CN112083406B - External radiation source two-dimensional positioning method stable to target height - Google Patents

External radiation source two-dimensional positioning method stable to target height Download PDF

Info

Publication number
CN112083406B
CN112083406B CN202010979772.XA CN202010979772A CN112083406B CN 112083406 B CN112083406 B CN 112083406B CN 202010979772 A CN202010979772 A CN 202010979772A CN 112083406 B CN112083406 B CN 112083406B
Authority
CN
China
Prior art keywords
target
positioning
external radiation
dimensional
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010979772.XA
Other languages
Chinese (zh)
Other versions
CN112083406A (en
Inventor
万群
张通
任振瀚
胡琼
丁学科
宫健
徐保根
万义和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tong Fang Electronic Science & Technology Co ltd
University of Electronic Science and Technology of China
Original Assignee
Tong Fang Electronic Science & Technology Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tong Fang Electronic Science & Technology Co ltd, University of Electronic Science and Technology of China filed Critical Tong Fang Electronic Science & Technology Co ltd
Priority to CN202010979772.XA priority Critical patent/CN112083406B/en
Publication of CN112083406A publication Critical patent/CN112083406A/en
Application granted granted Critical
Publication of CN112083406B publication Critical patent/CN112083406B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/882Radar or analogous systems specially adapted for specific applications for altimeters

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention belongs to the technical field of electronic information, and particularly relates to a two-dimensional positioning method of an external radiation source with stable target height. The method is used for determining the plane coordinates of the target by measuring the one-dimensional incoming wave direction and the arrival time difference of the echo signal reflected by the target under the condition that the height of the target is unknown. By using the method provided by the invention, under the condition that the target height is unknown, the positioning accuracy of the plane coordinate (two-dimensional positioning) of the determined target is not influenced by the unknown target height by measuring the one-dimensional wave arrival direction and the arrival time difference of the echo signal reflected by the target.

