JPH07141914A - Silver paste and ceramic electronic parts - Google Patents

Silver paste and ceramic electronic parts

Info

Publication number
JPH07141914A
JPH07141914A JP29196993A JP29196993A JPH07141914A JP H07141914 A JPH07141914 A JP H07141914A JP 29196993 A JP29196993 A JP 29196993A JP 29196993 A JP29196993 A JP 29196993A JP H07141914 A JPH07141914 A JP H07141914A
Authority
JP
Japan
Prior art keywords
silver
layer
conductive component
solderability
glass frit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29196993A
Other languages
Japanese (ja)
Inventor
Shinichiro Kuroiwa
慎一郎 黒岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29196993A priority Critical patent/JPH07141914A/en
Publication of JPH07141914A publication Critical patent/JPH07141914A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve solderability after baking silver paste to a ceramic base material such as a dielectric and provide ceramic electronic parts with a silver baked electrode excellent in solderability. CONSTITUTION:A double-layer silver electrode is formed by applying and then baking silver powder of average size 3.0+ or -0.6mum and fine silver powder of 0.7+ or -0.2mum as the conductive components of second-layer silver paste, not containing glass frit, to a ceramic base material. The fine silver powder is account for 5-50wt.% of the conductive components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銀ペースト及びセラミ
ック電子部品に関するものである。
FIELD OF THE INVENTION The present invention relates to silver paste and ceramic electronic components.

【0002】[0002]

【従来の技術】セラミック基体上に塗布した後、焼き付
けて形成する厚膜銀電極は、主として導電成分(平均粒
径2〜5μm程度の銀粉末)、接着剤(ガラスフリッ
ト)、有機ビヒクル(樹脂及び溶剤)より構成してい
る。
2. Description of the Related Art Thick film silver electrodes formed by baking on a ceramic substrate are mainly composed of a conductive component (silver powder having an average particle size of 2 to 5 μm), an adhesive (glass frit), an organic vehicle (resin). And solvent).

【0003】一般に、厚膜銀電極のはんだ付け性は、電
極表面に分布するガラスフリット量が多いと悪化する
が、その他に、ガラスフリット種、銀粉末(導電成分)
種、電極焼き付け条件、セラミック種によっても大きく
変化する。
Generally, the solderability of a thick-film silver electrode is deteriorated when the amount of glass frit distributed on the electrode surface is large, but in addition, the glass frit species, silver powder (conductive component) are also used.
It also varies greatly depending on the type, electrode baking conditions, and ceramic type.

【0004】そして、特にはんだ付け性が悪い場合に
は、前述のようなガラスフリットを含む電極(以下、第
一層銀とする)を焼成後、更にその上にガラスフリット
を含まない、あるいはその含有量がより少ない電極(以
下、第二層銀とする)ペーストを塗布、焼成して二層構
造の電極を形成することで、はんだ付け性を確保しよう
としている。
When the solderability is particularly poor, the electrode containing glass frit as described above (hereinafter referred to as the first layer of silver) is baked and then no glass frit is contained on the electrode. An attempt is made to ensure solderability by applying an electrode paste having a smaller content (hereinafter, referred to as second layer silver) paste and firing it to form an electrode having a two-layer structure.

【0005】[0005]

【発明が解決しようとする課題】しかし、電極を二層構
造としても、なお十分なはんだ付け性が得られないこと
もあり、このような場合には、はんだ付け前に電極表面
を研磨するなどして対処している。
However, even if the electrode has a two-layer structure, it may not be possible to obtain sufficient solderability. In such a case, the electrode surface should be polished before soldering. And deal with it.

【0006】そこで本発明の目的は、誘電体などのセラ
ミック基体に焼き付ける銀ペーストに関し、焼き付け後
のはんだ付け性(はんだ濡れ性)を改善すること、ま
た、はんだ付け性(はんだ濡れ性)のよい銀焼き付け電
極を有するセラミック電子部品を提供することにある。
Therefore, an object of the present invention is to improve the solderability (solder wettability) after baking and to improve the solderability (solder wettability) of a silver paste to be baked on a ceramic substrate such as a dielectric. It is to provide a ceramic electronic component having a silver-baked electrode.

