JPH07136462A - Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same - Google Patents

Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same

Info

Publication number
JPH07136462A
JPH07136462A JP5283528A JP28352893A JPH07136462A JP H07136462 A JPH07136462 A JP H07136462A JP 5283528 A JP5283528 A JP 5283528A JP 28352893 A JP28352893 A JP 28352893A JP H07136462 A JPH07136462 A JP H07136462A
Authority
JP
Japan
Prior art keywords
exhaust gas
carbon dioxide
combustion
carbon monoxide
fossil fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5283528A
Other languages
Japanese (ja)
Inventor
Hideo Akahori
秀夫 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5283528A priority Critical patent/JPH07136462A/en
Publication of JPH07136462A publication Critical patent/JPH07136462A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To reduce the amount of discharged CO2 and apply a method in which CO2 in exhaust gas produced by the combustion of fossil fuel is treated separately by the first process in which CO2 is converted into CO and by the second process in which CO produced in the first process is utilized as a useful material to the flue of a thermal power plant or others in which a large amount of CO2 is discharged. CONSTITUTION:A reaction tube 2 as a passage of exhaust gas produced by the combustion of fossil fuel is packed with a reduction catalyst containing one or more kinds of elements selected from Cu, Zn, Fe, and Cr. Hydrogen gas is added to the exhaust gas which is passed through with pressure not causing a back flow in a mixing vessel 1, and the mixture is led to the reaction tube 2 CO2 in the exhaust gas is converted into CO utilizing heat energy generated by the combustion of fossil fuel or heat energy contained in the exhaust gas. As a result, the amount of discharged CO2 can be reduced, and the method can be applied to a flue of a thermal power plant or others which discharge a large amount of CO2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火力発電所排ガスや自
動車排ガス等に大量に含まれる二酸化炭素の固定方法及
びこの方法を用いた環境調和型発電プラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for fixing a large amount of carbon dioxide contained in exhaust gas from a thermal power plant, exhaust gas from an automobile, etc., and an environmentally friendly power plant using this method.

【0002】[0002]

【従来の技術】二酸化炭素は燃焼に伴い必然的に生成す
る物質であり、これまでその存在が問題となることはな
かったため、その除去や有用物質に転化する技術に関す
る検討は殆ど行われていなかった。
2. Description of the Related Art Carbon dioxide is a substance that is inevitably generated by combustion, and its existence has not been a problem until now, so there has been almost no study on its removal or conversion into useful substances. It was

【0003】しかし、最近の地球温暖化に関する問題の
高まりに伴い、火力発電所排ガスや自動車排ガスなどに
大量に含まれる二酸化炭素の除去が人類にとって重要な
課題であることが認識されるようになってきた(アイピ
ーシー、小宮山宏監修「地球温暖化問題ハンドブック」
参照)。
However, with the recent increase in problems related to global warming, it has been recognized that the removal of carbon dioxide contained in large amounts in exhaust gas from thermal power plants, exhaust gas from automobiles, etc. is an important issue for humankind. Tekita ("Handbook on Global Warming", supervised by Hiroshi Komiyama, IPC)
reference).

【0004】これらの排ガスから、二酸化炭素を除去す
る方法としては、物理的に二酸化炭素を分離・除去する
方法と化学反応により他の物質に転化する化学的な処理
方法があるが、二酸化炭素は燃焼、すなわち化学反応に
より大量に生じるので、地球の物質環境を考慮した場合
は化学的な処理を行うことが望ましい。ところで、化学
的な固定方法としては、電気化学的反応による方法、生
化学的な方法、触媒化学的な方法に大別できる。
As a method for removing carbon dioxide from these exhaust gases, there are a method of physically separating and removing carbon dioxide and a chemical treatment method of converting into another substance by a chemical reaction. Since a large amount is generated by combustion, that is, a chemical reaction, it is desirable to perform a chemical treatment in consideration of the material environment of the earth. By the way, the chemical immobilization method can be roughly classified into an electrochemical reaction method, a biochemical method, and a catalytic chemical method.

