JPH07142939A - Mosfet power amplifier - Google Patents

Mosfet power amplifier

Info

Publication number
JPH07142939A
JPH07142939A JP5309684A JP30968493A JPH07142939A JP H07142939 A JPH07142939 A JP H07142939A JP 5309684 A JP5309684 A JP 5309684A JP 30968493 A JP30968493 A JP 30968493A JP H07142939 A JPH07142939 A JP H07142939A
Authority
JP
Japan
Prior art keywords
voltage
output
power
mosfet
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5309684A
Other languages
Japanese (ja)
Other versions
JP3178494B2 (en
Inventor
Shinichi Akita
晋一 秋田
Taisuke Ikeda
泰典 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP30968493A priority Critical patent/JP3178494B2/en
Publication of JPH07142939A publication Critical patent/JPH07142939A/en
Application granted granted Critical
Publication of JP3178494B2 publication Critical patent/JP3178494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To stably realize complete full swing by cutting off power output MOSFET on the opposite side of power output MOSFET on a driven-side. CONSTITUTION:When the voltage of an input terminal 1 to about power voltage Vdd and PMOSFET Q10 is cut off, NMOSFET Q20 of a negative side detection circuit 7 is also cut off. Thus, the drain voltage of PMOSFET Q21 is impressed on the gate voltage of NMOSFET Q21 of a negative side correction circuit 8 and NMOSFET Q22 is turned on. Thus, the gate of power output NMOSFET Q2 is grounded and it is completely cut off. When inputted voltage drops to about ground voltage, the gate of PMOSFET Q8 comes to a floating state (or power potential). At that time, PMOSFET Q17 of a positive side detection circuit 5 is cut off, PMOSFET Q19 of a positive side correction circuit 6 is turned on and power output PMOSFET Q1 is cut off.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、携帯音響製品、携帯パ
ーソナルコンピュータ、携帯マルチメディア機器、移動
電話機等の携帯用電気機器において、音声信号を増幅す
るMOSFET電力増幅器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOSFET power amplifier for amplifying an audio signal in portable electric equipment such as portable audio products, portable personal computers, portable multimedia equipment and mobile phones.

【0002】[0002]

【従来の技術】携帯用電気機器の音声信号の電力増幅
は、従来ではバイポーラトランジスタ回路によって実現
されていたが、使用する電源電圧の低電圧化に伴って、
バイポーラトランジスタが本質的に持っているコレクタ
・エミッタ間飽和電圧(Vce)が出力電圧の利用効率
を落してしまい、結果として出力パワーが不十分となっ
たり、電力効率が低下するという問題が大きくなってき
た。
2. Description of the Related Art Power amplification of a voice signal of a portable electric device has conventionally been realized by a bipolar transistor circuit, but with the decrease of the power supply voltage to be used,
The collector-emitter saturation voltage (Vce) inherent in the bipolar transistor lowers the utilization efficiency of the output voltage, resulting in insufficient output power or a problem of reduced power efficiency. Came.

【0003】そこで、昇圧回路を付加し、電源電圧を昇
圧して電力増幅部を動作させることが行なわれてきた
が、電力効率の面の改善は進まなかった。
Therefore, a booster circuit has been added to boost the power supply voltage to operate the power amplifying section, but the improvement in power efficiency has not progressed.

【0004】一方、FET素子を使用して電力増幅器を
構成する試みが成された。しかし、品質の要求が厳しく
ない分野には応用されているものの、ハイファイでは充
分に高い電圧で動作させることができる場合以外は、実
用化されていない。
On the other hand, attempts have been made to construct a power amplifier using FET elements. However, although it is applied to a field where quality requirements are not strict, it has not been put to practical use except when it can be operated at a sufficiently high voltage in hi-fi.

【0005】これは、FETは電流を駆動する能力がバ
イポーラトランジスタに劣っており、パイポーラトラン
ジスタ並に電力を駆動しようとすると、それ以上に無効
電力(貫通電流による)を消費する結果になることが不
可避であるからである。
This is because the FET is inferior to the bipolar transistor in the ability to drive the current, and if it is attempted to drive the electric power as much as the bipolar transistor, the reactive power (through current) is consumed more than that. Is inevitable.