【0007】[0007]

【課題を解決するための手段】本発明者は、銀粉末(導
電成分)の種類と重量比を変化させると、焼結が進む際
の厚膜の体積収縮挙動が変化すること、さらにこの焼結
収縮挙動と電極のはんだ付け性との間には強い相関があ
ることを見いだした。かかる知見にもとずき、上記目的
を達成するものである。
The inventors of the present invention have found that when the type and weight ratio of silver powder (conductive component) is changed, the volumetric shrinkage behavior of the thick film during sintering progresses, and further, this burning It was found that there is a strong correlation between the shrinkage behavior and the solderability of the electrodes. Based on such knowledge, the above object is achieved.

【0008】すなわち本発明は、請求項1においては、
ガラスフリットを含まない銀ペーストにおいて、導電成
分を平均粒径3.0±0.6μmの銀粉末、及び0.7
±0.2μmの微粉銀で構成し、前記微粉銀の前記導電
成分中に占める重量比を5〜50wt%とすることを特
徴とするものである。
That is, according to the present invention, in claim 1,
In the silver paste containing no glass frit, the conductive component was silver powder having an average particle size of 3.0 ± 0.6 μm, and 0.7.
It is characterized in that it is made of fine silver of ± 0.2 μm, and the weight ratio of the fine silver to the conductive component is 5 to 50 wt%.

【0009】また、請求項2においては、セラミック基
体と第一層銀及び第二層銀電極とからなるセラミック電
子部品において、前記第二層銀はガラスフリットを含ま
ず、導電成分を平均粒径3.0±0.6μmの銀粉末、
及び0.7±0.2μmの微粉銀で構成し、前記微粉銀
の前記導電成分中に占める重量比を5〜50wt%とす
ることを特徴とするものである。
According to a second aspect of the present invention, in a ceramic electronic component comprising a ceramic substrate and first-layer silver and second-layer silver electrodes, the second-layer silver does not contain glass frit and the conductive component has an average particle size. 3.0 ± 0.6 μm silver powder,
And 0.7 ± 0.2 μm fine silver powder, and the weight ratio of the fine silver powder in the conductive component is 5 to 50 wt%.

【0010】[0010]

【作用】本発明の請求項1によれば、ガラスフリットを
含まない銀ペーストにおいて、導電成分を平均粒径3.
0±0.6μmの銀粉末、及び0.7±0.2μmの微
粉銀で構成し、前記微粉銀の前記導電成分中に占める重
量比を5〜50wt%とすることにより、第二層銀電極
として焼き付けたときに、第一層銀中のガラスフリット
が軟化して、激しく流動を開始する温度に達するまでの
低温域で、十分に焼結が進む。そして、ポア(空孔)の
少ない緻密な膜を形成し、焼成のピーク温度付近では焼
結が収束して,優れたはんだ付け性を示すことになる。
According to the first aspect of the present invention, in the silver paste containing no glass frit, the conductive component has an average particle diameter of 3.
The second layer silver is composed of 0 ± 0.6 μm silver powder and 0.7 ± 0.2 μm fine silver powder, and the weight ratio of the fine silver powder in the conductive component is 5 to 50 wt%. When baked as an electrode, the glass frit in the first layer silver is softened, and the sintering proceeds sufficiently in the low temperature region until the temperature at which the fluidization starts violently is reached. Then, a dense film with few pores (pores) is formed, and the sintering converges near the firing peak temperature, and excellent solderability is exhibited.

【0011】また、請求項2によれば、セラミック基体
と第一層銀及び第二層銀電極とからなるセラミック電子
部品において、前記第二層銀はガラスフリットを含ま
ず、導電成分を平均粒径3.0±0.6μmの銀粉末、
及び0.7±0.2μmの微粉銀で構成し、前記微粉銀
の前記導電成分中に占める重量比を5〜50wt%とす
ることにより、焼き付け後、ポア(空孔)の少ない緻密
な膜が形成され、電子部品としてのはんだ付け性がよく
なる。
According to a second aspect of the present invention, in a ceramic electronic component comprising a ceramic substrate and first-layer silver and second-layer silver electrodes, the second-layer silver does not contain glass frit and the conductive component has an average grain size. Silver powder with a diameter of 3.0 ± 0.6 μm,
And 0.7 ± 0.2 μm of finely divided silver, and by setting the weight ratio of the finely divided silver in the conductive component to 5 to 50 wt%, a dense film with few pores (pores) after baking. Are formed, and the solderability as an electronic component is improved.

【0012】[0012]

【実施例】以下、本発明の実施例及び比較例を、表及び
図面を参照して説明する。まず、使用した導電成分を表
1に示す。
EXAMPLES Examples and comparative examples of the present invention will be described below with reference to the tables and the drawings. First, the conductive components used are shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】(注1)平均粒径は倍率1000倍で撮影
した銀粉末の電子顕微鏡写真上において、無作為に10
0mm(実寸では100μm)離れた2点を選び、この
2点を結ぶ線分上にならんでいる粒子サイズと個数を測
定後、次式より求めた。 平均粒径={Σ(各粒子サイズ)}/(線分上のトータ
ル粒子数) 次に、セラミック種、固形分組成(第一層銀)、有機ビ
ヒクル成分(第一層銀、第二層銀共通)、及び電極焼き
付け条件(第一層銀、第二層銀共通)を表2に示す。
(Note 1) The average particle size is 10 at random on an electron micrograph of silver powder taken at a magnification of 1000 times.
Two points separated by 0 mm (100 μm in actual size) were selected, and the particle size and the number of particles lined up on the line segment connecting these two points were measured and then calculated from the following formula. Average particle size = {Σ (each particle size)} / (total number of particles on line segment) Next, ceramic type, solid content composition (first layer silver), organic vehicle component (first layer silver, second layer) Table 2 shows the common silver conditions) and the electrode baking conditions (common to the first layer silver and the second layer silver).

【0015】[0015]

【表2】 [Table 2]

【0016】上記の条件において、第二層銀組成(主と
して導電成分種)を変更した際のはんだ付け性の評価結
果を表3に示す。
Table 3 shows the solderability evaluation results when the second layer silver composition (mainly the conductive component species) was changed under the above conditions.

【0017】[0017]

【表3】 [Table 3]

【0018】(注2)( )内の数値は、導電成分中に
占める銀粉末Bの割合(wt%)。 (注3)オープンポア数は、第二層銀焼き付け後の電極
表面を撮影した1000倍の電子顕微鏡写真(視野:1
20×80μm)上で、明らかに空孔(銀粒子がない部
分でガラスが詰まっているものを含む)と認められる箇
所を数えた。 (注4)はんだ付け性は、試料の電極表面積に対する、
はんだ膜の付着面積の割合を示したもので、目視により
確認した。そして、前記割合が90%以上を良好とし、
90%未満を不良とした。
(Note 2) The value in the parentheses is the ratio (wt%) of the silver powder B in the conductive component. (Note 3) The open pore number is 1000 times electron micrograph (field of view: 1
20 × 80 μm), the number of points clearly recognizable as voids (including the part where the silver particles were absent and the glass was clogged) was counted. (Note 4) Solderability depends on the electrode surface area of the sample,
It shows the ratio of the adhesion area of the solder film, which was visually confirmed. And, if the ratio is 90% or more, it is regarded as good,
Less than 90% was regarded as defective.