【0005】[0005]

【発明が解決しようとする課題】電気化学的反応は大規
模な反応槽が必要であり、反応を促進させるためには大
量の電気エネルギーを供給する必要がある。生化学的な
方法は反応速度が遅く、大量の排ガスを処理するために
は広大な地表面積が必要になるため、現実的な処理プラ
ントを構成する場合には地球の全表面積をこれに当てて
も処理できないほどの根本的な問題点がある。
The electrochemical reaction requires a large-scale reaction tank, and a large amount of electric energy needs to be supplied to accelerate the reaction. The biochemical method has a slow reaction rate and requires a large surface area to process a large amount of exhaust gas. Therefore, when constructing a realistic processing plant, apply the entire surface area of the earth to this. However, there are fundamental problems that cannot be dealt with.

【0006】一方、触媒化学的な方法は反応速度が遅
く、気相で還元する方法を用いれば火力発電所の煙道等
から排出される大量の二酸化炭素を短時間に処理するこ
とができると考えられているが、メタノールや石油など
の液状炭化水素に直接転化するためには、高圧力下での
反応が必要であるので、短時間の処理が難しくなるとい
う問題点があった。
On the other hand, the catalytic chemical method has a slow reaction rate, and if a method of reducing in a gas phase is used, a large amount of carbon dioxide discharged from a flue or the like of a thermal power plant can be treated in a short time. Although considered, the reaction under high pressure is necessary for the direct conversion into liquid hydrocarbons such as methanol and petroleum, so that there is a problem that the treatment in a short time becomes difficult.

【0007】二酸化炭素を水素を用いて気相で還元する
方法としては、様々な方法が考えられるが、常圧下で反
応が促進するのは、逆水性ガスシフト反応と呼ばれる下
記の反応が知られている。
Various methods are conceivable as a method for reducing carbon dioxide in the gas phase using hydrogen, but the following reaction known as the reverse water gas shift reaction is known to promote the reaction under normal pressure. There is.

【0008】CO2 +H2 → CO+H2 O この反応は吸熱反応であるため、一般には高温になれば
なれるほど平衡が右側にシフトして、二酸化炭素が一酸
化炭素に転化する比率が増加する。しかし、高温を維持
するためには、エネルギーを投入する必要があり、この
エネルギー源として新たに化石燃料を使用すれば、二酸
化炭素の排出量を低減したことにならなくなる。
CO 2 + H 2 → CO + H 2 O Since this reaction is an endothermic reaction, generally, the higher the temperature, the more the equilibrium shifts to the right, and the rate at which carbon dioxide is converted to carbon monoxide increases. However, in order to maintain the high temperature, it is necessary to input energy, and if fossil fuel is newly used as this energy source, the emission amount of carbon dioxide will not be reduced.

【0009】従って、できるだけ低温で、いかに平衡転
化率(化学平衡状態の転化率)に近い転化特性が得られ
るかが、逆水性ガスシフト反応を火力発電所排ガス中の
二酸化炭素排出量削減対策として実用化できるかを決定
する重要な要素であるといえる。
Therefore, the reverse water gas shift reaction is practically used as a measure for reducing the carbon dioxide emission in the exhaust gas of a thermal power plant, as to how the equilibrium conversion rate (the conversion rate in the chemical equilibrium state) can be obtained at the lowest possible temperature. It can be said that it is an important factor that determines whether or not it can be realized.

【0010】これまでに検討されてきた触媒は、いずれ
も極めて高温での反応に対して触媒活性を検討したもの
ばかりであり、化石燃料により発生する熱エネルギーを
うまく利用できる低温での触媒活性について検討された
例は殆どない。
The catalysts that have been studied so far are all those whose catalytic activity has been examined for reactions at extremely high temperatures. Regarding the catalytic activity at low temperatures that can make good use of the thermal energy generated by fossil fuels. Very few cases have been examined.