Description

External radiation source two-dimensional positioning method stable to target height
Technical Field
The invention belongs to the technical field of electronic information, and particularly relates to an external radiation source two-dimensional positioning method based on time difference measurement and one-dimensional direction finding and stable in target height.
Background
There are three main types of methods for locating non-cooperative targets using radio signals. The first type is an active positioning method, in which a positioning station actively transmits a signal and positions a target by receiving a reflected echo of the target. This type of method is prone to reveal the location of the positioning station itself, since the positioning station needs to actively radiate a signal. The second type is a passive positioning method, in which a positioning station receives a signal radiated by a target and positions the target by measuring parameters such as the incoming wave direction, the arrival time difference and the like of the target radiation signal. This type of approach is covert in that the positioning station does not need to actively transmit a signal. However, when the non-cooperative target keeps the radio silent and does not radiate a signal, the passive positioning method cannot achieve passive positioning of the target because the radiated signal of the target is not received. The third category is external radiation source localization methods. In fact, a large number of radiation sources exist in the surrounding environment of the positioning station, and signals emitted by these external radiation sources reach the positioning station through target reflection, so that the positioning station can receive echo signals reflected by a target and position the target by measuring parameters such as the incoming wave direction and the arrival time difference of the echo signals reflected by the target. In this kind of method, since the positioning station does not need to actively transmit signals and does not need signals depending on target radiation, it not only has concealment, but also can perform external radiation source positioning on non-cooperative targets keeping radio silence, and in recent years, it has been increasingly emphasized and applied.
In principle, the positioning station can perform plane (two-dimensional) positioning on the target by measuring the one-dimensional incoming wave direction and arrival time difference of the echo signal reflected by the target by using an external radiation source. However, since the actual height of the target is unknown and the actual height of the target is generally not equal to zero, the planar (two-dimensional) positioning accuracy of the external radiation source positioning method is affected by the height of the target, which limits the popularization and application of the external radiation source positioning method.
Disclosure of Invention
The invention aims to solve the problem of how to determine the plane coordinate (two-dimensional positioning) of a target by measuring the one-dimensional incoming wave direction and arrival time difference of an echo signal reflected by the target under the condition that the height of the target is unknown, so that the positioning accuracy of an external radiation source is not influenced by the unknown height of the target.
The technical scheme adopted by the invention is as follows:
a two-dimensional positioning method of an external radiation source with stable target height is used for determining plane coordinates of a target by measuring one-dimensional incoming wave direction and arrival time difference of echo signals reflected by the target under the condition that the target height is unknown; the method comprises the following steps:
s1, initialization: statorPosition station coordinate (0,0,0), number of external radiation sources K and external radiation source coordinate (x)k,yk0), one-dimensional direction finding angle
Figure BDA0002687114360000021
Echo time difference measurement of k-th external radiation source signal reflected by target
Figure BDA0002687114360000022
k=1,2,...,K;
S2, determining the distance between the kth external radiation source and the positioning station:
Figure BDA0002687114360000023
the sum of the distances of the target reflected waves:
Figure BDA0002687114360000024
c is the speed of light;
s3, determining a positioning matrix:
Figure BDA0002687114360000025
s4, determining a positioning vector:
Figure BDA0002687114360000026
s5, obtaining a target positioning result:
Figure BDA0002687114360000027
wherein QTRepresenting the transpose of the positioning matrix Q.
The invention has the beneficial effects that: by using the method provided by the invention, under the condition that the target height is unknown, the positioning accuracy of the plane coordinate (two-dimensional positioning) of the determined target is not influenced by the unknown target height by measuring the one-dimensional wave arrival direction and the arrival time difference of the echo signal reflected by the target.
Detailed Description
The technical solution of the present invention will be described in detail with reference to the following examples.
The implementation of the invention mainly comprises the following steps:
s1, initializing, namely, the light speed c, the coordinates (0,0,0) of the positioning station, the number K of external radiation sources and the coordinates (x) of the external radiation sourcesk,yk0), one-dimensional direction finding
Figure BDA0002687114360000031
Echo time difference measurement of k-th external radiation source signal reflected by target
Figure BDA0002687114360000032
K1, 2, K, writing to a memory;
s2, determining the distance between the kth external radiation source and the positioning station:
Figure BDA0002687114360000033
distance sum of target reflection wave
Figure BDA0002687114360000034
Wherein K is 1, 2.., K;
s3, determining a positioning matrix:
Figure BDA0002687114360000035
s4, determining a positioning vector:
Figure BDA0002687114360000036
s5, determining a target positioning result insensitive to the target height:
Figure BDA0002687114360000041
wherein QTRepresenting the transpose of the positioning matrix Q.
Examples
In this example, the speed of light c is 3e8 m/s, the coordinates of the positioning station are (0,0,0), and the number of external radiation sources K is 2; the coordinates of the first external radiation source are (-1,29,0) and the coordinates of the second external radiation source are (2, -27,0), both in kilometers for this example.
When the actual coordinates of the target are (104,14,0.3), the echo time difference of the first external radiation source signal reflected by the target is measured
Figure BDA0002687114360000042
606.9350 μ s, echo time difference measurement of the second external radiation source signal reflected by the target
Figure BDA0002687114360000044
626.2935 microseconds, one-dimensional direction finding
Figure BDA0002687114360000043
At 10.3565 degrees, the method of the invention determines the target two-dimensional coordinates to be (103.2729,13.9615) and the error is 0.7281. The positioning station utilizes the first external radiation source to determine the two-dimensional coordinates (103.9503,18.9969) of the target by measuring the one-dimensional wave direction and arrival time difference of the echo signal reflected by the target, and the error 4.9971; compared with the method, the method has the advantage that the precision is improved by 85.43 percent. The positioning station utilizes a second external radiation source to determine the two-dimensional coordinates of the target (102.6741,18.7637) and the error 4.9448 by measuring the one-dimensional wave coming direction and the arrival time difference of the echo signal reflected by the target to perform plane positioning on the target; compared with the method, the precision of the method is improved by 85.28%.
When the target heights are 3, 6, 9, 12, 15 and 18 kilometers, respectively, the positioning errors of the method of the invention are 0.2550, 0.2637, 0.2807, 0.3181, 0.3553 and 0.3981 kilometers, respectively, in the case where the target heights are unknown; the errors of plane positioning of the target by measuring the one-dimensional incoming wave direction and arrival time difference of echo signals reflected by the target by using the first external radiation source are 1.8948, 2.2436, 3.3060, 4.9930, 7.0502 and 9.4280 kilometers respectively, and compared with the method, the accuracy of the method is improved by 86.54%, 88.25%, 91.51%, 93.63%, 94%, 96% and 95.78% respectively; by using the second external radiation source, errors of plane positioning of the target by measuring the one-dimensional incoming wave direction and arrival time difference of echo signals reflected by the target are 1.8871, 2.2048, 3.1983, 4.7844, 6.7082 and 8.9172 kilometers respectively, and compared with the method, the method has the advantages that the precision is improved by 86.49%, 88.04%, 91.22%, 93.35%, 94.70% and 95.54% respectively.
In summary, the present invention provides a method for determining a planar coordinate of a target (two-dimensional positioning) by measuring a one-dimensional incoming wave direction and an arrival time difference of an echo signal reflected by the target under the condition that the target height is unknown, and the positioning accuracy is not affected by the unknown target height.