【0006】ところで、近年バイアス電流を出力振幅に
応じて制御する方法を実用化して、大振幅のときだけ電
流駆動能力を増加させて電力効率を改善した、図2に示
すようなMOSFET電力増幅器が提案されている(IE
EE J.SOLID STATE CIRCUITS,Vol.SC-17,no.6,pp929-98
2, Dec.1982 )。この図2の回路は準ソースホロワ電力
増幅器とよばれるもので、図中、1は入力端子、2は出
力端子、3は正側増幅段、4は負側増幅器段である。ま
た、Q1は出力用PMOSFET、Q2は出力用NMO
SFETであり、CMOS構成の電力増幅段を構成す
る。
By the way, in recent years, a MOSFET power amplifier as shown in FIG. 2 has been put into practical use in which a method of controlling a bias current according to an output amplitude is put into practical use, and current driving capability is increased only when the amplitude is large to improve power efficiency. Proposed (IE
EE J.SOLID STATE CIRCUITS, Vol.SC-17, no.6, pp929-98
2, Dec.1982). The circuit of FIG. 2 is called a quasi-source follower power amplifier. In the figure, 1 is an input terminal, 2 is an output terminal, 3 is a positive amplification stage, and 4 is a negative amplification stage. Q1 is an output PMOSFET, Q2 is an output NMO.
It is an SFET and constitutes a power amplification stage having a CMOS structure.

【0007】またこのような準ソースホロワ電力増幅器
においては、入力無信号時の消費電力低減化のために、
図3に示すように、増幅段3、4に対して入力オフセッ
トを持たせる方法も提案されている。V1、V2が入力
オフセット電圧である(IEEEJ.SOLID STATE CIRCUITS,V
ol.SC-20,no.6,pp1200-1205, Dec.1982 )。
Further, in such a quasi-source follower power amplifier, in order to reduce power consumption when there is no signal input,
As shown in FIG. 3, a method of providing an input offset to the amplification stages 3 and 4 has also been proposed. V1 and V2 are input offset voltages (IEEE J.SOLID STATE CIRCUITS, V
ol.SC-20, no.6, pp1200-1205, Dec.1982).

【0008】[0008]

【発明が解決しようとする課題】ところで、電力増幅器
に求められる資質として、出力電圧範囲が広いこと、大
電流を駆動できること及び回路内部の消費電流が少ない
こと等が挙げられる。上記した準ソースホロワ増幅器
は、基本的に入力電圧が出力電圧に等しいボルテージホ
ロワ回路として動作するが、出力レベルを電源電圧範囲
でフルスイングさせようとすると、増幅段3、4の入力
範囲を全電源電圧範囲まで拡大し、いわゆるRAIL TO RA
IL 動作(フルスイング動作)を行なわせなければなら
ない。
By the way, the qualities required for the power amplifier include a wide output voltage range, the ability to drive a large current, and the low current consumption in the circuit. The above-mentioned quasi-source follower amplifier basically operates as a voltage follower circuit in which the input voltage is equal to the output voltage. However, when the output level is to be fully swung in the power supply voltage range, the input range of the amplification stages 3 and 4 is completely reduced. Expanded to the power supply voltage range, so-called RAIL TO RA
IL operation (full swing operation) must be performed.

【0009】しかし、ここに使用するエンハンスメント
形MOSFETは、閾値(Vth)以下の入力では動作
しないため、上記フルスイング動作を得るためには、回
路部品数が増加し、複雑化してしまうことが避けられな
い。
However, since the enhancement type MOSFET used here does not operate at an input below the threshold value (Vth), in order to obtain the above full swing operation, it is avoided that the number of circuit components increases and the circuit becomes complicated. I can't.