【0011】一方、排ガスの熱利用の観点では、低温で
あればあるほど効率は向上するが、上述した逆水性ガス
シフト反応の場合、化学平衡上の制約により、二酸化炭
素から一酸化炭素への平衡転化率は低温になるに従って
逆に小さくなるという問題点も生じる。
On the other hand, from the viewpoint of heat utilization of exhaust gas, the lower the temperature, the higher the efficiency, but in the case of the above-mentioned reverse water gas shift reaction, the equilibrium from carbon dioxide to carbon monoxide is limited due to the restriction on chemical equilibrium. There is also a problem that the conversion rate decreases conversely as the temperature decreases.

【0012】混合気体中から目的ガスである一酸化炭素
を分離するために要するエネルギーは少なくてすむ。一
方、転化率はすでに述べたように低温になるに従って低
くなるため、エネルギーの総合効率を考慮した場合は、
転化反応の最適な温度が存在する筈である。しかし、こ
れまでにそのような観点から、逆水性ガスシフト反応の
触媒活性を検討した例はなく、これを発電プラント等に
応用した例もないのが現状である。
The energy required for separating the target gas, carbon monoxide, from the mixed gas can be small. On the other hand, since the conversion rate becomes lower as the temperature becomes lower, as already mentioned, when considering the total energy efficiency,
There should be an optimum temperature for the conversion reaction. However, from such a point of view, there is no example of studying the catalytic activity of the reverse water gas shift reaction so far, and there is no example of applying this to a power plant or the like.

【0013】本発明は上記事情に鑑みてなされたもの
で、その目的は二酸化炭素の排出量を低減することがで
き、火力発電所などのように大量に二酸化炭素を排出す
る煙道に適用することができる排ガス中の二酸化炭素固
定方法及びこの方法を用いた環境調和型発電プラントを
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to reduce a carbon dioxide emission amount and to apply it to a flue which emits a large amount of carbon dioxide such as a thermal power plant. (EN) Provided is a method for fixing carbon dioxide in exhaust gas, which can be performed, and an environmentally friendly power generation plant using this method.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するため次のような手段を講じたものである。 (1)化石燃料の燃焼により生じた排ガス中の二酸化炭
素を一酸化炭素に転化する第1の工程と、この第1の工
程で生成した一酸化炭素を有用材料として利用する第2
の工程に分割して処理する。 (2)化石燃料の燃焼により生じた排ガスの通路にC
u、Zn、Fe、Crのいずれかの元素を1種類以上含
む還元触媒を設けた後、逆流しない圧力で流通させた排
ガスに水素ガスを添加し、化石燃料の燃焼により生じた
熱エネルギー、またはその排ガスに含まれる熱エネルギ
ーを活用して排ガス中の二酸化炭素を一酸化炭素に転化
する。 (3)化石燃料の燃焼により生じた排ガス中の二酸化炭
素を一酸化炭素に転化した後、二酸化炭素と一酸化炭素
を同時に含んだ状態の排ガスからメタノールを製造する
ことにより、二酸化炭素を有用材料に転化する。 (4)化石燃料の燃焼により生じた排ガス中の二酸化炭
素を一酸化炭素に転化する気相還元装置を燃焼装置と排
ガスの排出口の間に取付け、且つ転化した後のガスに含
まれる一酸化炭素や水素などの燃焼性ガスを繰返し燃焼
させるための燃焼装置と発電設備を組合わせる。 (5)化石燃料の燃焼により生じた排ガス中の二酸化炭
素を一酸化炭素に転化する気相還元装置を燃焼装置と排
ガスの排出口の間に取付け、且つ二酸化炭素と一酸化炭
素を同時に含んだ状態の排ガスからメタノールを製造す
る設備を発電設備に結合する。
The present invention takes the following means in order to achieve the above object. (1) A first step of converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide, and a second step of using carbon monoxide produced in the first step as a useful material
The process is divided into the following processes. (2) C in the passage of exhaust gas generated by combustion of fossil fuel
After providing a reduction catalyst containing at least one element of u, Zn, Fe, and Cr, hydrogen gas is added to the exhaust gas that is circulated at a pressure that does not backflow, and heat energy generated by combustion of fossil fuel, or The carbon dioxide in the exhaust gas is converted to carbon monoxide by utilizing the thermal energy contained in the exhaust gas. (3) Carbon dioxide in exhaust gas generated by combustion of fossil fuel is converted into carbon monoxide, and then methanol is produced from the exhaust gas containing carbon dioxide and carbon monoxide at the same time, thereby producing carbon dioxide as a useful material. Convert to. (4) A gas-phase reduction device for converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide is installed between the combustion device and the exhaust gas outlet, and monoxide contained in the gas after conversion. Combining a combustion device and power generation equipment for repeatedly burning combustible gases such as carbon and hydrogen. (5) A gas phase reduction device for converting carbon dioxide in exhaust gas generated by combustion of fossil fuel to carbon monoxide was installed between the combustion device and the exhaust gas outlet, and carbon dioxide and carbon monoxide were simultaneously contained. A facility for producing methanol from exhaust gas in a state is connected to a power generation facility.