Claims (1)

1. A two-dimensional positioning method of an external radiation source with stable target height is used for determining plane coordinates of a target by measuring one-dimensional incoming wave direction and arrival time difference of echo signals reflected by the target under the condition that the target height is unknown; the method is characterized by comprising the following steps:
s1, initialization: coordinates (0,0,0) of positioning station, number K of external radiation sources and coordinates (x) of external radiation sourcesk,yk0), one-dimensional direction finding angle
Figure FDA0002687114350000011
Echo time difference measurement of k-th external radiation source signal reflected by target
Figure FDA0002687114350000012
S2, determining the distance between the kth external radiation source and the positioning station:
Figure FDA0002687114350000013
sum of distances of target reflected waves:
Figure FDA0002687114350000014
c is the speed of light;
s3, determining a positioning matrix:
Figure FDA0002687114350000015
s4, determining a positioning vector:
Figure FDA0002687114350000016
s5, obtaining a target positioning result:
Figure FDA0002687114350000017
wherein QTRepresenting the transpose of the positioning matrix Q.
CN202010979772.XA 2020-09-17 2020-09-17 External radiation source two-dimensional positioning method stable to target height Active CN112083406B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010979772.XA CN112083406B (en) 2020-09-17 2020-09-17 External radiation source two-dimensional positioning method stable to target height

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010979772.XA CN112083406B (en) 2020-09-17 2020-09-17 External radiation source two-dimensional positioning method stable to target height

Publications (2)

Publication Number Publication Date
CN112083406A CN112083406A (en) 2020-12-15
CN112083406B true CN112083406B (en) 2022-05-17

Family

ID=73736822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010979772.XA Active CN112083406B (en) 2020-09-17 2020-09-17 External radiation source two-dimensional positioning method stable to target height

Country Status (1)

Country Link
CN (1) CN112083406B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484854B (en) * 2021-07-21 2023-04-11 电子科技大学 Target positioning method with unknown external radiation source position

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308418A (en) * 2020-03-10 2020-06-19 慧众行知科技(北京)有限公司 Steady method for two-dimensional positioning of target with unknown height