【0010】かといって、入力範囲に制限のある図2、
図3に示した従来の増幅器を用いると、その入力範囲外
の信号については、上記増幅器の出力電圧が所望の電圧
に安定せず、MOSFETQ1、Q2間に過大な貫通電
流が流れたり、得られる出力電圧が飽和し音声品質が劣
化する等の問題がある。
However, the input range is limited as shown in FIG.
When the conventional amplifier shown in FIG. 3 is used, for a signal outside the input range, the output voltage of the amplifier does not stabilize to a desired voltage, and an excessive shoot-through current flows between the MOSFETs Q1 and Q2, or is obtained. There is a problem that the output voltage is saturated and the voice quality is deteriorated.

【0011】本発明の目的は、出力電圧を電源レベルま
で安定的に駆動できるようにし、上記した問題を解決し
た電力増幅器を提供することである。
An object of the present invention is to provide a power amplifier capable of stably driving an output voltage up to a power supply level and solving the above problems.

【0012】[0012]

【課題を解決するための手段】本発明の目的は、電力出
力段がCMOS構成からなるプッシュプル型のMOSF
ET電力増幅器において、入力電圧が正電源電圧に近い
第1の所定値以上、又は負電源電圧に近い第2の所定値
以下になるとこれを検出する検出手段と、該検出手段の
検出動作により、駆動されている側の電力出力MOSF
ETと反対側の電力出力MOSFETをカットオフさせ
る補正手段とを設けたことを特徴とするMOSFET電
力増幅器によって達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a push-pull type MOSF whose power output stage has a CMOS structure.
In the ET power amplifier, when the input voltage becomes equal to or higher than a first predetermined value close to the positive power supply voltage or becomes equal to or lower than a second predetermined value close to the negative power supply voltage, a detection unit detects the input voltage and a detection operation of the detection unit. Power output MOSF on the driven side
And a correction means for cutting off the power output MOSFET on the side opposite to ET.

【0013】また、入力信号の正側信号を増幅する正側
増幅段と、該正側増幅段の出力信号を増幅する電力出力
PMOSFETと、入力信号の負側信号を増幅する負側
増幅段と、該負側増幅段の出力信号を増幅し上記電力出
力PMOSFETと相補形に接続される電力出力NMO
SFETとを具備し、入力電圧が正電源電圧に近い第1
の所定値以上になると上記負側増幅段内のMOSFET
がフローテンィグ状態になり、負電源電圧に近い第2の
所定値以下になると上記正側増幅段内のMOSFETが
フローティング状態になるプッシュプル型のMOSFE
T電力増幅器において、上記入力電圧が上記第1の所定
値以上になるとこれを検出する第1の検出手段と、該第
1の検出手段の検出出力によって上記NMOSFETを
カットオフさせる第1の補正手段と、上記入力電圧が上
記第2の所定値以下になるとこれを検出する第2の検出
手段と、該第2の検出手段の検出出力によって上記PM
OSFETをカットオフさせる第2の補正手段とを設け
たことを特徴とするMOSFET電力増幅器によっても
達成される。
A positive amplification stage for amplifying the positive side signal of the input signal, a power output PMOSFET for amplifying the output signal of the positive side amplification stage, and a negative side amplification stage for amplifying the negative side signal of the input signal. , A power output NMO that amplifies the output signal of the negative amplification stage and is connected in a complementary form to the power output PMOSFET.
A first SFET with an input voltage close to the positive power supply voltage
MOSFET above the negative side amplification stage
Becomes a floating state, and when the voltage becomes a second predetermined value or less close to the negative power source voltage, the MOSFET in the positive side amplification stage becomes a floating state.
In the T power amplifier, first detecting means for detecting when the input voltage becomes equal to or higher than the first predetermined value, and first correcting means for cutting off the NMOSFET by a detection output of the first detecting means. And the second detection means for detecting when the input voltage becomes equal to or lower than the second predetermined value, and the PM output by the detection output of the second detection means.
It is also achieved by a MOSFET power amplifier characterized in that a second correction means for cutting off the OSFET is provided.