【0015】[0015]

【作用】このような手段を講じることにより、化石燃料
の燃焼により生じた排ガス中の二酸化炭素を一酸化炭素
に転化する工程を設けたことにより、大気圧での触媒反
応が可能となり、リアルタイムの処理ができる。
By taking such a means, by providing a step of converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide, it becomes possible to carry out a catalytic reaction at atmospheric pressure, and to realize real-time It can be processed.

【0016】また、一酸化炭素への還元触媒としてC
u、Zn、Fe、Crのいずれかの元素を1種類以上含
む触媒を使用し、化石燃料により生じる熱エネルギーを
有効利用するするために吸熱反応である逆水性ガスシフ
ト反応を用いることにより、ガスの排熱を利用して吸熱
反応を維持するための熱を得ることが可能となる。
C is used as a catalyst for reducing carbon monoxide.
By using a reverse water gas shift reaction which is an endothermic reaction in order to effectively utilize the thermal energy generated by fossil fuel, a catalyst containing at least one element of u, Zn, Fe and Cr is used. It becomes possible to obtain the heat for maintaining the endothermic reaction by utilizing the exhaust heat.

【0017】さらに、化石燃料の燃焼により生じた排ガ
ス中の二酸化炭素を一酸化炭素に転化した後、二酸化炭
素と一酸化炭素を同時に含んだ状態の排ガスからメタノ
ールを製造することにより、特別なガス分離操作装置が
不要となる。
Further, after converting carbon dioxide in the exhaust gas generated by the combustion of fossil fuel into carbon monoxide, methanol is produced from the exhaust gas containing carbon dioxide and carbon monoxide at the same time to obtain a special gas. No separate operating device is required.

【0018】一方、化石燃料の燃焼により生じた排ガス
中の二酸化炭素を一酸化炭素に転化する気相還元装置を
燃焼装置と排ガスの排出口の間に取付け、且つ転化した
後のガスに含まれる一酸化炭素や水素、排ガスから製造
されるメタノール等の燃焼性ガスを再度燃焼させること
により、熱エネルギーを取出すことも可能となる。
On the other hand, a gas phase reduction device for converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide is attached between the combustion device and the exhaust gas outlet, and contained in the gas after conversion. It is also possible to extract thermal energy by re-combusting a combustible gas such as carbon monoxide, hydrogen, methanol produced from exhaust gas.

【0019】[0019]

【実施例】以下本発明の実施例について図面を参照して
説明する。図1は本発明の第1の実施例を示す概略構成
図である。同図において、1はN2 ガス、CO2 ガス、
及びH2 ガスを混合する混合器、2は反応管の外周に配
設された管状炉、4は気液分離槽、5はガスクロマトグ
ラフ、6は排気ドラフトである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention. In the figure, 1 is N 2 gas, CO 2 gas,
And a mixer for mixing H 2 gas, 2 a tubular furnace arranged on the outer periphery of the reaction tube, 4 a gas-liquid separation tank, 5 a gas chromatograph, and 6 an exhaust draft.

