JPH0714481B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst

Info

Publication number
JPH0714481B2
JPH0714481B2 JP62186145A JP18614587A JPH0714481B2 JP H0714481 B2 JPH0714481 B2 JP H0714481B2 JP 62186145 A JP62186145 A JP 62186145A JP 18614587 A JP18614587 A JP 18614587A JP H0714481 B2 JPH0714481 B2 JP H0714481B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
nox
gas purification
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62186145A
Other languages
Japanese (ja)
Other versions
JPS6430641A (en
Inventor
研二 田畑
郁夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62186145A priority Critical patent/JPH0714481B2/en
Publication of JPS6430641A publication Critical patent/JPS6430641A/en
Publication of JPH0714481B2 publication Critical patent/JPH0714481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種自動車、各種工業用炉の燃焼器から排出さ
れる窒素酸化物(NOx)を分解し、無害なN2に変換する
触媒に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst that decomposes nitrogen oxides (NOx) emitted from combustors of various automobiles and various industrial furnaces and converts them into harmless N 2. is there.

従来の技術 一般に各種自動車及び各種工業炉からの排出ガスには多
量のNO,NO2で代表される窒素酸化物(NOx)が含まれて
いる。これらのNOxは光化学スモッグの原因とされてい
る許りでなく、人体にとって呼吸気系に障害を起すとい
われている。特にNO2については排出規準が定められて
いる。これらNOxを無害なN2にまで還元するプロセスに
ついては、(1)排気ガス中に酸素の量が少ない場合は
CO各種炭化水素(HC)等の還元剤を用いてCOをCO2にNO
をN2にする、いわゆる三元触媒方式が自動車の排気ガス
対策として確立されている。(2)一方、排気ガス中に
多量の酸素が含まれている場合、アンモニアを還元剤と
して用いるプロセスが工業的に確立されている。しかし
ながら、最近、自動車において、燃費を高めるため、空
気リッチのいわゆるリーン燃焼についての要望が高くな
ってきているが、この領域では、従来の三元触媒はNOの
分解には効果がないという問題がある。この為、自動車
業界では従来から各種還元剤を用いずに直接分解する方
式について、強く望まれているが、実用レベルでは確立
されていない。
2. Description of the Related Art Generally, exhaust gas from various automobiles and various industrial furnaces contains a large amount of nitrogen oxides (NOx) represented by NO and NO 2 . These NOx are not the cause of photochemical smog and are said to cause damage to the respiratory system for the human body. Especially for NO 2 , emission standards have been established. Regarding the process of reducing these NOx to harmless N 2 , (1) When the amount of oxygen in the exhaust gas is small,
CO CO to CO 2 using reducing agents such as various hydrocarbons (HC) NO
A so-called three-way catalyst system that changes N 2 to N 2 has been established as a vehicle exhaust gas countermeasure. (2) On the other hand, when the exhaust gas contains a large amount of oxygen, a process using ammonia as a reducing agent has been industrially established. However, recently, in automobiles, there is an increasing demand for so-called lean combustion in which air is rich in order to improve fuel economy, but in this area, there is a problem that conventional three-way catalysts are not effective in decomposing NO. is there. Therefore, in the automobile industry, a method of directly decomposing without using various reducing agents has been strongly desired, but it has not been established at a practical level.

発明が解決しようとする問題点 我々は排気ガス中に多量の酸素が含まれる場合の窒素酸
化物(NOx)を各種還元剤を用いずに直接N2とO2(一部N
2Oを含む)に分解する触媒を開発しようとするもので
ある。
INVENTION Problems to be Solved point we direct the nitrogen oxides if they contain a large amount of oxygen in the exhaust gas (NOx) without the use of a variety of reducing agents N 2 and O 2 (part N
It is intended to develop a catalyst that decomposes into (including 2 O).

問題点を解決するための手段 この問題点を解決するために本発明は、結晶構造式Ba2B
1Cu3O7−δ(BはYまたGd)で構成したペロブスカイト
型構造を有する複合酸化物にPtまたはPdの少なくともい
ずれか一方を0.1〜1.0%担持する構成としたNOx分解触
媒を内然機関を有する車の排ガス通路中に設置する構成
とした。
Means for Solving the Problems In order to solve this problem, the present invention provides a crystalline structural formula Ba 2 B.
A NOx decomposing catalyst having 0.1% to 1.0% of Pt or Pd supported on a complex oxide having a perovskite structure composed of 1 Cu 3 O 7 −δ (B is Y or Gd) It is configured to be installed in the exhaust gas passage of a car having an engine.