【0019】次に、第二層銀電極の熱収縮曲線を図1に
示す。また、試料作成から熱収縮曲線測定までの条件を
次に示す。 (1)ドクターブレードを用いて、各ペーストをガラス
板上に薄く延ばす。 (2)熱風循環式乾燥機にて、150℃で30分間乾燥
する。 (3)ガラス板から剥がし取った乾燥塗膜について、2
00メッシュの篩通しを行う。 (4)(3)で得られた粉末を直径4mmφ、高さ約3
mmの円柱状にプレス成形する。(10kgf,2分間
加圧) (5)成形後の円柱試料について、20℃/分の昇温時
の体積変化を測定する。 これらの測定条件にもとずく
はんだ付け性の評価結果は以下のようであった。
Next, the heat shrinkage curve of the second layer silver electrode is shown in FIG. The conditions from sample preparation to heat shrinkage curve measurement are shown below. (1) Using a doctor blade, each paste is thinly spread on a glass plate. (2) Dry with a hot air circulation dryer at 150 ° C. for 30 minutes. (3) Regarding the dry coating film peeled off from the glass plate, 2
Sieve through a 00 mesh. (4) The powder obtained in (3) has a diameter of 4 mmφ and a height of about 3
It is press-formed into a cylindrical column having a size of mm. (10 kgf, pressurization for 2 minutes) (5) With respect to the cylindrical sample after molding, the change in volume at a temperature rise of 20 ° C./min is measured. The evaluation results of solderability based on these measurement conditions were as follows.

【0020】(実施例1)表3及び図1に示すように、
銀粉末Aに銀粉末Bを5wt%(導電成分中の重量比)
添加すると、ガラスフリットの軟化点付近までの低温域
において焼結が十分に進み、ポアの少ない均一な膜を形
成した。逆に、800℃付近では収縮は収束する傾向に
あった。このため、第二層銀表面へのガラスフリットの
移動量が少なく、90%の良好なはんだ付け性が確保さ
れた。
(Example 1) As shown in Table 3 and FIG.
5 wt% of silver powder B to silver powder A (weight ratio in the conductive component)
When added, sintering proceeded sufficiently in the low temperature region up to the softening point of the glass frit, and a uniform film with few pores was formed. On the contrary, the shrinkage tended to converge near 800 ° C. Therefore, the amount of glass frit transferred to the surface of the second layer silver was small, and good solderability of 90% was secured.

【0021】(実施例2)表3及び図1に示すように、
銀粉末Bの比率を5wt%から33wt%(導電成分中
の重量比)まで増やすと、ガラスフリットの軟化点付近
までの低温域において焼結が十分に進み、ポアの少ない
均一な膜を形成した。逆に、800℃付近で収縮は収束
する傾向が強まり、はんだ付け性も良好で95%とさら
に向上した。
Example 2 As shown in Table 3 and FIG.
When the ratio of the silver powder B was increased from 5 wt% to 33 wt% (weight ratio in the conductive component), the sintering proceeded sufficiently in the low temperature region near the softening point of the glass frit, and a uniform film with few pores was formed. . On the contrary, the shrinkage tends to converge near 800 ° C., and the solderability is good, which is further improved to 95%.

【0022】(実施例3)表3及び図1に示すように、
銀粉末Bの比率を33wt%から50wt%(導電成分
中の重量比)まで増やすと、ガラスフリットの軟化点付
近までの低温域において焼結が十分に進み、ポアの少な
い均一な膜を形成した。逆に、800℃付近では収縮は
収束する傾向がさらに強くなるが,その変化は前記実施
例2より小さく、はんだ付け性は95%で良好である
が、実施例2とほとんど変わらなかった。
Example 3 As shown in Table 3 and FIG.
When the ratio of the silver powder B was increased from 33 wt% to 50 wt% (weight ratio in the conductive component), sintering proceeded sufficiently in the low temperature region up to the softening point of the glass frit, and a uniform film with few pores was formed. . On the contrary, the shrinkage tends to converge near 800 ° C., but the change is smaller than in Example 2 and the solderability is good at 95%, but it is almost the same as in Example 2.

【0023】(比較例1)表3及び図1に示すように、
銀粉末Aのみでは、ガラスフリットの軟化点付近までの
焼結収縮が十分に進まず、ポアを多く残したまま、さら
に昇温されている。焼成ピーク温度である800℃にお
いても、引き続き収縮が起こっているため、第一層銀中
のガラスフリットがポアを通って、絞り出されるように
多量に移動して第二層銀表面を被覆し、はんだ付け性が
損なわれて80%と不良であった。
(Comparative Example 1) As shown in Table 3 and FIG.
With only the silver powder A, the sintering shrinkage to the vicinity of the softening point of the glass frit did not proceed sufficiently, and the temperature was further raised while leaving many pores. Even at the firing peak temperature of 800 ° C., since shrinkage still occurs, the glass frit in the first layer silver moves through the pores and moves in a large amount so as to squeeze out to cover the surface of the second layer silver. The solderability was impaired, resulting in a defect of 80%.

【0024】(比較例2)表3及び図1に示すように、
導電成分中の銀粉末Bの比率を60wt%(導電成分中
の重量比)まで増やしても、実施例3の場合と同様、は
んだ付け性は95%と良好で、大きな変化はなかった。
しかし、粒径が小さくて比表面積が大きい、銀粉末B量
を増やしたことにより、ペーストの粘度が高くなり、所
定の塗布膜厚・形状が得られなくなった。
Comparative Example 2 As shown in Table 3 and FIG.
Even when the ratio of the silver powder B in the conductive component was increased to 60 wt% (weight ratio in the conductive component), the solderability was as good as 95% as in Example 3, and there was no significant change.
However, by increasing the amount of silver powder B having a small particle size and a large specific surface area, the viscosity of the paste was increased, and it became impossible to obtain a predetermined coating film thickness and shape.

【0025】(比較例3)表3及び図1に示すように、
実施例1に示した微粉銀Bと同様の効果を期待して、銀
粉末Aに有機銀を添加した。しかし逆に、低温域での焼
結収縮を阻害し、800℃においても収縮傾向は収束す
る様子が見られない結果になり、はんだ付け性も65%
の不良となって、銀粉末Aのみの場合(比較例1)より
悪化した。これは有機ビヒクルの一部を有機銀に置き換
えたため、両者の熱分解挙動の差が、特に低温域での厚
膜の焼結収縮を阻害する方向に働いた結果と思われる。
Comparative Example 3 As shown in Table 3 and FIG.
Organic silver was added to the silver powder A, expecting the same effect as the fine silver B shown in Example 1. However, on the contrary, it inhibits the sintering shrinkage in the low temperature range, and the shrinkage tendency does not converge even at 800 ° C, and the solderability is 65%.
And became worse than the case of only the silver powder A (Comparative Example 1). This is probably because a part of the organic vehicle was replaced with organic silver, and the difference in thermal decomposition behavior between the two worked in the direction of hindering the sintering shrinkage of the thick film especially in the low temperature region.

【0026】なお、特許請求の範囲で、導電成分中に占
める銀粉末Bの比率を5〜50wt%としたのは、次の
理由による。すなわち、ガラスフリットの軟化点付近ま
での低温域において、焼結が十分に進み、ポアの少ない
均一な膜を形成し、800℃付近では収縮は収束する、
という効果が5wt%未満では小さく、はんだ付け性の
十分な向上が期待できないこと、及び50wt%を超え
ると所定粘度のペーストが得難くなるためである。
In the claims, the ratio of the silver powder B in the conductive component is set to 5 to 50 wt% for the following reason. That is, in the low temperature range up to near the softening point of the glass frit, the sintering proceeds sufficiently to form a uniform film with few pores, and the shrinkage converges near 800 ° C.
If the amount is less than 5 wt%, the solderability cannot be sufficiently improved, and if it exceeds 50 wt%, it becomes difficult to obtain a paste having a predetermined viscosity.

【0027】前述の実施例及び比較例の1から3におい
て、セラミック基体として誘電体について説明したが、
この他、圧電体、磁性体、絶縁体などであっても差し支
えない。
In the above-mentioned Examples and Comparative Examples 1 to 3, the dielectric was described as the ceramic substrate.
In addition, a piezoelectric material, a magnetic material, an insulator, etc. may be used.

【0028】さらに具体的にいえば、誘電体としては、
積層セラミックコンデンサ、誘電体共振器など、圧電体
としては、共振子、フィルタ、アクチュエータなど、磁
性体としては、積層型インダクタンス部品など、そして
絶縁体としては、アルミナ基板など、各種の電極に有用
である。
More specifically, as the dielectric,
For piezoelectric ceramics such as monolithic ceramic capacitors and dielectric resonators, it is useful for various electrodes such as resonators, filters, actuators, etc., magnetic materials for laminated inductance components, and insulators for alumina substrates. is there.

【0029】また、熱収縮曲線において、導電成分の違
いにより焼結収縮に差が見られるのは、300℃付近か
ら測定上限の850℃までであり、この間で体積変化
(収縮)の傾向が逆転することはなかった。また、85
0℃を超える焼成温度は、950℃付近に融点を持つ銀
(電極)には適していない。
In the heat shrinkage curve, the difference in sintering shrinkage due to the difference in the conductive component is seen from around 300 ° C. to 850 ° C. which is the upper limit of measurement, and the tendency of volume change (shrinkage) is reversed during this period. I didn't do it. Also, 85
Baking temperatures above 0 ° C are not suitable for silver (electrodes) which have a melting point near 950 ° C.

【0030】以上により、第一層銀中のガラスフリット
の軟化点が350℃以上、焼成温度が850℃以下(た
だし、ガラスフリットの軟化点より100℃以上は高く
ないと十分な接着強度が得られない)のケースにおいて
は、実施例に示した組成の第二層銀電極により、本発明
の目的であるはんだ付け性の向上が達成できると考えら
れる。
From the above, the softening point of the glass frit in the first-layer silver is 350 ° C. or higher and the firing temperature is 850 ° C. or lower (provided that sufficient adhesive strength can be obtained if the softening point is not higher than 100 ° C. higher than the softening point of the glass frit. In the case of (not), it is considered that the improvement of solderability, which is the object of the present invention, can be achieved by the second layer silver electrode having the composition shown in the examples.

【0031】[0031]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、次のような効果が得られることになる。
As is apparent from the above embodiments, according to the present invention, the following effects can be obtained.

【0032】(1)第二層銀に必要な膜厚が低減する。(1) The film thickness required for the second layer silver is reduced.

【0033】(2)はんだ付け前の電極表面の研磨や、
はんだ付け不良箇所の確認・修正など、はんだ付け工程
に要する時間が短縮できる。
(2) Polishing of the electrode surface before soldering,
The time required for the soldering process, such as checking and correcting defective soldering points, can be shortened.

【0034】(3)易洗浄性、低活性のフラックスを選
択できる。
(3) Easy cleaning and low activity flux can be selected.

【0035】(4)リード線や、配線基板などとの接合
が確実になる。
(4) Bonding with a lead wire or a wiring board is ensured.

【0036】(5)はんだ濡れ不良により生じる、電極
とはんだ界面の形状不連続点が減少し、クラックの発生
原因となる応力集中を回避できる。
(5) The shape discontinuity at the interface between the electrode and the solder, which is caused by poor solder wetting, is reduced, and stress concentration which causes cracks can be avoided.