【0020】図1に示すように、混合器1により排ガス
に含まれるN2 ガスとCO2 ガス及びH2 ガスを8:
1:1の比率で混合したガスをガス圧力1kg/cm2
で、触媒を充填した反応管2に導き、ガスクロマトグラ
フ5を用いてCO2 からCOへの転化率を反応管2の温
度条件を変えて測定した。次に上記実験の結果及び効果
について説明する。上記第1の実施例で検討した触媒
は、表1に示す5種類である。
As shown in FIG. 1, the mixer 1 converts the N 2 gas, CO 2 gas and H 2 gas contained in the exhaust gas into 8:
Gas pressure of 1kg / cm 2 mixed gas at a ratio of 1: 1
Then, the gas was introduced into the reaction tube 2 filled with the catalyst, and the conversion rate from CO 2 to CO was measured by using the gas chromatograph 5 while changing the temperature condition of the reaction tube 2. Next, the results and effects of the above experiment will be described. The catalysts examined in the first example are the five types shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】これらに関する実験結果を図2に示す。ガ
ス流速は500ml/min 、試料NO.1〜3は錠剤、
試料NO.4〜5は粉末の状態で実験を行った。二酸化
炭素から一酸化炭素への転化率は、反応管入口で採取し
たガスにおける二酸化炭素のガス組成比(容積%)に対
する反応管出口で採取したガス中の一酸化炭素の組成比
の百分率で表した。
The experimental results relating to these are shown in FIG. Gas flow rate is 500 ml / min, sample NO. 1-3 are tablets,
Sample No. Experiments 4 to 5 were conducted in a powder state. The conversion rate from carbon dioxide to carbon monoxide is expressed as the percentage of the composition ratio of carbon monoxide in the gas sampled at the reaction tube outlet to the gas composition ratio (volume%) of carbon dioxide in the gas sampled at the reaction tube inlet. did.

【0023】この実験結果で明らかなように、Cu−Z
n系触媒を用いることにより、排熱を有効に利用できる
400℃以下の温度でも逆水性ガスシフト反応により二
酸化炭素が一酸化炭素に転化することが確認できたが、
転化率は400℃において20%程度である。
As is clear from the results of this experiment, Cu-Z
By using the n-based catalyst, it was confirmed that carbon dioxide is converted to carbon monoxide by the reverse water gas shift reaction even at a temperature of 400 ° C. or lower at which exhaust heat can be effectively used.
The conversion rate is about 20% at 400 ° C.

【0024】一方、Fe−Cr系触媒を用いると、50
0℃、600℃で平衡転化率に近い高い転化率を得られ
ることが判明した。排ガスの排熱に加えて化石燃料の燃
焼ガスの一部を流用することにより、容易に吸熱反応を
促進させるためのエネルギーを得ることができるので、
Fe−Cr系触媒を用いることにより反応ガス中の一酸
化炭素濃度を高くすることが可能となった。
On the other hand, when Fe--Cr based catalyst is used,
It was found that a high conversion rate close to the equilibrium conversion rate can be obtained at 0 ° C and 600 ° C. By diverting part of the combustion gas of fossil fuels in addition to the exhaust heat of exhaust gas, it is possible to easily obtain energy for promoting the endothermic reaction,
It became possible to increase the carbon monoxide concentration in the reaction gas by using the Fe-Cr based catalyst.

【0025】これらの触媒はCOをCO2 に転化するた
めの水性ガスシフト反応用触媒として市販されている
が、逆水性ガスシフト反応に適用された例はこれまでな
く、検討もされていない。
Although these catalysts are commercially available as water gas shift reaction catalysts for converting CO to CO 2 , no examples have been applied to the reverse water gas shift reaction, and no studies have been made.

【0026】以上のようなことから、化石燃料の燃焼に
より生じた排ガス中の二酸化炭素を一酸化炭素に転化す
る工程を設けたことにより、大気圧での触媒反応が可能
となり、リアルタイムの処理ができるので、プラント設
計上の自由度が大きくなる。さらに、高圧プロセスのた
めの反応槽が不要になるので、設備がコンパクトにな
る。
From the above, by providing the step of converting the carbon dioxide in the exhaust gas generated by the combustion of fossil fuel into carbon monoxide, the catalytic reaction at atmospheric pressure becomes possible, and the real-time processing becomes possible. Therefore, the degree of freedom in plant design is increased. Furthermore, the equipment is compact because a reaction tank for the high pressure process is not required.

【0027】また、一酸化炭素への還元触媒としてC
u、Zn、Fe、Crのいずれかの元素を1種類以上含
む触媒を使用し、化石燃料により生じる熱エネルギーを
有効利用するするために吸熱反応である逆水性ガスシフ
ト反応を用いることにより、ガスの排熱を利用して吸熱
反応を維持するための熱を得ることが可能となる。また
上述した触媒の反応時間は短いので、火力発電所などの
ように大量に二酸化炭素を排出する煙道に取付けること
により、ガス流通状態で転化反応が促進し、大量の二酸
化炭素を特別な処理槽を用いずに一酸化炭素に転化でき
る。
C is used as a catalyst for reducing carbon monoxide.
By using a reverse water gas shift reaction which is an endothermic reaction in order to effectively utilize the thermal energy generated by fossil fuel, a catalyst containing at least one element of u, Zn, Fe and Cr is used. It becomes possible to obtain the heat for maintaining the endothermic reaction by utilizing the exhaust heat. Also, since the reaction time of the above-mentioned catalyst is short, by installing it in a flue that emits a large amount of carbon dioxide, such as a thermal power plant, the conversion reaction is promoted in the gas distribution state, and a large amount of carbon dioxide is treated specially. It can be converted to carbon monoxide without using a tank.

【0028】次に本発明の他の実施例について説明す
る。図3は本発明の第2の実施例を示す概略構成図であ
り、図1と同一部分には同一符号を付してその説明を省
略し、ここでは異なる点に付いて述べる。
Next, another embodiment of the present invention will be described. FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. Here, only different points will be described.

【0029】第2の実施例では、図1に示す気液分離槽
4より排気される第1の工程の排気ドラフト6の代り
に、配管7を結合して2段目の反応管8を接続する。反
応管8より導出された成分をガスクロマトグラフ5を用
いて転化率を求めた。
In the second embodiment, instead of the exhaust draft 6 in the first step, which is exhausted from the gas-liquid separation tank 4 shown in FIG. 1, a pipe 7 is connected to connect the second stage reaction tube 8 to it. To do. The conversion rate of the components derived from the reaction tube 8 was determined using the gas chromatograph 5.

【0030】1段目の反応管2には、Cu−Zn系触媒
を充填し、圧力は大気圧、即ち大気流通状態として、4
00℃で反応させた。反応管2を流通させたガスの組成
及び流速などは第1の実施例と同様である。2段目の反
応管8には、アルミナ担持の銅触媒を充填し、反応管8
部分の圧力は10気圧として、250℃で反応させ、反
応管8より導出された成分をガスクロマトグラフ5を用
いて調べた。
The reaction tube 2 of the first stage is filled with a Cu--Zn type catalyst, and the pressure is atmospheric pressure, that is, atmospheric circulation,
The reaction was carried out at 00 ° C. The composition and flow rate of the gas flowing through the reaction tube 2 are the same as in the first embodiment. The second-stage reaction tube 8 was filled with an alumina-supported copper catalyst,
The pressure of the part was set to 10 atm, the reaction was carried out at 250 ° C., and the components derived from the reaction tube 8 were examined using the gas chromatograph 5.