【0014】[0014]

【実施例】以下、本発明の実施例について説明する。図
1はその一実施例の電力増幅器の回路図である。本実施
例では、正側増幅段3を、差動接続のNMOSFETQ
3、Q4、その能動負荷としてのカレントミラー接続の
PMOSFETQ5、Q6、差動回路の動作電流を決め
る電流源用のNMOSFETQ7、その差動回路から出
力を取り出すPMOSFETQ8、電流源用のNMOS
FETQ9から構成している。この内、MOSFETQ
3〜Q7はMOSFET差動増幅器を構成し、MOSF
ETQ8、Q9は増幅出力部を構成する。Vs1は定電
圧である。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a circuit diagram of a power amplifier of the embodiment. In the present embodiment, the positive side amplification stage 3 is connected to a differentially connected NMOSFET Q.
3, Q4, PMOSFETs Q5 and Q6 in a current mirror connection as an active load thereof, NMOSFET Q7 for a current source that determines the operating current of the differential circuit, PMOSFET Q8 for extracting an output from the differential circuit, and NMOS for a current source
It is composed of FET Q9. Of these, MOSFETQ
3 to Q7 constitute a MOSFET differential amplifier, and MOSF
ETQ8 and ETQ form an amplification output section. Vs1 is a constant voltage.

【0015】また、負側増幅段4は、差動接続のPMO
SFETQ10、Q11、その能動負荷としてのカレン
トミラー接続のNMOSFETQ12、Q13、差動回
路の動作電流を決める電流源用のPMOSFETQ1
4、その差動回路から出力を取り出すNMOSFETQ
15、電流源用のPMOSFETQ16から構成してい
る。この内MOSFETQ10〜Q14はMOSFET
差動増幅器を構成し、MOSFETQ15、Q16は増
幅出力部を構成する。Vs2は定電圧である。
The negative amplification stage 4 is a differentially connected PMO.
SFETs Q10 and Q11, NMOSFETs Q12 and Q13 in current mirror connection as active loads thereof, and PMOSFET Q1 for current source that determines the operating current of the differential circuit.
4. NMOSFET Q that takes output from the differential circuit
15, PMOSFET Q16 for current source. Of these, MOSFETs Q10 to Q14 are MOSFETs
A differential amplifier is formed, and the MOSFETs Q15 and Q16 form an amplification output section. Vs2 is a constant voltage.

【0016】このような基本的な回路において、本実施
例では、正側増幅段3のレファレンス側NMOSFET
Q3の出力を受けるPMOSFETQ17とそこに接続
される電流源としてのNMOSFETQ18とにより正
側検出回路5を構成し、そこで得られる検出信号を、電
力出力PMOSFETQ1のゲートと正電源電圧Vdd
との間に接続したPMOSFETQ19からなる正側補
正回路6に印加している。
In such a basic circuit, in this embodiment, the reference side NMOSFET of the positive side amplification stage 3 is used.
The PMOSFET Q17 that receives the output of Q3 and the NMOSFET Q18 as a current source that is connected to the PMOSFET Q17 constitute the positive-side detection circuit 5, and the detection signal obtained there is supplied to the gate of the power output PMOSFET Q1 and the positive power supply voltage Vdd.
It is applied to the positive side correction circuit 6 composed of a PMOSFET Q19 connected between and.

【0017】また、負側増幅段4においても、レファレ
ンス側PMOSFETQ10の出力を受けるNMOSF
ETQ20とそこに接続される電流源としてのPMOS
FETQ21とにより負側検出回路7を構成し、そこで
得られる出力信号を電力出力NMOSFETQ2のゲー
トと接地との間に接続したNMOSFETQ22からな
る負側補正回路8に印加している。
Also in the negative side amplification stage 4, the NMOSF which receives the output of the reference side PMOSFET Q10.
ETQ20 and PMOS as a current source connected to it
The FET Q21 constitutes the negative side detection circuit 7, and the output signal obtained there is applied to the negative side correction circuit 8 composed of the NMOSFET Q22 connected between the gate of the power output NMOSFET Q2 and the ground.