【0037】このように、製品の材料と工数の両面に渡
りコストの低減が可能となり、併せて信頼性の向上に繋
がるという効果を奏するものである。
As described above, it is possible to reduce the cost in terms of both the material of the product and the number of steps, and at the same time, it is possible to improve the reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例の第二層銀電極の熱
収縮曲線図である。
FIG. 1 is a heat shrinkage curve diagram of a second-layer silver electrode of an example of the present invention and a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラスフリットを含まない銀ペーストに
おいて、導電成分を平均粒径3.0±0.6μmの銀粉
末、及び0.7±0.2μmの微粉銀で構成し、前記微
粉銀の前記導電成分中に占める重量比を5〜50wt%
とすることを特徴とする銀ペースト。
1. A silver paste containing no glass frit, wherein the conductive component is composed of silver powder having an average particle size of 3.0 ± 0.6 μm and fine powder of 0.7 ± 0.2 μm. The weight ratio in the conductive component is 5 to 50 wt%
The silver paste characterized in that
【請求項2】 セラミック基体と第一層銀及び第二層銀
電極とからなるセラミック電子部品において、前記第二
層銀はガラスフリットを含まず、導電成分を平均粒径
3.0±0.6μmの銀粉末、及び0.7±0.2μm
の微粉銀で構成し、前記微粉銀の前記導電成分中に占め
る重量比を5〜50wt%とすることを特徴とするセラ
ミック電子部品。
2. A ceramic electronic component comprising a ceramic substrate and first-layer silver and second-layer silver electrodes, wherein the second-layer silver contains no glass frit and the conductive component has an average particle size of 3.0 ± 0. 6 μm silver powder, and 0.7 ± 0.2 μm
And a weight ratio of the fine silver particles in the conductive component is 5 to 50 wt%.
JP29196993A 1993-11-22 1993-11-22 Silver paste and ceramic electronic parts Pending JPH07141914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29196993A JPH07141914A (en) 1993-11-22 1993-11-22 Silver paste and ceramic electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29196993A JPH07141914A (en) 1993-11-22 1993-11-22 Silver paste and ceramic electronic parts

Publications (1)

Publication Number Publication Date
JPH07141914A true JPH07141914A (en) 1995-06-02

Family

ID=17775815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29196993A Pending JPH07141914A (en) 1993-11-22 1993-11-22 Silver paste and ceramic electronic parts

Country Status (1)

Country Link
JP (1) JPH07141914A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
KR100638809B1 (en) * 2004-06-22 2006-10-26 희성정밀 주식회사 Compositions of Silver electrode Paste and Electroluminescence device parepared from them
JP2007088221A (en) * 2005-09-22 2007-04-05 Seiko Epson Corp Ceramic electronic part and its manufacturing method
JP2019179812A (en) * 2018-03-30 2019-10-17 パナソニックIpマネジメント株式会社 Manufacturing method of multilayer varistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638809B1 (en) * 2004-06-22 2006-10-26 희성정밀 주식회사 Compositions of Silver electrode Paste and Electroluminescence device parepared from them
JP2006128608A (en) * 2004-09-29 2006-05-18 Kyocera Corp Electronic part, method for manufacturing the same, chip resistor using the same, ferrite core and inductor
JP2007088221A (en) * 2005-09-22 2007-04-05 Seiko Epson Corp Ceramic electronic part and its manufacturing method
JP2019179812A (en) * 2018-03-30 2019-10-17 パナソニックIpマネジメント株式会社 Manufacturing method of multilayer varistor

Similar Documents

Publication Publication Date Title
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2000077258A (en) Ceramic electronic part and manufacture of the same
JPH07141914A (en) Silver paste and ceramic electronic parts
JPH06112085A (en) Layered ceramic capacitor and manufacture thereof
JPS6240843B2 (en)
JPH08306580A (en) Ceramic electronic part and its manufacture
JPS58178903A (en) Conductive paste
JPH037130B2 (en)
JPH097878A (en) Ceramic electronic part and manufacture thereof
JPH09190950A (en) Outer electrode of electronic part
JPH0896623A (en) Conductive paste
JPH0897527A (en) Conductive paste
JPH03108203A (en) Conductive paste and wiring board
JP3277292B2 (en) Chip type thermistor and manufacturing method thereof
JPH0878279A (en) Formation of outer electrode on electronic chip device
JPH1187167A (en) Paste for terminal electrode and ceramic electronic component using the same and its manufacture
JPH09115772A (en) External electrode for chip electronic component
JP3481740B2 (en) Multilayer ceramic capacitor for temperature compensation
JP2002298643A (en) Conductive paste for outer electrode and laminated ceramic capacitor
JPH04280616A (en) Chip type laminated ceramic capacitor and manufacture thereof
JPS6055961B2 (en) Method for manufacturing alumina circuit board with glaze low antibody
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JP2000252158A (en) Multilayer ceramic capacitor
JPH06140278A (en) Laminated ceramic capacitor
JPS629204B2 (en)