作用 各種無機耐熱材料に担持した複合酸化物を構成する元素
の内、銅にはその表面にNOxが吸着しやすい。さらに今
回我々の開発したBa−Y−Cu系の化合物は極低温では超
伝導物質として注目されているように電子がCu−O−Cu
を通して非常に流れやすく、又吸着したNOにも電子が流
れ込みやすい。即ち、我々の赤外吸収(IR)によるNO吸
着状態の分析結果ではNO の状態で吸着していた。NOは
よく知られているように反結合性軌道に1ケ電子が存在
し、NO となることにより結合力が弱まる。この結果、
NとOの結合距離は長くなり、このOδ−と電子が一部
抜けた後の格子酸素Oδ+とが反応する。この結果NOx
はN2とO2(一部N2Oも含む)に分解する。格子酸素の抜
けた後には気相の酸素が入っている。この時一部添加し
た白金族は酸素捕捉力が強く、この酸素がBa−Y−Cuの
化合物の酸素欠陥を埋める。このようにして触媒作用の
サイクルは完結する。
Action Elements that make up complex oxides supported on various inorganic heat-resistant materials
Of these, NOx is easily adsorbed on the surface of copper. More now
The Ba-Y-Cu compound we have developed is extremely cold at extremely low temperatures.
As attracting attention as a conductive material, electrons are Cu-O-Cu
It is very easy to flow through, and electrons also flow to the adsorbed NO.
Easy to slip in. That is, the NO absorption due to our infrared absorption (IR)
NO in the analysis result of the wearing condition It was adsorbed in the state of. NO is
As is well known, there is one electron in the antibonding orbit.
And NO The binding force is weakened by becoming. As a result,
The bond distance between N and O becomes long, and this Oδ−And some electronic
Lattice oxygen O after escapeδ +And react. This result NOx
Is N2And O2(Part N2(Including O). Depletion of lattice oxygen
After injuring, there is gas phase oxygen. At this time, add some
The platinum group has a strong oxygen scavenging power, and this oxygen is the Ba-Y-Cu
Fill the oxygen deficiency of the compound. In this way
The cycle is complete.

実施例 以下実施例について述べる。Examples Examples will be described below.

実施例(1)酸化第2銅、酸化イットリウム、炭酸バリ
ウムをモル比にして3:1:2になるように調製した混合物
を乳鉢でよく混合した後800℃で5時間仮焼した。仮焼
後、サンプルをさらに粉砕、混合しプレスで成型し、92
0℃で10時間空気中で焼成した。焼成後X線回折による
測定の結果、超伝導で報告されているBa2YCu3O7−δの
結晶構造を有していた。このサンプルに塩化バラジウム
アンモニウム錯体溶液によりPdを0.2%担持した。この
サンプルを水、コロイダルアルミナと共にスラリー化
し、400cell/inch2のコーディライトハニカムに担持しN
Ox分解触媒とした。
Example (1) A mixture prepared by mixing cupric oxide, yttrium oxide, and barium carbonate in a molar ratio of 3: 1: 2 was thoroughly mixed in a mortar and then calcined at 800 ° C. for 5 hours. After calcination, the sample is further crushed, mixed and molded by pressing,
Baking in air at 0 ° C. for 10 hours. As a result of measurement by X-ray diffraction after firing, it had the crystal structure of Ba 2 YCu 3 O 7 −δ reported in superconductivity. 0.2% of Pd was supported on this sample by the ammonium chloride complex solution. This sample was slurried with water and colloidal alumina, and loaded on a 400 cell / inch2 cordierite honeycomb.
It was used as an Ox decomposition catalyst.

上記触媒を自動車に適用した例を述べる。第1図は自動
車の構成図である。エンジン1より排出されたガスは、
酸化触媒2を通過することにより、未然の炭化水素(H
C)はCO2と水に、又COはCO2に変化する。この後、前
記、NOx分解触媒3を通過することによりNOxはN2とO
2(一部N2Oを含む)に分解する。その後、クリーンに
なったガスは排気口4より系外に放出される。この時NO
x分解触媒の温度は320℃でありNOxの低減率は50%であ
った。
An example in which the above catalyst is applied to an automobile will be described. FIG. 1 is a block diagram of an automobile. The gas discharged from the engine 1 is
By passing through the oxidation catalyst 2, hydrocarbons (H
C) changes to CO 2 and water, and CO changes to CO 2 . After that, NOx is converted to N 2 and O by passing through the NOx decomposition catalyst 3.
Decomposes into 2 (including some N 2 O). After that, the cleaned gas is discharged to the outside of the system through the exhaust port 4. NO at this time
The temperature of the x decomposition catalyst was 320 ° C, and the NOx reduction rate was 50%.

実施例(2) 実施例(1)の酸化イットリウムのかわ
りに酸化ガドリウムを用い、モル比にしてBa:Gd:Cu:2:
1:3になるように調整し、実施例(1)と同様に焼成
後、塩化パラジウムアンミン錯体溶液よりPd0.2%担持
した。このサンプルを実施例(1)と同様にコーディエ
ライトハニカムに担持し、第1図の自動車に適用した。
この時のNOxの低減率は40%であった。なお上記実施例
(1)および(2)記載の白金属例としてパラジウムを
用いた例を示したが白金あるいは白金およびパラジウム
混合物を用いても同様の効果が得られた。
Example (2) Gadtrium oxide was used in place of the yttrium oxide of Example (1), and the molar ratio was Ba: Gd: Cu: 2 :.
It was adjusted to be 1: 3, and after firing in the same manner as in Example (1), 0.2% of Pd was loaded from the palladium chloride ammine complex solution. This sample was loaded on a cordierite honeycomb in the same manner as in Example (1) and applied to the automobile shown in FIG.
The NOx reduction rate at this time was 40%. It should be noted that although an example using palladium was shown as an example of the white metal described in Examples (1) and (2) above, the same effect was obtained using platinum or a mixture of platinum and palladium.

発明の効果 本発明の効果は以下のとおりである。Effects of the Invention The effects of the present invention are as follows.

1) 従来のアンモニア、CO等のように還元剤を用いな
くともNOxを分解することが出来る。
1) NOx can be decomposed without using a reducing agent like conventional ammonia and CO.

2) 酸素が10%前後、NOxがppmオーダという酸素大過
剰でもNOxを分離することが出来る。
2) NOx can be separated even with a large excess of oxygen, where oxygen is around 10% and NOx is on the order of ppm.

3) 反応温度が300℃程度と非常にゆるやかな条件で
あり広い範囲に適用できる。
3) The reaction temperature is about 300 ° C, which is a very mild condition and can be applied to a wide range.

4) 触媒粉末自体920℃という高温で処理してあり耐
熱性が高い。
4) The catalyst powder itself has been treated at a high temperature of 920 ° C and has high heat resistance.

以上の効果の結果、各種燃焼器(家庭用燃焼器、工業用
炉等)から排出されるNOxの分解に効果的である。
As a result of the above effects, it is effective in decomposing NOx discharged from various combustors (household combustors, industrial furnaces, etc.).

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例における排ガス浄化用触媒を用い
た自動車の構成図である。 1……エンジン、2……酸化触媒、3……NOx分解触
媒、4……排気孔。
FIG. 1 is a configuration diagram of an automobile using an exhaust gas purifying catalyst according to an embodiment of the present invention. 1 ... Engine, 2 ... Oxidation catalyst, 3 ... NOx decomposition catalyst, 4 ... Exhaust hole.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−30647(JP,A) 特開 昭64−30642(JP,A) 特開 昭64−30643(JP,A) 特開 昭64−30648(JP,A) 特開 昭64−30644(JP,A) 特開 昭64−30649(JP,A) 特開 昭64−30645(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-64-30647 (JP, A) JP-A-64-30642 (JP, A) JP-A-64-30643 (JP, A) JP-A-64- 30648 (JP, A) JP 64-30644 (JP, A) JP 64-30649 (JP, A) JP 64-30645 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】結晶構造式Ba2B1Cu3O7−δ(BはYまたG
d)で構成したペロブスカイト型構造を有する複合酸化
物にPtまたはPdの少なくともいずれか一方を0.1〜1.0%
担持する構成としたNOx分解触媒を内燃機関を有する車
の排ガス通路中に設置する排ガス浄化用触媒。
1. A crystal structural formula Ba 2 B 1 Cu 3 O 7 −δ (B is Y or G
0.1 to 1.0% of at least one of Pt and Pd is added to the complex oxide having a perovskite structure formed in d).
An exhaust gas purification catalyst in which a NOx decomposition catalyst configured to be supported is installed in the exhaust gas passage of a vehicle having an internal combustion engine.
【請求項2】無機耐熱材料をペレット状あるいはハニカ
ム状に成形した触媒担体の表面に複合酸化物を無機バイ
ンダと共に担持する構成とした特許請求の範囲第1項記
載の排ガス浄化用触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein the composite oxide is carried together with an inorganic binder on the surface of a catalyst carrier formed of an inorganic heat-resistant material in the form of pellets or a honeycomb.
JP62186145A 1987-07-24 1987-07-24 Exhaust gas purification catalyst Expired - Lifetime JPH0714481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62186145A JPH0714481B2 (en) 1987-07-24 1987-07-24 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62186145A JPH0714481B2 (en) 1987-07-24 1987-07-24 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPS6430641A JPS6430641A (en) 1989-02-01
JPH0714481B2 true JPH0714481B2 (en) 1995-02-22