【0018】さて、この回路では、正側増幅段3と電力
出力PMOSFETQ1がボルテージホロワとして動作
し、また負側増幅段4と電力出力NMOSFETQ2が
ボルテージホロワとして動作するので、出力端子2に現
れる電圧が入力端子1の電圧に等しくなるように動作す
る。
In this circuit, the positive amplification stage 3 and the power output PMOSFET Q1 operate as a voltage follower, and the negative amplification stage 4 and the power output NMOSFET Q2 operate as a voltage follower, so that they appear at the output terminal 2. It operates so that the voltage becomes equal to the voltage of the input terminal 1.

【0019】ところが、この入力端子1の電圧が電源電
圧Vdd近くにまで高くなると、負側増幅段4のPMO
SFETQ10、Q11がカットオフするので、そこの
NMOSFETQ12、Q13もカットオフし、NMO
SFETQ15のゲートがフローティング状態(又は接
地状態)になる。
However, when the voltage of the input terminal 1 rises to near the power supply voltage Vdd, the PMO of the negative side amplification stage 4 is increased.
Since the SFETs Q10 and Q11 are cut off, the NMOSFETs Q12 and Q13 there are also cut off and the NMO
The gate of the SFET Q15 goes into a floating state (or ground state).

【0020】よって、このままでは、電力出力NMOS
FETQ2が不安定になって動作(オン)することも有
り得、この場合にはオンしている他方の電力出力PMO
SFETQ1との間に貫通電流が流れて無駄な電流が消
費されるばかりか、出力電圧や電流の低下が起こる事態
が発生する。
Therefore, in this state, the power output NMOS
It is possible that the FET Q2 becomes unstable and operates (turns on). In this case, the other power output PMO that is turned on.
Not only the through current flows between the SFETQ1 and the SFETQ1 and unnecessary current is consumed, but also the output voltage and the current decrease.

【0021】このような場合に、本実施例では負側検出
回路7と負側補正回路8が有効に機能する。上記したよ
うに入力端子1の電圧が電源電圧Vdd近くにまで上昇
しPMOSFETQ10がカットオフしたとき、NMO
SFETQ12、Q13と共に負側検出回路7のNMO
SFETQ20もカットオフするので、PMOSFET
Q21のドレイン電圧(Vddに近い電圧)が負側補正
回路8のNMOSFETQ21のゲート電圧に印加し、
そのNMOSFETQ22がオンする。この結果、電力
出力NMOSFETQ2のゲートが接地されるので、そ
のNMOSFETQ2は完全にカットオフし、そこに貫
通電流が流れることはない。なお、以上の動作は入力端
子1の電圧が正側のある電圧範囲の場合に限られ、負側
の電圧が入力された場合にはNMOSFET22はソー
ス・ゲートがほぼ同一電位となりオンすることはないの
で、負側の出力用MOSFETQ2の動作を妨げること
はない。
In such a case, the negative side detection circuit 7 and the negative side correction circuit 8 function effectively in this embodiment. As described above, when the voltage of the input terminal 1 rises to near the power supply voltage Vdd and the PMOSFET Q10 cuts off, the NMO
NMO of the negative side detection circuit 7 together with SFETs Q12 and Q13
SFET Q20 also cuts off, so PMOSFET
The drain voltage of Q21 (voltage close to Vdd) is applied to the gate voltage of the NMOSFET Q21 of the negative side correction circuit 8,
The NMOSFET Q22 turns on. As a result, since the gate of the power output NMOSFET Q2 is grounded, the NMOSFET Q2 is completely cut off, and a through current does not flow there. Note that the above operation is limited to the case where the voltage of the input terminal 1 is within a certain voltage range on the positive side, and when the voltage on the negative side is input, the NMOSFET 22 does not turn on because the source and gate have substantially the same potential. Therefore, the operation of the output MOSFET Q2 on the negative side is not hindered.