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225374A (en) * 1983-06-06 1984-12-18 Hitachi Ltd Method and apparatus for locating sound source position
BR9510640A (en) * 1995-09-20 1999-03-16 Secr Defence Method and apparatus for locating the source of an unknown signal received from several signal relays
JP4019149B2 (en) * 2004-03-05 2007-12-12 独立行政法人情報通信研究機構 Radio wave arrival direction identification system
KR101331833B1 (en) * 2012-10-10 2013-11-22 국방과학연구소 Method for positioning using time difference of arrival
CN102981144B (en) * 2012-11-21 2015-03-04 西安电子科技大学 Method for three-dimensional passive positioning of targets by air moving platform
CN105277921B (en) * 2015-09-23 2017-12-26 浙江大学 A kind of passive acoustic localization method based on smart mobile phone
CN106772228B (en) * 2016-11-23 2018-12-25 中电科华北网络信息安全有限公司 Aerial target radiation source localization method based on arriving signal intensity
RU2677852C1 (en) * 2018-01-22 2019-01-22 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Method for determining location of mobile source of radio emission, transferring its coordinates with unknown displacement, two-positioning system with high-dimensional measurement point
CN108717184B (en) * 2018-04-27 2020-09-01 杭州电子科技大学 Error correction-based DOA and TOA combined single-station passive positioning method
CN109343039B (en) * 2018-09-30 2022-10-04 电子科技大学 Method for fast and passively measuring distance by using external radiation source
CN110058202B (en) * 2019-05-17 2023-10-31 山东大学 High-performance hybrid positioning method based on angle and signal arrival time difference estimation and implementation device thereof
CN110441732B (en) * 2019-08-15 2023-03-21 电子科技大学 Single-station multi-target positioning method in strange scattering environment
CN111257901A (en) * 2020-02-28 2020-06-09 西南电子技术研究所(中国电子科技集团公司第十研究所) Positioning method for known position of scatterer under multipath propagation condition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308418A (en) * 2020-03-10 2020-06-19 慧众行知科技(北京)有限公司 Steady method for two-dimensional positioning of target with unknown height

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于到达信号强度的空中目标辐射源定位方法;张游杰等;《计算机应用》;20170615;30-33+45 *

Also Published As

Publication number Publication date
CN112083406A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
CN105005040B (en) Radar angle measurement method
CN109343039B (en) Method for fast and passively measuring distance by using external radiation source
US20050043039A1 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
CN110441732B (en) Single-station multi-target positioning method in strange scattering environment
CN110780263B (en) Multi-base sound system positioning accuracy analysis method based on Kacini oval line
CN111352444A (en) Unmanned aerial vehicle outdoor mobile platform autonomous landing method and system based on wireless navigation
CN112083406B (en) External radiation source two-dimensional positioning method stable to target height
CN109959898A (en) A kind of seat bottom type underwater sound Passive Positioning basic matrix method for self-calibrating
Sun et al. Array geometry calibration for underwater compact arrays
CN113532437A (en) Ultra-wideband indoor target positioning method based on multipath utilization
CN109319074A (en) A kind of more orthogonal signalling emit nobody latent device sound guidance recovery system
CN108519593A (en) A kind of asynchronous tracking method based on single station two-frequency CW radar
CN112083407B (en) External radiation source three-dimensional positioning method using time difference and one-dimensional azimuth measurement
RU2631117C1 (en) Method and system of determining target coordinates in request-response system
CN111381212A (en) Virtual ultrashort baseline positioning method based on subarray division
CN110907925B (en) Weight positioning method under high-frequency ground wave radar double-station model
CN110515066A (en) A kind of vehicle-mounted millimeter wave radar and its object height measurement method
CN113534219B (en) Beidou positioning outdoor target method based on multipath utilization
CN115508775A (en) Using azimuth difference of incoming wave node positioning method for measurement
CN116068503A (en) Combined calibration method and device for millimeter wave radar and laser radar and terminal equipment
CN113608203A (en) Method, device and system for positioning near space target
US3553691A (en) Long range position determination system
CN116087875B (en) Indoor non-line-of-sight scene passive tag three-dimensional positioning method based on environment information
Cao et al. Phase analysis and error compensation of anti-jamming nulling algorithm for satellite navigation array antenna
RU2649899C1 (en) Method of measuring angular coordinates of group low-level targets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant