JP2558566B2 - Catalyst for catalytic reduction of nitrogen oxides - Google Patents

Catalyst for catalytic reduction of nitrogen oxides

Info

Publication number
JP2558566B2
JP2558566B2 JP4020305A JP2030592A JP2558566B2 JP 2558566 B2 JP2558566 B2 JP 2558566B2 JP 4020305 A JP4020305 A JP 4020305A JP 2030592 A JP2030592 A JP 2030592A JP 2558566 B2 JP2558566 B2 JP 2558566B2
Authority
JP
Japan
Prior art keywords
catalyst
perovskite compound
honeycomb
zeolite
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4020305A
Other languages
Japanese (ja)
Other versions
JPH05184930A (en
Inventor
忠夫 仲辻
宏益 清水
律 安川
藤夫 菅沼
勝見 宮本
正明 川付
嘉昭 金田一
基 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4020305A priority Critical patent/JP2558566B2/en
Priority to DE69226581T priority patent/DE69226581T2/en
Priority to US07/944,106 priority patent/US5380692A/en
Priority to EP92115572A priority patent/EP0532024B1/en
Publication of JPH05184930A publication Critical patent/JPH05184930A/en
Application granted granted Critical
Publication of JP2558566B2 publication Critical patent/JP2558566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物接触還元用触
媒に関し、詳しくは、工場、自動車等から排出される排
ガスの中に含まれる有害な窒素酸化物を還元除去する際
に用いて好適な炭化水素及び/又は含酸素化合物を還元
剤として使用する窒素酸化接触還元用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for catalytic reduction of nitrogen oxides. More specifically, it is suitable for use in reducing and removing harmful nitrogen oxides contained in exhaust gas discharged from factories, automobiles and the like. The present invention relates to a catalyst for catalytic reduction of nitrogen oxides using various hydrocarbons and / or oxygen-containing compounds as a reducing agent.

【0002】[0002]

【従来の技術】従来、排ガス中に含まれる窒素酸化物
は、窒素酸化物を酸化した後、アルカリに吸収させる方
法や、アンモニア、水素、一酸化炭素、炭化水素等の還
元剤を用いて、窒素に変換する方法等によつて除去され
ている。しかしながら、前者の方法によれば、生成する
アルカリ廃液を処理して、公害の発生を防止する方策が
必要である。他方、後者の方法によれば、還元剤として
アンモニアを用いるときは、これが排ガス中のイオウ酸
化物と反応して塩類を生成し、その結果、触媒の還元活
性が低下する問題がある。また、水素、一酸化炭素、炭
化水素等を還元剤として用いる場合でも、これらが低濃
度に存在する窒素酸化物よりも高濃度に存在する酸素と
反応するため、窒素酸化物を低減するためには多量の還
元剤を必要とするという問題がある。
2. Description of the Related Art Conventionally, nitrogen oxides contained in exhaust gas are obtained by oxidizing the nitrogen oxides and then absorbing them into an alkali, or by using a reducing agent such as ammonia, hydrogen, carbon monoxide, or a hydrocarbon. It has been removed by a method of converting to nitrogen. However, according to the former method, it is necessary to take measures for treating the generated alkaline waste liquid to prevent the occurrence of pollution. On the other hand, according to the latter method, when ammonia is used as the reducing agent, it reacts with the sulfur oxide in the exhaust gas to form salts, and as a result, the reducing activity of the catalyst is lowered. Even when hydrogen, carbon monoxide, hydrocarbon, etc. are used as a reducing agent, they react with oxygen present in a higher concentration than nitrogen oxide present in a low concentration, and therefore, in order to reduce nitrogen oxides. Has a problem that it requires a large amount of reducing agent.

【0003】このため、最近では、還元剤の不存在下に
窒素酸化物を触媒にて直接分解する方法も提案されてい
るが、しかし、従来知られているそのような触媒は、窒
素酸化物分解活性が低いために実用に供し得ないという
問題がある。また、炭化水素や含酸素化合物を還元剤と
して用いる新たな窒素酸化物接触還元用触媒として、H
型ゼオライトやCuイオン交換ZSM−5等が提案され
ている。特に、H型ZSM−5(SiO2 /Al2 3
モル比=30〜40)が最適であるとされている。しか
しながら、このようなH型ZSM−5でも、未だ十分な
還元活性を有するものとはいい難く、より高い還元活性
を有する窒素酸化物接触還元用触媒が望まれている。
For this reason, recently, a method of directly decomposing a nitrogen oxide with a catalyst in the absence of a reducing agent has been proposed. However, such a conventionally known catalyst has been proposed as a nitrogen oxide. There is a problem that it cannot be put to practical use because of its low decomposition activity. Further, as a new catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon or an oxygen-containing compound as a reducing agent, H
Type zeolite and Cu ion exchange ZSM-5 have been proposed. In particular, H type ZSM-5 (SiO 2 / Al 2 O 3
(Molar ratio = 30 to 40) is considered to be optimal. However, even with such H-type ZSM-5, it is hard to say that it has sufficient reducing activity, and a catalyst for catalytic reduction of nitrogen oxides having higher reducing activity is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述したよ
うな事情に鑑みてなされたものであつて、その目的とす
るところは、炭化水素や含酸素化合物を還元剤として用
いる場合に、酸素の共存下において窒素酸化物が炭化水
素や含酸素化合物と選択的に反応するため、多量の還元
剤を用いることなく、排ガス中の窒素酸化物を効率よく
還元することができる窒素酸化物接触還元用触媒を提供
するにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to use oxygen when a hydrocarbon or an oxygen-containing compound is used as a reducing agent. Nitrogen oxide reacts selectively with hydrocarbons and oxygen-containing compounds in the coexistence of nitrogen, so nitrogen oxide catalytic reduction can efficiently reduce nitrogen oxide in exhaust gas without using a large amount of reducing agent. To provide a catalyst for use.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明によ
る炭化水素及び/又は含酸素化合物を還元剤として用い
る窒素酸化物接触還元用触媒は、一般式(I)
A catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon and / or an oxygen-containing compound as a reducing agent according to the invention of claim 1 is represented by the general formula (I).

【0006】[0006]

【化3】 A3−X Embedded image A X B 3-X C 3 O 7

【0007】(式中、AはLa、Y、Ce、Pr、N
d、Sm、Eu、Gd及びBiよりなる群から選ばれる
少なくとも1種の元素を示し、BはBa、Sr、Ca、
Mg、Pb、Zn及びAgよりなる群から選ばれる少な
くとも1種の元素を示し、CはMn、Co、Fe、N
i、Cr、Cu、V、Mo、W、Ti、Zr、Nb、P
d、Rh、Ru及びPtよりなる群から選ばれる少なく
とも1種の元素を示し、0≦X≦1である。)で表わさ
れるペロブスカイト型複合酸化物がゼオライト系固体酸
担体に担持されてなることを特徴とする。
(In the formula, A is La, Y, Ce, Pr, N
d represents at least one element selected from the group consisting of Sm, Eu, Gd and Bi, and B represents Ba, Sr, Ca,
At least one element selected from the group consisting of Mg, Pb, Zn, and Ag is shown, and C is Mn, Co, Fe, N.
i, Cr, Cu, V, Mo, W, Ti, Zr, Nb, P
It represents at least one element selected from the group consisting of d, Rh, Ru, and Pt, and 0 ≦ X ≦ 1. ) Is a zeolite-based solid acid
It is characterized in that it is supported on a carrier .

【0008】請求項2記載の発明による炭化水素及び/
又は含酸素化合物を還元剤として用いる窒素酸化物接触
還元用触媒は、一般式(
Hydrocarbons according to the second aspect of the invention and /
Alternatively, a catalyst for catalytic reduction of nitrogen oxides using an oxygen-containing compound as a reducing agent has a general formula ( I )

【0009】[0009]

【化4】 A3−X Embedded image A X B 3-X C 3 O 7

【0010】(式中、AはLa、Y及びCeよりなる群
から選ばれる少なくとも1種の元素を示し、BはBa、
Sr、Ca、Mg、Pb、Zn及びAgよりなる群から
選ばれる少なくとも1種の元素を示し、CはMn、C
o、Fe、Ni、Cr、Cu、V、Mo、W、Ti、Z
r、Nb、Pd、Rh、Ru及びPtよりなる群から選
ばれる少なくとも1種の元素を示し、0≦X≦1であ
る。)で表わされるペロブスカイト型複合酸化物がゼオ
ライト系固体酸担体に担持されてなることを特徴とす
る。
(In the formula, A represents at least one element selected from the group consisting of La, Y and Ce, B represents Ba,
At least one element selected from the group consisting of Sr, Ca, Mg, Pb, Zn, and Ag is shown, and C is Mn, C
o, Fe, Ni, Cr, Cu, V, Mo, W, Ti, Z
It represents at least one element selected from the group consisting of r, Nb, Pd, Rh, Ru and Pt, and 0 ≦ X ≦ 1. ) Perovskite-type composite oxide represented by the Zeo
It is characterized in that it is supported on a light type solid acid carrier .

【0011】本発明において、ゼオライト系固体酸担体
とは、触媒が使用される温度領域において固体酸性を示
ゼオライト系担体をいう。固体酸性の確認は、アンモ
ニアを用いた昇温脱離法や、アンモニア又はピリジンを
用いる in situ FTIR(フーリエ変換赤外線吸収ス
ペクトル)法によりなされる。ゼオライト系固体酸担体
は、Na−モルデナイト、Na−ZSM−5、Na−U
SY(USY:ウルトラステイブル又は超安定Y型ゼオ
ライト)等の耐熱性にすぐれるゼオライトを硫酸アンモ
ニウム等のアンモニウム塩の水溶液又は硫酸等の酸で処
理して、ゼオライト中のアルカリ金属の一部又は全部を
アンモニウムイオン又は水素イオンにてイオン交換する
ことによつて得ることができる。アンモニウムイオンに
てイオン交換する方法による場合は、最後に焼成処理を
必要とする。
[0011] In There Contact with the invention, the zeolite type solid acid carrier, refers to a zeolite carrier showing solid acidity in a temperature range where the catalyst is used. The solid acidity is confirmed by a temperature programmed desorption method using ammonia or an in situ FTIR (Fourier transform infrared absorption spectrum) method using ammonia or pyridine. Zeolitic solid acid carriers include Na-mordenite, Na-ZSM-5, Na-U.
Zeolites such as SY (USY: Ultra Stable or Ultra Stable Y-type Zeolite) having excellent heat resistance are treated with an aqueous solution of ammonium salt such as ammonium sulfate or an acid such as sulfuric acid to partially or completely remove the alkali metal in the zeolite. It can be obtained by ion exchange with ammonium ion or hydrogen ion. In the case of the method of performing ion exchange with ammonium ions, a calcination treatment is finally required.

【0012】ゼオライト系固体酸担体の一例として、例
えば、次式
As an example of the zeolite-based solid acid carrier, for example, the following formula

【0013】[0013]

【化5】 M((AlO2±r(SiO10)・ZH
Embedded image M 2 ((AlO 2 ) 2 ± r (SiO 2 ) 10 ) .ZH 2
O

【0014】で表わされるモルデナイト型ゼオライトを
酸処理して得られる酸型モルデナイトであつて、SiO
2 /Al2 3 モル比が13〜20であり、且つ、Si
2 /Na2 Oモル比が25〜200である酸型モルデ
ナイトを挙げることができる。但し、上式中、Mはアル
カリ金属イオンを示し、rはゼオライトの合成条件によ
り変動する値である。
Acid-type mordenite obtained by acid-treating the mordenite-type zeolite represented by
2 / Al 2 O 3 molar ratio is 13 to 20, and Si
O 2 / Na 2 O molar ratio can be exemplified acid type mordenite is 25 to 200. However, in the above formula, M represents an alkali metal ion, and r is a value that varies depending on the synthesis conditions of zeolite.

【0015】また、ゼオライト系固体酸担体の他の一例
として、例えば、次式
Another example of the zeolite-based solid acid carrier is, for example, the following formula

【0016】[0016]

【化6】 M´((AlO(SiO)q}・Z´HEmbedded image M ′ A ((AlO 2 ) p (SiO 2 ) q} · Z′H 2 O

【0017】で表わされるゼオライト中のイオンMの一
部又は全部をチタンイオン(Ti4+)、ジルコニウムイ
オン(Zr4+)又はスズイオン(Sn4+)にて交換して
得られるゼオライトを挙げることができる。但し、上式
中、M’はアルカリ金属イオン、アルカリ土類金属イオ
ン又は水素イオンを示し、nA=p(nはイオンMの価
数である。)、q/p≧5である。
The zeolite obtained by exchanging a part or all of the ions M in the zeolite represented by the formula with titanium ions (Ti 4+ ), zirconium ions (Zr 4+ ) or tin ions (Sn 4+ ). You can However, in the above formula, M ′ represents an alkali metal ion, an alkaline earth metal ion, or a hydrogen ion, and nA = p (n is the valence of the ion M) and q / p ≧ 5.

【0018】本発明による触媒は、例えば、次に示す
(1)、(2)又は(3)の方法によつて調製すること
ができる。 (1)ゼオライト系固体酸担体を分散させたスラリー
に、La、Y、Ce、Pr、Nd、Sm、Eu、Gd、
Bi、Ba、Sr、Ca、Mg、Pb、Zn、Ag、M
n、Co、Fe、Ni、Cr、Cu、V、Mo、W、T
i、Zr、Nb、Pd、Rh、Ru又はPtの硝酸塩等
の水溶性塩や、これらのアルコキシドのアルコール溶液
を投入し、これらを中和或いは加水分解させる方法等に
よつて、ゼオライト系固体酸担体にこれらの複合金属種
の水酸化物等のペロブスカイト化合物の前駆体を担持さ
せ、次いで、濾過、水洗、リパルプを繰り返し行なつた
後、乾燥し、焼成する。
The catalyst according to the present invention can be prepared, for example, by the method (1), (2) or (3) shown below. (1) In a slurry in which a zeolite-based solid acid carrier is dispersed, La, Y, Ce, Pr, Nd, Sm, Eu, Gd,
Bi, Ba, Sr, Ca, Mg, Pb, Zn, Ag, M
n, Co, Fe, Ni, Cr, Cu, V, Mo, W, T
A zeolite-based solid acid is prepared by adding a water-soluble salt such as i, Zr, Nb, Pd, Rh, Ru, or Pt nitrate, or an alcohol solution of these alkoxides to neutralize or hydrolyze them. The carrier is made to carry a precursor of a perovskite compound such as a hydroxide of these composite metal species, and then filtration, washing with water and repulping are repeatedly carried out, followed by drying and firing.

【0019】(2)ゼオライト系固体酸担体と別途調製
したペロブスカイト化合物とを遊星ミル等によつて十分
に湿式粉砕混合する。 (3)ゼオライト系固体酸担体の水溶性塩又は水酸化物
等の前駆体と、La、Y、Ce、Pr、Nd、Sm、E
u、Gd、Bi、Ba、Sr、Ca、Mg、Pb、Z
n、Ag、Mn、Co、Fe、Ni、Cr、Cu、V、
Mo、W、Ti、Zr、Nb、Pd、Rh、Ru又はP
tの硝酸塩等の水溶性塩やアルコキシドのアルコール溶
液とを均質に混合した溶液を中和又は加水分解させる方
法等によつて沈殿物を生成させ、次いで、この沈澱物を
濾過、水洗、リパルプを繰り返し行なつた後、乾燥し、
焼成する。
(2) The zeolite-based solid acid carrier and the separately prepared perovskite compound are thoroughly wet-milled and mixed by a planetary mill or the like. (3) A precursor such as a water-soluble salt or hydroxide of a zeolite-based solid acid carrier, and La, Y, Ce, Pr, Nd, Sm, E
u, Gd, Bi, Ba, Sr, Ca, Mg, Pb, Z
n, Ag, Mn, Co, Fe, Ni, Cr, Cu, V,
Mo, W, Ti, Zr, Nb, Pd, Rh, Ru or P
A precipitate is formed by a method of neutralizing or hydrolyzing a solution in which a water-soluble salt such as a nitrate of t and an alcohol solution of an alkoxide are homogeneously mixed, and then the precipitate is filtered, washed with water, and repulped. After repeating the process, dry
Bake.

【0020】以上の方法において、ペロブスカイト化合
物の生成温度は低い方が好ましい。その理由は、その生
成温度が低い程、大きな比表面積を有するペロブスカイ
ト化合物が得られ、ゼオライト系固体酸担体とペロブス
カイト化合物を構成する元素との反応によりゼオライト
固体酸担体の固体酸性が変質したり、ペロブスカイト
化合物の生成量の低下により触媒の活性が低下したりす
ることを回避することができるからである。
In the above method, it is preferable that the production temperature of the perovskite compound is low. The reason is that the lower the production temperature, the more perovskite compound having a large specific surface area is obtained, and the zeolite-based solid acid carrier reacts with the elements constituting the perovskite compound to form a zeolite.
This is because it is possible to avoid the deterioration of the solid acidity of the system solid acid carrier and the decrease in the activity of the catalyst due to the decrease in the production amount of the perovskite compound.

【0021】ペロブスカイト化合物の好適な担持量は、
このペロブスカイト化合物と固体酸担体との総重量に対
して、0.1〜60重量%である。ペロブスカイト化合物
の担持量が60重量%を越えても、そのような増量に応
じた添加効果が得られないばかりでなく、酸素が共存す
る反応系においては、酸素による炭化水素や含酸素化合
物の消耗が多くなる。一方、担持量が0.1重量%よりも
少ないときは、触媒の還元活性を十分に向上させること
ができない。
The preferable loading amount of the perovskite compound is
The amount is 0.1 to 60% by weight based on the total weight of the perovskite compound and the solid acid carrier. Even if the supported amount of the perovskite compound exceeds 60% by weight, not only the effect of addition corresponding to such increase cannot be obtained, but also in the reaction system in which oxygen coexists, the consumption of hydrocarbons and oxygen-containing compounds by oxygen Will increase. On the other hand, when the supported amount is less than 0.1% by weight, the reducing activity of the catalyst cannot be sufficiently improved.

【0022】本発明による触媒は、従来、知られている
成形方法によつて、ハニカム状、球状等の種々の形状に
成形することができる。この成形の際に、成形助剤、成
形体補強体、無機繊維、有機バインダー等を適宜配合し
てもよい。また、予め成形された基材上にウオツシユコ
ート法等によつて被覆担持させることもできる。更に、
従来、知られているその他の触媒の調製法によることも
できる。
The catalyst according to the present invention can be molded into various shapes such as a honeycomb shape and a spherical shape by a conventionally known molding method. At the time of this molding, a molding aid, a molded body reinforcing material, an inorganic fiber, an organic binder and the like may be appropriately mixed. It is also possible to carry the coating on a preformed substrate by a washcoat method or the like. Furthermore,
It is also possible to use other conventionally known catalyst preparation methods.

【0023】本発明の実施において、還元剤として使用
する炭化水素の具体例としては、気体状のものとして、
メタン、エタン、ブチレン等の炭化水素ガスが、液体状
のものとして、ペンタン、ヘキサン、オクタン、ヘプタ
ン、ベンゼン、トルエン、キシレン等の単一成分系の炭
化水素や、ガソリン、灯油、軽油、重油等の鉱油系炭化
水素等が挙げられる。特に好適な炭化水素としては、ア
セチレン、メチルアセチレン、1−ブチン等の低級アル
キン、エチレン、プロピレン、イソブチレン、1−ブテ
ン、2−ブテン等の低級アルケン、ブタジエン、イソプ
レン等の低級ジエン、プロパン、ブタン等の低級アルカ
ン等が挙げられる。
In the practice of the present invention, a specific example of the hydrocarbon used as the reducing agent is a gaseous one,
Hydrocarbon gas such as methane, ethane, butylene, etc. in liquid form, such as pentane, hexane, octane, heptane, benzene, toluene, xylene, etc., single component hydrocarbons, gasoline, kerosene, light oil, heavy oil, etc. Mineral oil-based hydrocarbons and the like. Particularly preferred hydrocarbons include lower alkynes such as acetylene, methylacetylene and 1-butyne, lower alkenes such as ethylene, propylene, isobutylene, 1-butene and 2-butene, lower dienes such as butadiene and isoprene, propane and butane. And lower alkanes and the like.

【0024】炭化水素の好適な添加量は、その種類によ
つて異なるが、窒素酸化物に対するモル比にて0.1〜2
程度である。0.1未満であるときは、十分な還元活性を
得ることができず、他方、モル比が2を越えるときは、
未反応の炭化水素の排出量が多くなるために、これを回
収するための後処理が必要となる。また、本発明の実施
において還元剤として使用する含酸素化合物とは、酸素
元素を分子内に有する有機化合物のことである。その具
体例としては、メチルアルコール、エチルアルコール、
プロピルアルコール、オクチルアルコール等のアルコー
ル類、ジメチルエーテル、ジエチルエーテル、ジプロピ
ルエーテル等のエーテル類、酢酸メチル、酢酸エチル、
油脂類等のエステル類、アセトン、メチルエチルケトン
等のケトン類等が挙げられる。好適な含酸素化合物とし
ては、メチルアルコール、エチルアルコール等の低級ア
ルコールが挙げられる。
The suitable amount of the hydrocarbon added varies depending on the kind, but is 0.1 to 2 in terms of molar ratio to nitrogen oxide.
It is a degree. When it is less than 0.1, sufficient reducing activity cannot be obtained, while when the molar ratio exceeds 2,
Since the amount of unreacted hydrocarbons emitted is large, a post-treatment is required to recover the unreacted hydrocarbons. Further, the oxygen-containing compound used as a reducing agent in the practice of the present invention is an organic compound having an oxygen element in a molecule. Specific examples include methyl alcohol, ethyl alcohol,
Propyl alcohol, alcohols such as octyl alcohol, dimethyl ether, diethyl ether, ethers such as dipropyl ether, methyl acetate, ethyl acetate,
Esters such as oils and fats, and ketones such as acetone and methyl ethyl ketone are exemplified. Suitable oxygen-containing compounds include lower alcohols such as methyl alcohol and ethyl alcohol.

【0025】上記炭化水素及び含酸素化合物は、それぞ
れ一種を単独で用いてもよく、必要に応じて二種以上併
用してもよい。また、炭化水素と含酸素化合物とを一種
又は二種以上併用するようにしてもよい。尚、排ガス中
に存在する燃料等の未燃焼物乃至不完全燃焼生成物、即
ち、炭化水素類やパテイキユレート類等も還元剤として
有効であり、これらも本発明における炭化水素に含まれ
る。このことから、見方を変えれば、本発明による触媒
は、排ガス中の炭化水素類やパテイキユレート類等の減
少或いは除去触媒としても有用であるということができ
る。
The above hydrocarbons and oxygen-containing compounds may be used alone or in combination of two or more as required. Further, the hydrocarbon and the oxygen-containing compound may be used alone or in combination of two or more. Unburned or incomplete combustion products such as fuel present in the exhaust gas, that is, hydrocarbons and paticular ureates are also effective as reducing agents, and these are also included in the hydrocarbon of the present invention. From this point of view, it can be said that the catalyst according to the present invention is also useful as a catalyst for reducing or removing hydrocarbons, patty chelates and the like in exhaust gas.

【0026】上記還元剤が窒素酸化物に対して選択的還
元反応を示す温度は、含酸素化合物<アルキン<アルケ
ン<芳香族系炭化水素<アルカンの順に高くなる。ま
た、同系の炭化水素においては、炭素数が大きくなるに
従つて、その温度は低くなる。本発明による触媒が窒素
酸化物に対して還元活性を示す最適な温度は、使用する
還元剤や触媒種により異なるが、通常、100〜800
℃である。この温度領域においては、空間速度(SV)
500〜100000程度で排ガスを流通させることが
好ましい。本発明において特に好適な温度領域は200
〜600℃である。
The temperature at which the reducing agent shows a selective reduction reaction with respect to nitrogen oxides increases in the order of oxygen-containing compound <alkyne <alkene <aromatic hydrocarbon <alkane. Further, in the hydrocarbons of the same system, the temperature becomes lower as the carbon number becomes larger. The optimum temperature at which the catalyst according to the present invention exhibits reduction activity for nitrogen oxides varies depending on the reducing agent and the catalyst species used, but is usually 100 to 800.
° C. In this temperature range, space velocity (SV)
It is preferable to circulate the exhaust gas at about 500 to 100,000. In the present invention, a particularly suitable temperature range is 200
~ 600 ° C.

【0027】[0027]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。 (1)触媒の調製
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. (1) Preparation of catalyst

【0028】実施例1 硝酸イツトリウム(Y(NO3 3 ・4H2 O)173.
49g、硝酸バリウム(Ba(NO3 2 )261.34
g及び硝酸第二銅3水和物(Cu(NO3 2・3H2
O)362.4gを水1000mlに溶解させて、水溶液を
調製した。 この水溶液に更に過酸化水素水100gを加
え、十分に攪拌しながら、濃度121g/1の炭酸ナト
リウム水溶液を加えてpHを10とした。中和反応終了
後、18時間攪拌を続けて、熟成を行なつた。その後、
濾過、水洗、リパルプを濾液の導電率がリパルプ用水と
ほぼ同じになるまで繰り返した。得られた濾過ケーキを
120℃で18時間乾燥し、次いで、700℃で3時間
焼成して、ペロブスカイト化合物(YBa 2 Cu
3 7 )を得た。このペロブスカイト化合物の比表面積
は24.5m 2 /gであつた。
[0028]Example 1 Yttrium nitrate (Y (NO3)3・ 4H2O) 173.
49 g, barium nitrate (Ba (NO3)2) 261.34
g and cupric nitrate trihydrate (Cu (NO3)2・ 3H2
O) 362.4 gDissolve in 1000 ml of water,
Prepared. 100 g of hydrogen peroxide solution was added to this aqueous solution.
Well, with sufficient stirring, the concentration of sodium carbonate of 121g / 1
The pH was adjusted to 10 by adding an aqueous solution of lithium. Neutralization reaction completed
After that, stirring was continued for 18 hours for aging. afterwards,
Filtration, washing with water, and repulp with the filtrate conductivity as repulp water
Repeated until it was almost the same. The obtained filter cake
Dry at 120 ° C for 18 hours, then 700 ° C for 3 hours
After firing, the perovskite compound (YBa 2 Cu
3 O 7 ) Got. Specific surface area of this perovskite compound
Is 24.5m 2 / G.

【0029】得られた焼成物がペロブスカイト型化合物
であることは、X線回折によって確認した。また、ペロ
ブスカイト型化合物の比表面積は、BET法にて測定し
た。以下の比表面積の測定も同じ方法法によった。この
ようにして得たペロブスカイト化合物30gと日本化学
社製H型モルデナイト(HM−23)100gとの混合
物に水を100g加えてスラリーを得、これをハニカム
に塗布し、触媒を担持させて、試作サンプル(A−1
を得た。このときの触媒の担持量は、ハニカム1cc当た
り0.094gであつた。
The obtained fired product is a perovskite-type compound
It was confirmed by X-ray diffraction. Also, Pero
The specific surface area of the buskite type compound is measured by the BET method.
It was The following specific surface area measurements were made by the same method. To a mixture of 30 g of the perovskite compound thus obtained and 100 g of H-type mordenite (HM-23) manufactured by Nippon Kagaku Co., Ltd., 100 g of water was added to obtain a slurry, which was coated on a honeycomb and supported with a catalyst to make a prototype. Sample ( A-1 )
I got The amount of the catalyst loaded at this time was 0.094 g per 1 cc of the honeycomb.

【0030】実施例2 硝酸ランタン6水和物71.60g、硝酸鉛(Pb(NO
3 2 )127.79g及び酢酸マンガン4水和物45.0
3gを混合し、800℃で3時間焼成した以外は、実施
例1と同様の方法にによつて、ペロブスカイト化合物
(La0.9 Pb2.1 Mn3 7 )を得た。このペロブス
カイト化合物の比表面積は23.7m2/gであつた。この
ようにして得たペロブスカイト化合物30gと日本化学
社製H型モルデナイト(HM−23)100gとの混合
物に水100g加えてスラリーを得、これをハニカムに
塗布し、触媒を担持させて、試作サンプル(A−2)を
得た。このときの触媒の担持量は、ハニカム1cc当たり
0.117gであつた。
Example 2 71.60 g of lanthanum nitrate hexahydrate, lead nitrate (Pb (NO
3 ) 2 ) 127.79 g and manganese acetate tetrahydrate 45.0
A perovskite compound (La 0.9 Pb 2.1 Mn 3 O 7 ) was obtained by the same method as in Example 1 except that 3 g was mixed and baked at 800 ° C. for 3 hours. The specific surface area of this perovskite compound was 23.7 m 2 / g. A mixture of 30 g of the perovskite compound thus obtained and 100 g of H-type mordenite (HM-23) manufactured by Nippon Kagaku Co., Ltd. was added with 100 g of water to obtain a slurry, which was coated on a honeycomb and supported with a catalyst to prepare a trial sample. ( A-2 ) was obtained. The amount of catalyst loaded at this time was 1 cc of honeycomb.
It was 0.117 g.

【0031】実施例3 硝酸ランタン6水和物216.51g、硝酸ストロンチウ
ム105.82g、硝酸バリウム130.67g及び硝酸コ
バルト6水和物436.55gを混合し、800℃で3時
間焼成した以外は、実施例1と同様の方法にて、ペロブ
スカイト化合物(LaSrBaCo3 7 )を得た。こ
のペロブスカイト化合物の比表面積は19.9m2/gであ
つた。このようにして得たペロブスカイト化合物30g
と日本化学社製H型モルデナイト(HM−23)100
gとの混合物に水100gを加えてスラリーを得、これ
をハニカムに塗布し、触媒を担持させて、試作サンプル
A−3)を得た。このときの触媒の担持量は、ハニカ
ム1cc当たり0.093gであつた。
Example 3 Lanthanum nitrate hexahydrate 216.51 g, strontium nitrate 105.82 g, barium nitrate 130.67 g and cobalt nitrate hexahydrate 436.55 g were mixed and calcined at 800 ° C. for 3 hours. A perovskite compound (LaSrBaCo 3 O 7 ) was obtained in the same manner as in Example 1. The specific surface area of this perovskite compound was 19.9 m 2 / g. 30 g of the perovskite compound thus obtained
And Nippon Kagaku H-type mordenite (HM-23) 100
100 g of water was added to the mixture with g to obtain a slurry, which was applied on a honeycomb to support a catalyst, and a trial sample ( A-3 ) was obtained. The amount of the catalyst carried at this time was 0.093 g per 1 cc of the honeycomb.

【0032】実施例4 硝酸セリウム6水和物(Ce(NO3 2 ・6H2 O)
70.65g、硝酸バリウム85.04g、硝酸ニツケル6
水和物(Ni(NO3 2 ・6H2 O)70.97g及び
硝酸クロム(Cr(NO3 3 )58.12gを用い、実
施例1と同様の方法にて、ペロブスカイト化合物(Ce
Ba2 Ni1.5 Cr1.5 7 )を得た。このペロブスカ
イト化合物の比表面積は21.7m2/gであつた。このよ
うにして得たペロブスカイト化合物30gと日本化学社
製H型モルデナイト(HM−23)との混合物に水10
0gを加えてスラリーを得、これをハニカムに塗布し、
触媒を担持させて、試作サンプル(A−4)を得た。こ
のときの触媒の担持量は、ハニカム1cc当たり0.098
gであつた。
Example 4 Cerium Nitrate Hexahydrate (Ce (NO 3 ) 2 .6H 2 O)
70.65g, barium nitrate 85.04g, nickel nitrate 6
Hydrate (Ni (NO 3) 2 · 6H 2 O) 70.97g and chromium nitrate (Cr (NO 3) 3) using 58.12G, in the same manner as in Example 1, a perovskite compound (Ce
Ba 2 Ni 1.5 Cr 1.5 O 7 ) was obtained. The specific surface area of this perovskite compound was 21.7 m 2 / g. A mixture of 30 g of the perovskite compound thus obtained and H-type mordenite (HM-23) manufactured by Nippon Kagaku Co., Ltd. was added to water 10
0 g was added to obtain a slurry, which was applied to a honeycomb,
A catalyst was supported to obtain a trial sample ( A-4 ). The loading amount of the catalyst at this time was 0.098 per 1 cc of honeycomb.
It was g.

【0033】実施例5 (ペロブスカイト化合物の調製)硝酸イツトリウム4水和物88.21g、硝酸ストロンチ
ウム107.64g及び酢酸コバルト4水和物151.98
gを500mlの水に溶解させて水溶液を調製した。この
水溶液に十分に攪拌しながら、濃度121g/1の水酸
化ナトリウム水溶液を滴下して、液のpHを10とした。
中和反応終了後、18時間攪拌を続け、熟成を行なつ
た。その後、濾過、水洗、リパルプを濾液の導電率がリ
パルプ用水 とほぼ同じになるまで繰り返した後、得られ
た濾過ケーキを120℃で18時間乾燥させた。 この乾
燥物を粉砕し、これにモリブデン酸アンモニウムのアン
モニア性水溶液(MoO 2 として25g/1濃度の水溶
液)780.66mlを加え、十分に混練した後、蒸発乾固
させ、120℃で18時間乾燥させ、次いで、850℃
で3時間焼成して、 ペロブスカイト化合物(YSr2.0
Co2.4 Mo0.6 7 )を得た。このペロブスカイト化
合物の比表面積は10.9m2/gであつた。
Example 5 (Preparation of perovskite compound) Yttrium nitrate tetrahydrate 88.21 g, strontium nitrate
Um 107.64 g and cobalt acetate tetrahydrate 151.98
g was dissolved in 500 ml of water to prepare an aqueous solution. this
Hydrolyzed with a concentration of 121 g / 1 while thoroughly stirring in an aqueous solution
The pH of the solution was adjusted to 10 by dropping an aqueous sodium chloride solution.
After completion of the neutralization reaction, continue stirring for 18 hours to mature the mixture.
It was After that, filtration, washing with water, and repulping are performed to reduce the conductivity of the filtrate.
Obtained after repeated until it is almost the same as pulp water
The filtered cake was dried at 120 ° C. for 18 hours. This dry
The dried product is crushed and ammonium molybdate
Monia aqueous solution ( 25g / 1 concentration water solution as MoO 2
Liquid) 780.66 ml was added, and the mixture was thoroughly kneaded and then evaporated to dryness.
Dried at 120 ° C for 18 hours, then at 850 ° C
After firing for 3 hours, the perovskite compound (YSr 2.0
To obtain a Co 2.4 Mo 0.6 O 7). The specific surface area of this perovskite compound was 10.9 m 2 / g.

【0034】(Zr−モルデナイトの調製) 日本化学社製のNaモルデナイト(NM−100P)1
00gを硝酸ジルコニル水溶液(ZrO2 として100
g/1濃度の水溶液)に浸漬し、攪拌しながら70℃に
1時間保持し、NaをZrとイオン交換させた。濾過、
水洗して得たゼオライトケーキを乾燥させた後、650
℃で4時間焼成した。このゼオライト(Zr−モルデナ
イト)のZr含有量は3.3重量%であり、また、比表面
積は391m2/gであつた。
(Preparation of Zr-mordenite) Na mordenite (NM-100P) 1 manufactured by Nippon Kagaku Co., Ltd.
00 g of zirconyl nitrate aqueous solution (100 as ZrO 2
g / concentration aqueous solution) and kept at 70 ° C. for 1 hour with stirring to exchange Na with Zr. filtration,
After drying the zeolite cake obtained by washing with water, 650
Calcination was performed for 4 hours. The zeolite (Zr-mordenite) had a Zr content of 3.3% by weight and a specific surface area of 391 m 2 / g.

【0035】前述したようにして得たペロブスカイト化
合物30gと上記Zr−モルデナイト100gとの混合
物に水を100gを加え、遊星ミルにて30分間粉砕混
合し、皿に、水で粘度調整して、ウオツシユコート用ス
ラリーを得た。このスラリーをハニカムに塗布し、触媒
を担持させて、試作サンプル(A−5)を得た。このと
きの触媒の担持量は、ハニカム1cc当たり0.103gで
あつた。
[0035] Water to 100g added to a mixture of perovskite compound 30g and the Zr- mordenite 100g obtained as described above, were pulverized and mixed for 30 minutes with a planetary mill, a dish, and the viscosity adjusted with water, Walsh A slurry for a wash coat was obtained. This slurry was applied to a honeycomb to support a catalyst, and a trial sample ( A-5 ) was obtained. At this time, the supported amount of the catalyst was 0.103 g per 1 cc of honeycomb.

【0036】実施例6 実施例1 において、ペロブスカイト化合物(YBa2
3 7 )1gと日本化学社製H型モルデナイト(HM
−23)100gとを用いた以外は、実施例1と同様に
して、試作サンプル(A−6)を得た。このときの触媒
の担持量は、ハニカム1cc当たり0.079gであつた。
Example 6 In Example 1 , the perovskite compound (YBa 2 C
u 3 O 7 ) 1g and H-type mordenite (HM
-23) A trial sample ( A-6 ) was obtained in the same manner as in Example 1 except that 100 g was used. The amount of the catalyst loaded at this time was 0.079 g per 1 cc of the honeycomb.

【0037】実施例7 実施例1 において、ペロブスカイト化合物(YBa2
3 7 )10gと日本化学社製H型モルデナイト(H
M−23)100gとを用いた以外は、実施例1と同様
にして、試作サンプル(A−7)を得た。このときの触
媒の担持量は、ハニカム1cc当たり0.083gであつ
た。
Example 7 In Example 1 , the perovskite compound (YBa 2 C
u 3 O 7 ) 10 g and H-type mordenite (H
A prototype sample ( A-7 ) was obtained in the same manner as in Example 1 except that 100 g of M-23) was used. The amount of the catalyst loaded at this time was 0.083 g per 1 cc of the honeycomb.

【0038】実施例8 実施例1 において、ペロブスカイト化合物(YBa2
3 7 )50gと日本化学社製H型モルデナイト(H
M−23)100gとを用いた以外は、実施例1と同様
にして、試作サンプル(A−8)を得た。このときの触
媒の担持量は、ハニカム1cc当たり0.107gであつ
た。
Example 8 In Example 1 , the perovskite compound (YBa 2 C
u 3 O 7 ) 50 g and H-type mordenite (H
A prototype sample ( A-8 ) was obtained in the same manner as in Example 1 except that 100 g of M-23) was used. The amount of the catalyst loaded at this time was 0.107 g per 1 cc of the honeycomb.

【0039】実施例9 実施例1 において、ペロブスカイト化合物(YBa2
3 7 )50gと日本化学社製H型モルデナイト(H
M−23)50gとを用いた以外は、実施例1と同様に
して、試作サンプル(A−9)を得た。このときの触媒
の担持量は、ハニカム1cc当たり0.125gであつた。
Example 9 In Example 1 , the perovskite compound (YBa 2 C
u 3 O 7 ) 50 g and H-type mordenite (H
A prototype sample ( A-9 ) was obtained in the same manner as in Example 1 except that 50 g of M-23) was used. The amount of the catalyst loaded at this time was 0.125 g per 1 cc of the honeycomb.

【0040】実施例10 組成式Nax〔(AlO2 X ・(SiO2 Y 〕・Z
2 Oで表わされるナトリウム型ZSM−5(日本モー
ビル社製ZSM−5、Y/X=35)100gを0.02
5モル/1のTiOSO4 水溶液1リットル中に浸漬
し、十分に攪拌した。これをオートクレーブ中にて攪拌
しながら、100℃/時の昇温速度で昇温し、125℃
に1時間保持し、TiOSO4 を加水分解させて、Na
をTiでイオン交換した後、濾別、水洗して、ゼオライ
トのケーキを得た。次いで、このケーキを乾燥した後、
650℃で4時間焼成して、ゼオライトを得た。このゼ
オライト中のTi含有量は、TiO2 として2.4重量%
であつた。このようにして得たTi−ZSM−5をH型
モルデナイトに代えて用いた以外は、実施例1と同様に
して、試作サンプル(A−10)を得た。このときの触
媒の担持量は、ハニカム1cc当たり0.099gであつ
た。
Example 10 Compositional formula Nax [(AlO 2 ) X. (SiO 2 ) Y ] .Z
0.02 of 100 g of sodium type ZSM-5 (ZSM-5 manufactured by Nippon Mobile Co., Ltd., Y / X = 35) represented by H 2 O was used.
It was dipped in 1 liter of a 5 mol / 1 TiOSO 4 aqueous solution and sufficiently stirred. While stirring this in an autoclave, the temperature was raised at a heating rate of 100 ° C / hour to 125 ° C.
The mixture is kept at room temperature for 1 hour to hydrolyze TiOSO 4 ,
Was ion-exchanged with Ti, then filtered and washed with water to obtain a cake of zeolite. Then, after drying this cake,
It was calcined at 650 ° C. for 4 hours to obtain zeolite. The Ti content in this zeolite is 2.4% by weight as TiO 2.
It was. A prototype sample ( A-10 ) was obtained in the same manner as in Example 1 except that the Ti-ZSM-5 thus obtained was used instead of the H-type mordenite. The amount of the catalyst carried at this time was 0.099 g per 1 cc of the honeycomb.

【0041】実施例11 硝酸ランタン6水和物89.50g、硝酸鉛(Pb(NO
3 2 )136.93g及び硝酸コバルト6水和物154.
45gを用いて、実施例1と同様にして、ペロブスカイ
ト化合物(LaPb2 Co3 7 )を得た。このペロブ
スカイト化合物の比表面積は、12.6m2/gであつた。
このようにして得たペロブスカイト化合物60gと日本
化学社製H型モルデナイト(HM−23)100gとの
混合物に水を100g加えてスラリーを得、これをハニ
カムに塗布し、触媒を担持させて、試作サンプル(A−
11)を得た。このときの触媒の担持量は、ハニカム1
cc当たり0.137gであつた。
Example 11 89.50 g of lanthanum nitrate hexahydrate, lead nitrate (Pb (NO
3 ) 2 ) 136.93 g and cobalt nitrate hexahydrate 154.
Using 45 g, a perovskite compound (LaPb 2 Co 3 O 7 ) was obtained in the same manner as in Example 1. The specific surface area of this perovskite compound was 12.6 m 2 / g.
To a mixture of 60 g of the perovskite compound thus obtained and 100 g of H-type mordenite (HM-23) manufactured by Nippon Kagaku Co., Ltd., 100 g of water was added to obtain a slurry, which was coated on a honeycomb and supported with a catalyst to make a prototype. Sample ( A-
11 ) was obtained. The loading amount of the catalyst at this time is the same as that of the honeycomb 1.
It was 0.137 g per cc.

【0042】実施例12 硝酸ネオジム6水和物(Nd(NO3 3 ・6H2 O)
124.82g、硝酸バリウム148.83g、硝酸第二銅
3水和物371.48g及び硝酸ニツケル6水和物49.6
8gを用いて、実施例1と同にして、ペロブスカイト化
合物(NdBa2 Cu2.7 Ni0.3 7 )を得た。この
ペロブスカイト化合物の比表面積は、10.3m2/gであ
つた。このようにして得たペロブスカイト化合物60g
と日本化学社製H型モルデナイト(HM−23)との混
合物に水を100g加えてスラリーを得、これをハニカ
ムに塗布し、触媒を担持させて、試作サンプル(A−1
)を得た。このときの触媒の担持量は、ハニカム1cc
当たり0.141gであつた。
Example 12 Neodymium nitrate hexahydrate (Nd (NO 3 ) 3 .6H 2 O)
124.82 g, barium nitrate 148.83 g, cupric nitrate trihydrate 371.48 g and nickel nitrate hexahydrate 49.6
A perovskite compound (NdBa 2 Cu 2.7 Ni 0.3 O 7 ) was obtained in the same manner as in Example 1 except that 8 g was used. The specific surface area of this perovskite compound was 10.3 m 2 / g. 60 g of the perovskite compound thus obtained
To a mixture of H-type mordenite manufactured by Nippon Kagaku Co., Ltd. (HM-23) to obtain 100 g of water to obtain a slurry, which is applied to a honeycomb to support a catalyst, and a prototype sample ( A-1
2 ) was obtained. The amount of catalyst loaded at this time was 1 cc of honeycomb.
The amount was 0.141 g.

【0043】実施例13 塩化プラセオジム7水和物(PrCl3 ・7H2 O)2
73.2g、硝酸ストロンチウム309.71g、硝酸第二
銅3水和物265.17g及び酢酸マンガン4水和物26
9.00gを混合し、次いで、実施例1と同様にして、ペ
ロブスカイト化合物(PrSr2 Cu1.5 Mn
1.5 7 )を得た。このペロブスカイト化合物の比表面
積は、9.8m2/gであつた。このようにして得たペロブ
スカイト化合物60gと日本化学社製H型モルデナイト
(HM−23)100gとの混合物に水を100g加え
てスラリーを得、これをハニカムに塗布し、触媒を担持
させて、試作サンプル(A−13)を得た。このときの
触媒の担持量は、ハニカム1cc当たり0.133gであつ
た。
Example 13 Praseodymium chloride heptahydrate (PrCl 3 .7H 2 O) 2
73.2 g, strontium nitrate 309.71 g, cupric nitrate trihydrate 265.17 g and manganese acetate tetrahydrate 26
9.00 g were mixed, and then, in the same manner as in Example 1, the perovskite compound (PrSr 2 Cu 1.5 Mn) was mixed.
1.5 O 7 ) was obtained. The specific surface area of this perovskite compound was 9.8 m 2 / g. To a mixture of 60 g of the perovskite compound thus obtained and 100 g of H-type mordenite (HM-23) manufactured by Nippon Kagaku Co., Ltd., 100 g of water was added to obtain a slurry, which was coated on a honeycomb and supported with a catalyst to make a prototype. A sample ( A-13 ) was obtained. The amount of catalyst supported at this time was 0.133 g per 1 cc of honeycomb.

【0044】実施例14 塩化ランタン6水和物202.05g、硝酸ガドリウム6
水和物(Gd(NO33 ・6H2 O)52.66g、硝
酸バリウム228.65g、硝酸ストロンチウム61.72
g、硝酸第二銅3水和物126.83g、硝酸コバルト6
水和物407.40g及び硝酸第二鉄6水和物100.77
gを用いて、実施例1と同様にして、ペロブスカイト化
合物(La0.8 Gd0.2 Co2.4 Fe0.6 7 )を得
た。このペロブスカイト化合物の比表面積は、8.8m2
gであつた。このようにして得たペロブスカイト化合物
60gと日本化学社製H型モルデナイト(HM−23)
100gとの混合物に水を100g加えてスラリーを
得、これをハニカムに塗布し、触媒を担持させて、試作
サンプル(A−14)を得た。このときの触媒の担持量
は、ハニカム1cc当たり0.129gであつた。
Example 14 202.05 g of lanthanum chloride hexahydrate, gadolinium nitrate 6
Hydrate (Gd (NO 3) 3 · 6H 2 O) 52.66g, barium nitrate 228.65G, strontium nitrate 61.72
g, cupric nitrate trihydrate 126.83 g, cobalt nitrate 6
Hydrate 407.40 g and ferric nitrate hexahydrate 100.77
Using g, a perovskite compound (La 0.8 Gd 0.2 Co 2.4 Fe 0.6 O 7 ) was obtained in the same manner as in Example 1. The specific surface area of this perovskite compound is 8.8 m 2 /
It was g. 60 g of the perovskite compound thus obtained and H-type mordenite manufactured by Nippon Kagaku Co. (HM-23)
100 g of water was added to a mixture with 100 g to obtain a slurry, which was applied on a honeycomb to support a catalyst, and a trial sample ( A-14 ) was obtained. At this time, the supported amount of the catalyst was 0.129 g per 1 cc of the honeycomb.

【0045】実施例15 硝酸ランタン6水和物202.05g、塩化プラセオジム
43.56g、硝酸ストロンチウム246.88g及び硝酸
第二銅3水和物422.76gを用いて、実施例1と同様
にして、ペロブスカイト化合物(La0.8 Pr0.2 Sr
2.0 Cu3.0 7 )を得た。このペロブスカイト化合物
の比表面積は、9.2m2/gであつた。このようにして得
たペロブスカイト化合物60gと日本化学社製H型モル
デナイト(HM−23)100gとの混合物に水を10
0g加えてスラリーを得、これをハニカムに塗布し、触
媒を担持させて、試作サンプル(A−15)を得た。こ
のときの触媒の担持量は、ハニカム1cc当たり0.135
gであつた。
Example 15 The same procedure as in Example 1 was carried out using 202.05 g of lanthanum nitrate hexahydrate, 43.56 g of praseodymium chloride, 246.88 g of strontium nitrate and 422.76 g of cupric nitrate trihydrate. , Perovskite compounds (La 0.8 Pr 0.2 Sr
2.0 Cu 3.0 O 7 ) was obtained. The specific surface area of this perovskite compound was 9.2 m 2 / g. Water was added to a mixture of 60 g of the perovskite compound thus obtained and 100 g of H-type mordenite (HM-23) manufactured by Nippon Kagaku Co., Ltd.
0 g was added to obtain a slurry, which was applied to a honeycomb to carry a catalyst, and a trial sample ( A-15 ) was obtained. The loading amount of catalyst at this time was 0.135 per 1 cc of honeycomb.
It was g.

【0046】比較例1実施例3 において、H型モルデナイトを用いず、ペロブ
スカイト化合物(LaSrBaCo3 7 )のみを用い
てウオツシユコート用スラリーを得、その他は実施例1
と同様にして、1.25mmピツチのハニカム形状の比較サ
ンプル(B−1)を得た。このときの触媒の担持量はハ
ニカム1cc当たり0.133gであつた。
Comparative Example 1 In Example 3 , a slurry for washcoat was obtained by using only the perovskite compound (LaSrBaCo 3 O 7 ) without using the H-type mordenite.
In the same manner as above, a honeycomb-shaped comparative sample (B-1) having a pitch of 1.25 mm was obtained. The amount of catalyst supported at this time was 0.133 g per 1 cc of honeycomb.

【0047】比較例2 日本モービル社製のナトリウム型モルデナイト(SiO
2 /Al2 3 のモル比=34)を実施例1と同様の方
法により処理して、1.25mmピツチのハニカム形状の比
較サンプル(B−2)を得た(H型ZSM−5)。この
ときの触媒の担持量は、ハニカム1cc当たり0.128g
であつた。
Comparative Example 2 Sodium type mordenite (SiO
2 / Al 2 O 3 molar ratio = 34) was treated in the same manner as in Example 1 to obtain a 1.25 mm pitch honeycomb-shaped comparative sample (B-2) (H-type ZSM-5). . The amount of catalyst loaded at this time was 0.128 g per 1 cc of honeycomb.
It was.

【0048】(2)評価試験 上記サンプル(A−1)〜(A−15)並びに比較サン
プル(B−1)及び(B−2)について、下記の試験条
件により窒素酸化物含有ガスの窒素酸化物接触還元を行
い、窒素酸化物のN2 への転化率を、ガスクロマトグラ
フ法によりN2を定量して算出した。 (試験条件) (1)ガス組成 NO 1容量% O2 10容量% 還元剤 1容量% He 残部 (2)空間速度 20000(1/Hr) (3)反応温度 300℃、400℃、500℃又は600℃ 結果を表1に示す。
(2) Evaluation test With respect to the samples (A-1) to ( A-15 ) and the comparative samples (B-1) and (B-2), the nitrogen oxidation of the nitrogen oxide-containing gas was carried out under the following test conditions. carried things catalytic reduction, the conversion to N 2 of nitrogen oxides was calculated to quantify the N 2 by gas chromatography. (Test conditions) (1) Gas composition NO 1% by volume O 2 10% by volume Reducing agent 1% by volume He balance (2) Space velocity 20000 (1 / Hr) (3) Reaction temperature 300 ° C, 400 ° C, 500 ° C or The results at 600 ° C. are shown in Table 1 .

【0049】[0049]

【表1】 [Table 1]

【0050】表1に示す結果から明らかなように、本発
明による触媒(試作サンプル(A−1)〜(A−1
5))は、いずれも窒素酸化物の窒素への転化率が高い
のに対して、比較触媒(比較サンプル(B−1)及び
(B−2))は、総じて、その窒素への転化率が低い。
As is clear from the results shown in Table 1 , the catalysts of the present invention (prototype samples (A-1) to (A-1)
5)) has a high conversion rate of nitrogen oxides to nitrogen, whereas the comparative catalysts (comparative samples (B-1) and (B-2)) generally have a higher conversion rate to nitrogen. Is low.

【0051】[0051]

【発明の効果】以上に詳細に説明したように、本発明に
よる炭化水素や含酸素化合物を還元剤として使用する窒
素酸化物接触還元用触媒は、酸素の共存下において、排
ガス中の窒素酸化物を効率よく接触還元することができ
る。
As described above in detail, the catalyst for catalytic reduction of nitrogen oxides using the hydrocarbon or the oxygen-containing compound according to the present invention as a reducing agent is a nitrogen oxide in exhaust gas in the presence of oxygen. Can be efficiently catalytically reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/46 B01J 29/48 A 29/48 B01D 53/36 102C (72)発明者 仲辻 忠夫 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社内 (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社内 (72)発明者 安川 律 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社内 (72)発明者 菅沼 藤夫 埼玉県北葛飾郡庄和町新宿新田228−16 (72)発明者 宮本 勝見 埼玉県北葛飾郡鷺宮町鷺宮1−11−17 (72)発明者 川付 正明 埼玉県越谷市大沢2856−1 センチュリ ーマンション嵯峨103号 (72)発明者 金田一 嘉昭 茨城県つくば市東1−1 工業技術院化 学技術研究所内 (72)発明者 佐々木 基 茨城県つくば市東1−1 工業技術院化 学技術研究所内 審査官 野田 直人 (56)参考文献 特開 昭64−30641(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 29/46 B01J 29/48 A 29/48 B01D 53/36 102C (72) Inventor Tadao Nakatsuji Sakai Chemical Industry Co., Ltd. 5-1, Ebishimacho, Sakai City, Osaka Prefecture (72) Inventor Hiromasu Shimizu 5-1, Ebisucho, Sakai City, Osaka Prefecture (72) Inventor Ritsu Yaskawa Osaka Sakai Chemical Industry Co., Ltd., 5-1, Ebishima-cho, Sakai-shi, Japan (72) Inventor Fujio Suganuma 228-16 Shinjuku Shinden, Showa-cho, Kitakatsushika-gun, Saitama Prefecture (72) Inventor Katsumi Miyamoto 1 Saginomiya-cho, Kitatsukashi-gun, Saitama Prefecture −11−17 (72) Inventor Masaaki Kawatsuki 2856-1 Osawa, Koshigaya City, Saitama Century Condominium No. 103 Saga (72) Inventor Kazuaki Kaneda 1-1 Tsukuba City, Ibaraki Prefecture Industrial Technology Institute Chemical Technology Research house (72) inventor Sasaki based on Higashi, Tsukuba, Ibaraki, 1-1 Agency of Industrial Science and Technology Chemical Technology Institute in the examiner Naoto Noda (56) Reference Patent Sho 64-30641 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) 【化1】 A3−X (式中、AはLa、Y、Ce、Pr、Nd、Sm、E
u、Gd及びBiよりなる群から選ばれる少なくとも1
種の元素を示し、BはBa、Sr、Ca、Mg、Pb、
Zn及びAgよりなる群から選ばれる少なくとも1種の
元素を示し、CはMn、Co、Fe、Ni、Cr、C
u、V、Mo、W、Ti、Zr、Nb、Pd、Rh、R
u及びPtよりなる群から選ばれる少なくとも1種の元
素を示し、0≦X≦1である。)で表わされるペロブス
カイト型複合酸化物がゼオライト系固体酸担体に担持さ
れてなることを特徴とする炭化水素及び/又は含酸素化
合物を還元剤として用いる窒素酸化物接触還元用触媒。
1. General formula (I) embedded image A X B 3-X C 3 O 7 (wherein A is La, Y, Ce, Pr, Nd, Sm, E).
at least 1 selected from the group consisting of u, Gd and Bi
Represents the elements of the species, B is Ba, Sr, Ca, Mg, Pb,
At least one element selected from the group consisting of Zn and Ag is shown, and C is Mn, Co, Fe, Ni, Cr, C.
u, V, Mo, W, Ti, Zr, Nb, Pd, Rh, R
It represents at least one element selected from the group consisting of u and Pt, and 0 ≦ X ≦ 1. ) A catalyst for catalytic reduction of nitrogen oxides using a hydrocarbon and / or oxygen-containing compound as a reducing agent, characterized in that the perovskite-type composite oxide represented by the formula (3) is supported on a zeolite-based solid acid carrier.
【請求項2】一般式(I) 【化2】 A3−X (式中、AはLa、Y及びCeよりなる群から選ばれる
少なくとも1種の元素を示し、BはBa、Sr、Ca、
Mg、Pb、Zn及びAgよりなる群から選ばれる少な
くとも1種の元素を示し、CはMn、Co、Fe、N
i、Cr、Cu、V、Mo、W、Ti、Zr、Nb、P
d、Rh、Ru及びPtよりなる群から選ばれる少なく
とも1種の元素を示し、0≦X≦1である。)で表わさ
れるペロブスカイト型複合酸化物がゼオライト系固体酸
担体に担持されてなることを特徴とする炭化水素及び/
又は含酸素化合物を還元剤として用いる窒素酸化物接触
還元用触媒。
Wherein in the general formula (I) ## STR2 ## A X B 3-X C 3 O 7 ( wherein, A is La, represents at least one element selected from the group consisting of Y and Ce, B Is Ba, Sr, Ca,
At least one element selected from the group consisting of Mg, Pb, Zn, and Ag is shown, and C is Mn, Co, Fe, N.
i, Cr, Cu, V, Mo, W, Ti, Zr, Nb, P
It represents at least one element selected from the group consisting of d, Rh, Ru, and Pt, and 0 ≦ X ≦ 1. ) Perovskite-type composite oxide represented by is characterized by comprising supported on a zeolite type solid acid carrier hydrocarbons and /
Alternatively, a catalyst for nitrogen oxide catalytic reduction using an oxygen-containing compound as a reducing agent.
JP4020305A 1991-09-12 1992-02-05 Catalyst for catalytic reduction of nitrogen oxides Expired - Lifetime JP2558566B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4020305A JP2558566B2 (en) 1991-11-13 1992-02-05 Catalyst for catalytic reduction of nitrogen oxides
DE69226581T DE69226581T2 (en) 1991-09-12 1992-09-11 Catalyst for the reduction of nitrogen oxides
US07/944,106 US5380692A (en) 1991-09-12 1992-09-11 Catalyst for catalytic reduction of nitrogen oxide
EP92115572A EP0532024B1 (en) 1991-09-12 1992-09-11 Catalyst for catalytic reduction of nitrogen oxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32637291 1991-11-13
JP3-326372 1991-11-13
JP4020305A JP2558566B2 (en) 1991-11-13 1992-02-05 Catalyst for catalytic reduction of nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH05184930A JPH05184930A (en) 1993-07-27
JP2558566B2 true JP2558566B2 (en) 1996-11-27

Family

ID=26357221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020305A Expired - Lifetime JP2558566B2 (en) 1991-09-12 1992-02-05 Catalyst for catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2558566B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033431A1 (en) * 2001-10-15 2003-04-24 Nippon Steel Corporation Porcelain composition, composite material comprising catalyst and ceramic, film reactor, method for producing synthetic gas, apparatus for producing synthetic gas and method for activating catalyst
JP2006036558A (en) * 2004-07-23 2006-02-09 Dowa Mining Co Ltd Perovskite complex oxide and catalyst
JP4848554B2 (en) * 2004-07-30 2011-12-28 Dowaエレクトロニクス株式会社 Production method of perovskite complex oxide with pore distribution with high catalytic activity
JP5388052B2 (en) 2008-10-31 2014-01-15 独立行政法人産業技術総合研究所 Exhaust gas treatment catalyst
JP5680973B2 (en) * 2011-01-05 2015-03-04 三井金属鉱業株式会社 Method for producing yttrium manganate YMnO3
JP5822682B2 (en) * 2011-11-25 2015-11-24 ダイハツ工業株式会社 Exhaust gas purification catalyst
CN104741142A (en) * 2015-03-15 2015-07-01 北京工业大学 Preparation method and application of Fe-ZSM-5 Zr and Sr doped compound catalyst
CN104741143A (en) * 2015-03-15 2015-07-01 北京工业大学 Preparation method and application of Cu-ZSM-5 doped Zr and Sr composite catalyst
CN113307303B (en) * 2021-04-24 2023-11-28 苏州大学 High-stability all-inorganic perovskite/aluminum phosphate composite nano material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714481B2 (en) * 1987-07-24 1995-02-22 松下電器産業株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH05184930A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
EP0532024B1 (en) Catalyst for catalytic reduction of nitrogen oxide
EP0624393B1 (en) Catalyst for catalytic reduction of nitrogen oxides
US10675586B2 (en) Hybrid binary catalysts, methods and uses thereof
US10835866B2 (en) 4-way hybrid binary catalysts, methods and uses thereof
US5336651A (en) Catalysts and methods for denitrization
JP2558568B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH0549943A (en) Oxidizing catalyst
KR101473440B1 (en) Mixed oxide catalyst materials for treating an exhaust gas, preparing methods thereof and methods for treating the exhaust gas using the same
JP2558566B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2516516B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2838336B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2618319B2 (en) Catalyst structure for catalytic reduction of nitrogen oxides
JPH07213911A (en) Catalyst for catalytic reduction of nitrogen oxide
JP3453239B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH0549931A (en) Catalyst for catalytic reduction of nitrogen oxide
JPH0884912A (en) High efficiency nitrogen oxide reduction method
JPH1199319A (en) Waste gas purifying method
JPH06320008A (en) Catalyst for catalytic reduction of nox
JPH06320006A (en) Catalyst for catalytic reduction of nox
JPH07227523A (en) Contact reducing method of nitrogen oxide
JP2609974B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH0768180A (en) Catalyst for catalytic reduction of nox
KR0157126B1 (en) Detoxification of ammonia-containing exhaust gas
JPH06238169A (en) Catalyst structure for catalytic reduction of nitrogen oxides
JPH1094718A (en) Catalytic reelection of nitrogen oxide

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term