Family

ID=16183167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62186145A Expired - Lifetime JPH0714481B2 (en) 1987-07-24 1987-07-24 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JPH0714481B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104345A (en) * 1987-10-15 1989-04-21 Res Dev Corp Of Japan Oxygen-deficient perovskite catalyst
JPH0616851B2 (en) * 1988-03-25 1994-03-09 新技術事業団 Oxygen-defective perovskite catalyst
JP2558566B2 (en) * 1991-11-13 1996-11-27 財団法人石油産業活性化センター Catalyst for catalytic reduction of nitrogen oxides
JP3311012B2 (en) * 1992-03-23 2002-08-05 株式会社豊田中央研究所 Exhaust gas purification catalyst and exhaust gas purification method
KR100326747B1 (en) * 1998-03-09 2002-03-13 하나와 요시카즈 Device for Purifying Oxygen Rich Exhaust Gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186152A (en) * 1986-02-07 1987-08-14 Matsushita Seiko Co Ltd Control device of air conditioner
JPS62186147A (en) * 1986-02-08 1987-08-14 Takasago Thermal Eng Co Ltd Air conditioner unit for clean room
JPS62186148A (en) * 1986-02-10 1987-08-14 Daikin Plant Kk Room pressure control system
JPS62186151A (en) * 1986-02-10 1987-08-14 Suehiro Sangyo Kk Method of intake of external air in underground room
JPS62186146A (en) * 1986-02-10 1987-08-14 Taisei Corp Non-pollution windowless henhouse
JPS62186150A (en) * 1986-02-13 1987-08-14 Fujita Corp Air cleaner in clean room
JPS62186149A (en) * 1986-02-13 1987-08-14 Fujita Corp Air cleaner in clean room

Also Published As

Publication number Publication date
JPS6430641A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
Voorhoeve et al. Rare-earth manganites: catalysts with low ammonia yield in the reduction of nitrogen oxides
US3545917A (en) Method of decomposing nitrogen oxides
US4001371A (en) Catalytic process
US3483138A (en) Neodymium oxide catalyst compositions
CA1328653C (en) Catalysts
EP0666099A1 (en) Method of removing nitrogen oxides contained in exhaust gas
JPH10235192A (en) Catalyst for cleaning exhaust gas
CA1046490A (en) Catalysts, apparatus, and process using same
WO2014163235A1 (en) Mixed metal oxide catalyst for treating exhaust gas, preparation method therefor and treatment method for exhaust gas using same
JP3374569B2 (en) Exhaust gas purification catalyst and purification method
US3338666A (en) Preparation of a multilayer copper oxide catalyst for treatment of exhaust gases
JPH0714481B2 (en) Exhaust gas purification catalyst
JPH0312936B2 (en)
JP3889467B2 (en) Nitrogen oxide removing catalyst material, nitrogen oxide treatment apparatus using the material, and nitrogen oxide removing method
JP2851773B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3152681B2 (en) Phosphoric acid composition and catalyst for NOx reductive decomposition using the same
JPH10277393A (en) Heat-resistant catalyst and its preparation
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
CA1058605A (en) Catalysts, apparatus, and process using same
JP3152680B2 (en) Phosphoric acid composition and catalyst for NOx reductive decomposition using the same
JP3302036B2 (en) Nitrogen oxide removal method
JP2000093795A (en) Catalyst for cleaning exhaust gas
EP0687495B1 (en) Catalyst for purifying exhaust gas from lean burn engine and method for purification
JP3741296B2 (en) ENGINE EXHAUST PURIFICATION CATALYST, ITS MANUFACTURING METHOD, AND EXHAUST GAS TREATMENT DEVICE USING THE CATALYST