【0022】一方、入力端子1に入力する電圧が接地電
圧近くにまで低下したときは、今度は正側増幅段3のN
MOSFETQ3、Q4がカットオフし、カレントミラ
ーPMOSFETQ5、Q6もカットオフして、PMO
SFETQ8のゲートがフローテンィグ状態(又は電源
電位)となるが、このときは正側検出回路5のPMOS
FETQ17もカットオフになり、正側補正回路6のP
MOSFETQ19がオンして、電力出力PMOSFE
TQ1をカットオフさせ、貫通電流の発生を防止する。
なお、以上の動作は入力端子1の電圧が接地電位に近い
電圧範囲の場合に限られ、正側の電圧が入力された場合
にはPMOSFET19はソース・ゲートがほぼ同一電
位となりオンすることはないので、正側の出力用MOS
FETQ1の動作を妨げることはない。
On the other hand, when the voltage input to the input terminal 1 drops to near the ground voltage, this time the N of the positive amplification stage 3 is increased.
The MOSFETs Q3 and Q4 are cut off, the current mirror PMOSFETs Q5 and Q6 are also cut off, and the PMO
The gate of the SFET Q8 is in a floating state (or power supply potential). At this time, the PMOS of the positive side detection circuit 5 is
The FET Q17 is also cut off, and P of the positive side correction circuit 6
MOSFET Q19 turns on, power output PMOSFE
Cut off TQ1 to prevent the generation of through current.
Note that the above operation is limited to the case where the voltage of the input terminal 1 is in the voltage range close to the ground potential, and when the positive side voltage is input, the PMOSFET 19 has substantially the same potential as the source and gate and does not turn on. Therefore, the positive output MOS
It does not interfere with the operation of the FET Q1.

【0023】以上から、入力端子1に入力する電圧が電
源電圧近くにまで高くなり、若しくは接地電圧近くにま
で低下したときでも、電力出力MOSFETQ1、Q2
間を流れる貫通電流が発生することはなく、出力端子2
の電圧をフルスイングさせることが可能となる。
From the above, even when the voltage input to the input terminal 1 becomes high near the power supply voltage or drops near the ground voltage, the power output MOSFETs Q1, Q2
No through current flowing between the output terminals 2
It is possible to make the voltage of the full swing.

【0024】このように、本実施例では正側増幅段3の
差動回路を流れる電流が減少乃至0になると、当該正側
の電力出力PMOSFETQ1をカットオフさせ、負側
増幅段4の差動回路を流れる電流が減少乃至0になると
当該負極側の電力出力NMOSFETQ2をカットオフ
させるものであるが、入力電圧の検出は増幅段3、4内
の差動回路内の電圧を検出することに限られるものでは
なく、入力端子1に印加した電圧をそこで直接検出して
も良く、また電力出力MOSFETQ1、Q2のカット
オフ制御は、そこに制御用トランジスタを直列接続して
これを入力電圧の振幅が大きく又は小さくなったときに
オフさせることでも、貫通電流の発生を防止できる。
As described above, in this embodiment, when the current flowing through the differential circuit of the positive amplification stage 3 decreases or becomes zero, the positive power output PMOSFET Q1 is cut off, and the differential of the negative amplification stage 4 is changed. When the current flowing through the circuit decreases or becomes zero, the power output NMOSFET Q2 on the negative electrode side is cut off, but the detection of the input voltage is limited to the detection of the voltage in the differential circuit in the amplification stages 3 and 4. Alternatively, the voltage applied to the input terminal 1 may be directly detected there, and the cut-off control of the power output MOSFETs Q1 and Q2 is performed by connecting a control transistor in series to the cutoff control and the amplitude of the input voltage The generation of the shoot-through current can also be prevented by turning it off when it becomes large or small.

【0025】[0025]

【発明の効果】以上から本発明によれば、駆動能力向上
のために出力電圧をフルスイングさせようとする場合
に、貫通電流が発生することが確実に防止されるので、
安定的に完全なフルスイングを実現できるばかりか、無
効な消費電流を防止でき、更に特別部品点数が増加する
こともないという利点がある。
As described above, according to the present invention, when a full swing of the output voltage is attempted in order to improve the driving capability, it is possible to reliably prevent the generation of a through current.
Not only can a stable full swing be realized, but invalid current consumption can be prevented, and the number of special parts does not increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の電力増幅器の回路図であ
る。
FIG. 1 is a circuit diagram of a power amplifier according to an embodiment of the present invention.

【図2】 従来の準ソースホロワ電力増幅器のブロック
図である。
FIG. 2 is a block diagram of a conventional quasi-source follower power amplifier.

【図3】 従来の別の準ソースホロワ電力増幅器のブロ
ック図である。
FIG. 3 is a block diagram of another conventional quasi-source follower power amplifier.

【符号の説明】[Explanation of symbols]

1:入力端子、2:出力端子、3:正側増幅段、4:負
側増幅段、5:正側検出回路、6:正側補正回路、7:
負側検出回路、8:負側補正回路。
1: Input terminal, 2: Output terminal, 3: Positive amplification stage, 4: Negative amplification stage, 5: Positive detection circuit, 6: Positive correction circuit, 7:
Negative side detection circuit, 8: Negative side correction circuit.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03F 3/345 B 8124−5J H03K 17/16 L 9184−5J 17/687 Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical indication location H03F 3/345 B 8124-5J H03K 17/16 L 9184-5J 17/687

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電力出力段がCMOS構成からなるプッ
シュプル型のMOSFET電力増幅器において、入力電
圧が正電源電圧に近い第1の所定値以上、又は負電源電
圧に近い第2の所定値以下になるとこれを検出する検出
手段と、該検出手段の検出動作により、駆動されている
側の電力出力MOSFETと反対側の電力出力MOSF
ETをカットオフさせる補正手段とを設けたことを特徴
とするMOSFET電力増幅器。
1. A push-pull MOSFET power amplifier having a CMOS power output stage, wherein an input voltage is equal to or higher than a first predetermined value close to a positive power supply voltage or lower than a second predetermined value close to a negative power supply voltage. In this case, the detection means for detecting this and the power output MOSF on the side opposite to the power output MOSFET on the driven side by the detection operation of the detection means.
A MOSFET power amplifier, comprising: a correction means for cutting off ET.
【請求項2】 入力信号の正側信号を増幅する正側増幅
段と、該正側増幅段の出力信号を増幅する電力出力PM
OSFETと、入力信号の負側信号を増幅する負側増幅
段と、該負側増幅段の出力信号を増幅し上記電力出力P
MOSFETと相補形に接続される電力出力NMOSF
ETとを具備し、 入力電圧が正電源電圧に近い第1の所定値以上になると
上記負側増幅段内のMOSFETがフローテンィグ状態
になり、負電源電圧に近い第2の所定値以下になると上
記正側増幅段内のMOSFETがフローティング状態に
なるプッシュプル型のMOSFET電力増幅器におい
て、 上記入力電圧が上記第1の所定値以上になるとこれを検
出する第1の検出手段と、該第1の検出手段の検出出力
によって上記NMOSFETをカットオフさせる第1の
補正手段と、上記入力電圧が上記第2の所定値以下にな
るとこれを検出する第2の検出手段と、該第2の検出手
段の検出出力によって上記PMOSFETをカットオフ
させる第2の補正手段とを設けたことを特徴とするMO
SFET電力増幅器。
2. A positive amplification stage for amplifying a positive signal of an input signal, and a power output PM for amplifying an output signal of the positive amplification stage.
The OSFET, the negative side amplification stage for amplifying the negative side signal of the input signal, and the power output P for amplifying the output signal of the negative side amplification stage.
Power output NMOSF connected complementary to MOSFET
ET, and when the input voltage is equal to or higher than a first predetermined value close to the positive power supply voltage, the MOSFET in the negative amplification stage is in a floating state, and is equal to or lower than a second predetermined value close to the negative power supply voltage. In a push-pull type MOSFET power amplifier in which a MOSFET in a positive side amplification stage is in a floating state, a first detecting means for detecting the input voltage when the input voltage is equal to or higher than the first predetermined value, and the first detection means. First correction means for cutting off the NMOSFET by the detection output of the means, second detection means for detecting the input voltage when the input voltage becomes equal to or lower than the second predetermined value, and detection by the second detection means. A second correction means for cutting off the PMOSFET according to the output is provided.
SFET power amplifier.
JP30968493A 1993-11-17 1993-11-17 MOSFET power amplifier Expired - Fee Related JP3178494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30968493A JP3178494B2 (en) 1993-11-17 1993-11-17 MOSFET power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30968493A JP3178494B2 (en) 1993-11-17 1993-11-17 MOSFET power amplifier

Publications (2)

Publication Number Publication Date
JPH07142939A true JPH07142939A (en) 1995-06-02
JP3178494B2 JP3178494B2 (en) 2001-06-18

Family

ID=17996039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30968493A Expired - Fee Related JP3178494B2 (en) 1993-11-17 1993-11-17 MOSFET power amplifier

Country Status (1)

Country Link
JP (1) JP3178494B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013152A (en) * 1998-01-13 2000-01-14 Xerox Corp Analog video buffer
JP2003092873A (en) * 2001-09-19 2003-03-28 Fuji Electric Co Ltd Switching power supply circuit and its semiconductor integrated circuit
JP2006050296A (en) * 2004-08-05 2006-02-16 Nec Corp Differential amplifier, and data driver of display device using the same
WO2016152079A1 (en) * 2015-03-20 2016-09-29 Seiko Epson Corporation Liquid ejecting device, driver circuit, and head unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013152A (en) * 1998-01-13 2000-01-14 Xerox Corp Analog video buffer
JP2003092873A (en) * 2001-09-19 2003-03-28 Fuji Electric Co Ltd Switching power supply circuit and its semiconductor integrated circuit
JP2006050296A (en) * 2004-08-05 2006-02-16 Nec Corp Differential amplifier, and data driver of display device using the same
WO2016152079A1 (en) * 2015-03-20 2016-09-29 Seiko Epson Corporation Liquid ejecting device, driver circuit, and head unit
US10245827B2 (en) 2015-03-20 2019-04-02 Seiko Epson Corporation Liquid ejecting device, driver circuit, and head unit

Also Published As

Publication number Publication date
JP3178494B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
US7342450B2 (en) Slew rate enhancement circuitry for folded cascode amplifier
US6608526B1 (en) CMOS assisted output stage
Giustolisi et al. 1.2-V CMOS op-amp with a dynamically biased output stage
JP3347359B2 (en) Output buffer amplifier
US8654991B2 (en) Audio signal amplifier circuit
US8665023B2 (en) Class-AB/B amplifier with quiescent control circuit
JP3338280B2 (en) Amplifier and semiconductor device
US6359512B1 (en) Slew rate boost circuitry and method
JPH07193436A (en) Operational amplifier of low distortion
US6741130B2 (en) High-speed output transconductance amplifier capable of operating at different voltage levels
US4336503A (en) Driver circuit having reduced cross-over distortion
JP2002198752A (en) Class ab power amplifier employing ultra-low voltage cmos
JPH07142940A (en) Mosfet power amplifier
US5825228A (en) Low quiescent power, high output power rail-to rail amplifier output stages and methods for using same
US4516082A (en) Amplifier circuit for minimizing output voltage power-up transients
US5424678A (en) Muting of computer sound system during power cycling
JP3178494B2 (en) MOSFET power amplifier
CN116232242A (en) Bias circuit of class AB output stage, class AB amplifier, chip and electronic equipment
US5519357A (en) Biasing arrangement for a quasi-complementary output stage
US7193448B2 (en) Wide dynamic range operational amplifier
JPH0318119A (en) Complementary type metallic-oxide semiconductor translator
US6084477A (en) Class AB output stage for an audio power amplifier
JP3341945B2 (en) Operational amplifier
US20050036635A1 (en) Audio signal output device
US7193465B2 (en) Variable gain amplifier capable of functioning at low power supply voltage

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010306

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees