided blocks 37 One of four divided blocks 38 Delay time measurement pulse 39 Propagation direction detection electromagnetic wave 40 Directly received delay time measurement pulse 41 Delayed time measurement pulse 42 when a reflected wave is received Propagation direction detection electromagnetic wave 43 that was directly received Propagation direction detection electromagnetic wave that received reflected wave 44 Delay time of direct reception pulse and reflected wave reception pulse 45 Pulse for measuring delay time of directly received heteromorphic electromagnetic wave 46 Received reflection wave Pulse for measuring delay time of irregularly shaped electromagnetic wave 47 Detection of propagation direction of irregularly shaped electromagnetic wave received directly Propagation direction finding electromagnetic wave of a different form electromagnetic wave received the electromagnetic wave 48 reflected wave

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月17日[Submission date] July 17, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【課題を解決するための手段】 作業領域の一端に電磁
波を輻射する発信装置を備え、一定距離をもった他端に
電磁波を反射させる反射板または電磁波を受信してより
新規に電磁波を発射する装置を設置して、発信装置より
輻射された電磁波の一は直接測定点に達し、他の一は反
射点を介して測定点に達する。
Means for Solving the Problems An emitting device that radiates an electromagnetic wave is provided at one end of a work area, and a reflecting plate that reflects the electromagnetic wave or an electromagnetic wave is received at the other end that has a certain distance and a new electromagnetic wave is emitted. With the device installed, one of the electromagnetic waves radiated from the transmitter directly reaches the measurement point, and the other one reaches the measurement point via the reflection point.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】 二方向より入力した電磁波は到達距離の
差から時間差が生じ電磁波の伝播速度から換算して到達
距離の差を知り、到達方向より二方向間の角度を測定す
るか又は輻射する電磁波に発射方向をデータとして含む
ことで発信装置および反射点と測定点によって形成され
る三角形の一つの角度を知って三角法の原理より測定点
の位置を知ることを実現した。
Electromagnetic waves input from two directions have a time difference due to the difference in the reaching distance, and the difference in the reaching distance is known by converting from the propagation velocity of the electromagnetic wave, and the angle between the two directions is measured from the reaching direction or the electromagnetic wave is radiated. By including the firing direction as data, we were able to know the position of the measurement point by the principle of trigonometry by knowing the angle of one of the triangles formed by the transmitter and the reflection point and the measurement point.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】 作業車18は、発信装置15が輻射する
電磁波19と電磁波20が反射した反射波21により自
己の位置を知ることができる。正常に測定を行なうとき
の作業車22は、発信装置13が輻射する電磁波23と
電磁波24および反射した反射波25により自己の位置
を測定する。
The work vehicle 18 can know its own position from the electromagnetic wave 19 radiated by the transmitter 15 and the reflected wave 21 reflected by the electromagnetic wave 20. The work vehicle 22 at the time of performing normal measurement measures its own position by the electromagnetic waves 23 and 24 radiated by the transmitting device 13 and the reflected wave 25 reflected.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】 周辺の不要な反射物体が撤去不能であれ
ば、発信装置より輻射を受けることで新規な電磁波を発
射する装置を該反射板にかえて設置し、受信してより新
規の電磁波を発射するまでの内部遅延時間を固定させ該
内部遅延時間は測定点で測定された遅延時間より減ず
る。
If unnecessary peripheral reflecting objects cannot be removed, a device that emits a new electromagnetic wave by receiving radiation from a transmitting device is installed in place of the reflecting plate, and a new electromagnetic wave is emitted upon reception. The internal delay time up to is fixed and the internal delay time is reduced from the delay time measured at the measurement point.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】 本発明は、発信装置および反射点と測定
点によって形成される三角形の定数を求めることにあ
り、既に一辺は固定され他の二辺はそれぞれの距離の差
として知りえたので、形成された三角形の一角を知るこ
とで全ての定数を算出し得る。本文に説明した測定点に
おいて電磁波の到達方向より角度を測定する方法以外
に、発信装置に装着してなる回転するアンテナにより狭
域にして一方向にのみ発射する電磁波にアンテナの回転
角度をデータとして含み、測定点において受信した電磁
波より発信装置を頂点とした角度を知ることができるの
で該形成された三角形の全ての定数を算出し得る。
The present invention is to obtain the constant of the triangle formed by the transmitter and the reflection point and the measurement point. Since one side is already fixed and the other two sides can be known as the difference between the respective distances, it is formed. All constants can be calculated by knowing one corner of the triangle. In addition to the method of measuring the angle from the arrival direction of the electromagnetic wave at the measurement point described in the text, the rotation angle of the antenna is used as data for the electromagnetic wave emitted in only one direction by the rotating antenna mounted on the transmitter to narrow the area. In addition, since it is possible to know the angle with the transmission device as the apex from the electromagnetic wave received at the measurement point, all constants of the formed triangle can be calculated.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 「ふく射波」の発射装置を定点とし一定
間隔を離した位置に反射点である反射板をおき測定点に
おいて二点間の入射角度と、二方向の入力時間の誤差を
遅延距離におきかえて該入射角度および定点と反射点の
距離により測定点における位置を算出することを特徴と
する位置測定方法。
1. An error between the incident angle between two points and the input time in the two directions is delayed at the measurement point by placing a reflector which is a reflection point at a position spaced by a fixed distance with a "radiation wave" emitting device as a fixed point. A position measuring method characterized in that a position at a measuring point is calculated from the incident angle and the distance between a fixed point and a reflecting point in place of the distance.
【請求項2】 「ふく射波」を受信することで新規に
「ふく射波」を発射する装置を該反射板におきかえ、測
定点において定点より発射された「ふく射波」と反射点
より発射された新規の「ふく射波」により測定点におけ
る位置を算出することを特徴とする位置測定方法。
2. A device that newly emits a "radiation wave" by receiving the "radiation wave" is replaced with the reflector, and the "radiation wave" emitted from a fixed point and a reflection point are emitted at a measurement point. A position measuring method characterized by calculating a position at a measuring point by a new "radiation wave".
JP20745392A 1992-07-10 1992-07-10 Method for measuring position Pending JPH07151540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20745392A JPH07151540A (en) 1992-07-10 1992-07-10 Method for measuring position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20745392A JPH07151540A (en) 1992-07-10 1992-07-10 Method for measuring position

Publications (1)

Publication Number Publication Date
JPH07151540A true JPH07151540A (en) 1995-06-16

Family

ID=16540024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20745392A Pending JPH07151540A (en) 1992-07-10 1992-07-10 Method for measuring position

Country Status (1)

Country Link
JP (1) JPH07151540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201501A (en) * 1995-01-24 1996-08-09 Nec Corp Electric wave source locating device
JP2000035477A (en) * 1998-07-17 2000-02-02 Denso Corp Driving lane detecting method and driving lane detecting device
JP2006071286A (en) * 2004-08-31 2006-03-16 Hitachi Ltd Position detection method and position detection device
JP2011117879A (en) * 2009-12-04 2011-06-16 Rcs:Kk Position specifying device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201501A (en) * 1995-01-24 1996-08-09 Nec Corp Electric wave source locating device
JP2000035477A (en) * 1998-07-17 2000-02-02 Denso Corp Driving lane detecting method and driving lane detecting device
JP2006071286A (en) * 2004-08-31 2006-03-16 Hitachi Ltd Position detection method and position detection device
JP4496891B2 (en) * 2004-08-31 2010-07-07 株式会社日立製作所 Position detection method and position detection apparatus
JP2011117879A (en) * 2009-12-04 2011-06-16 Rcs:Kk Position specifying device

Similar Documents

Publication Publication Date Title
US6259979B1 (en) Method and device for association of anonymous reflectors to detected angle positions
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
US2426189A (en) Object locating system
US3604805A (en) Optical detecting and ranging system for automotive vehicles
US2472212A (en) Method of locating beacons
EP0041146A1 (en) Method and apparatus for determination of angle incidence of electromagnetic energy
EP3971606A1 (en) Radar elevation angle validation
JPH07151540A (en) Method for measuring position
TW201804132A (en) Mobile navigation method and system
MCKerrow et al. Modelling multiple reflection paths in ultrasonic sensing
KR20220039624A (en) Enhanced anechoic chamber
CN112083406B (en) External radiation source two-dimensional positioning method stable to target height
CN109061588B (en) Testing device and method for marine radar system
JPS5870181A (en) Radar system
JPH09211120A (en) Radio-beacon system for guidance and componential equipment of the system
JPH08201501A (en) Electric wave source locating device
WO2020147121A1 (en) Rainfall measurement method, detection device, readable storage medium
JPH10132511A (en) Monitoring device for remaining quantity of stock coal
US3364485A (en) Radiometric altitude measuring apparatus
CN110412610A (en) A kind of interior extrapolation method location technology based on laser light curtain
JPH095435A (en) Underwater static object position measuring method
WO2021005830A1 (en) Radar device, presence determination method, and program
JPS6015508A (en) Position measurement of moving body
JP2660738B2 (en) Obstacle detection device
SE7612218L (en) SIGHT SATURATION DEVICE