【0031】この結果、2段目の反応管8出口のガスに
はメタノールが含まれていることが分かった。CO2
びCOガスからメタノールへの転化率は約30%であっ
た。従って、特別な分離作業を行わずに、CO2 、H2
COを含むガスからメタノールが得られることが分か
る。
As a result, it was found that the gas at the outlet of the second-stage reaction tube 8 contained methanol. The conversion of CO 2 and CO gas to methanol was about 30%. Therefore, CO 2 , H 2
It can be seen that methanol can be obtained from a gas containing CO.

【0032】以上のようなことから、化石燃料の燃焼に
より生じた排ガス中の二酸化炭素を一酸化炭素に転化し
た後、二酸化炭素と一酸化炭素を同時に含んだ状態の排
ガスからメタノールを製造することにより、特別なガス
分離操作を行わずにすむので、装置を簡素化でき、プラ
ントの信頼性を向上させることができる。
From the above, after converting carbon dioxide in the exhaust gas generated by combustion of fossil fuel to carbon monoxide, methanol is produced from the exhaust gas containing carbon dioxide and carbon monoxide at the same time. By doing so, it is not necessary to perform a special gas separation operation, so that the device can be simplified and the reliability of the plant can be improved.

【0033】また、化石燃料の燃焼により生じた排ガス
中の二酸化炭素を一酸化炭素に転化する気相還元装置を
燃焼装置と排ガスの排出口の間に取付け、且つ転化した
後のガスに含まれる一酸化炭素や水素、排ガスから製造
されるメタノール等の燃焼性ガスを再度燃焼させること
により、熱エネルギーを取出すことも可能である。従っ
て、この熱エネルギーを発電に用いることにより効率を
向上させることができる。
Further, a gas phase reduction device for converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide is attached between the combustion device and the exhaust gas outlet, and is included in the gas after conversion. It is also possible to extract thermal energy by re-combusting a combustible gas such as carbon monoxide, hydrogen, methanol produced from exhaust gas. Therefore, efficiency can be improved by using this thermal energy for power generation.

【0034】なお、上記第1及び第2の実施例では、排
ガスの比率を CO2 :H2 :N2=1:1:8とした
が、自動車などの内燃機関より生ずる排ガスのようにガ
ス組成が異なる場合や、二酸化炭素を一酸化炭素に転化
した後に排ガス処理を行う場合でも本発明は適用できる
ことは勿論である。さらに、生成した一酸化炭素は公知
の吸着材などを用いて除去することも容易である。
In the first and second embodiments, the ratio of exhaust gas is CO 2 : H 2 : N 2 = 1: 1: 8, but gas such as exhaust gas generated from an internal combustion engine such as an automobile is used. Needless to say, the present invention can be applied even when the composition is different or when the exhaust gas treatment is performed after converting carbon dioxide to carbon monoxide. Further, the generated carbon monoxide can be easily removed by using a known adsorbent or the like.

【0035】[0035]

【発明の効果】以上述べたように本発明によれば、大量
の二酸化炭素を特別な処理層を設置せずに、且つ短時間
で処理することが可能となると共に、高い転化率で一酸
化炭素に効率よく転化した後に、さまざまな方法で固定
化が可能となり、エネルギーを有効に利用しながら二酸
化炭素の排出量削減に大きく貢献できるという優れた効
果を得ることができる二酸化炭素固定方法及びこの方法
を用いた環境調和型発電プラントを提供できる。
As described above, according to the present invention, a large amount of carbon dioxide can be treated in a short time without providing a special treatment layer, and at the same time, a high conversion rate of monoxide can be obtained. After being efficiently converted to carbon, it can be immobilized by various methods, and it is possible to obtain the excellent effect that carbon dioxide emission can be greatly contributed while effectively using energy, and a carbon dioxide fixing method and this method. It is possible to provide an environmentally friendly power plant using the method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す概略構成図。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】同実施例における実験結果を示すグラフ。FIG. 2 is a graph showing experimental results in the same example.

【図3】本発明の第2の実施例を示す概略構成図。FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1……混合器、2……反応管、3……管状炉、4……気
液分離槽、5……ガスクロマトグラフ、6……排気ドラ
フト、7……配管、8……二段目の反応管。
1 ... Mixer, 2 ... Reaction tube, 3 ... Tubular furnace, 4 ... Gas-liquid separation tank, 5 ... Gas chromatograph, 6 ... Exhaust draft, 7 ... Piping, 8 ... Second stage Reaction tube.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 31/18 A C07C 29/153 9159−4H F02G 5/00 Z F23J 15/00 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C01B 31/18 A C07C 29/153 9159-4H F02G 5/00 Z F23J 15/00 ZAB

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化石燃料の燃焼により生じた排ガス中の
二酸化炭素を一酸化炭素に転化する第1の工程と、この
第1の工程で生成した一酸化炭素を有用材料として利用
する第2の工程に分割して処理するようにしたことを特
徴とする排ガス中の二酸化炭素固定方法。
1. A first step of converting carbon dioxide in exhaust gas produced by combustion of fossil fuel into carbon monoxide, and a second step of utilizing carbon monoxide produced in the first step as a useful material. A method for fixing carbon dioxide in exhaust gas, which is characterized in that the treatment is divided into steps.
【請求項2】 化石燃料の燃焼により生じた排ガスの通
路に還元触媒を設けた後、逆流しない圧力で流通させた
排ガスに水素ガスを添加し、化石燃料の燃焼により生じ
た熱エネルギー、またはその排ガスに含まれる熱エネル
ギーを活用して排ガス中の二酸化炭素を一酸化炭素に転
化することを特徴とする排ガス中の二酸化炭素固定方
法。
2. A thermal energy generated by combustion of fossil fuel, or a thermal energy generated by combustion of fossil fuel, by adding a hydrogen gas to the exhaust gas circulated at a pressure that does not backflow after providing a reduction catalyst in a passage of exhaust gas generated by combustion of fossil fuel. A method for fixing carbon dioxide in exhaust gas, which comprises converting carbon dioxide in the exhaust gas into carbon monoxide by utilizing thermal energy contained in the exhaust gas.
【請求項3】 排ガスの通路に設けられる還元触媒は、
Cu、Zn、Fe、Crのいずれかの元素を1種類以上
含むものである請求項2に記載の排ガス中の二酸化炭素
固定方法。
3. The reduction catalyst provided in the exhaust gas passage,
The method for fixing carbon dioxide in exhaust gas according to claim 2, which comprises one or more elements selected from the group consisting of Cu, Zn, Fe and Cr.
【請求項4】 化石燃料の燃焼により生じた排ガス中の
二酸化炭素を一酸化炭素に転化した後、二酸化炭素と一
酸化炭素を同時に含んだ状態の排ガスからメタノールを
製造することにより、二酸化炭素を有用材料に転化した
ことを特徴とする排ガス中の二酸化炭素固定方法。
4. Carbon dioxide is produced by converting methanol from exhaust gas produced by combustion of fossil fuel into carbon monoxide, and then producing methanol from the exhaust gas containing carbon dioxide and carbon monoxide at the same time. A method for fixing carbon dioxide in exhaust gas, characterized by being converted into a useful material.
【請求項5】 化石燃料の燃焼により生じた排ガス中の
二酸化炭素を一酸化炭素に転化する気相還元装置を燃焼
装置と排ガスの排出口の間に取付け、且つ転化した後の
ガスに含まれる一酸化炭素や水素などの燃焼性ガスを繰
返し燃焼させるための燃焼装置と発電設備を組合わせた
ことを特徴とする環境調和型発電プラント。
5. A gas phase reduction device for converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide is provided between the combustion device and the exhaust gas outlet, and contained in the gas after conversion. An environmentally friendly power plant characterized by combining a combustion device for repeatedly burning combustible gases such as carbon monoxide and hydrogen and power generation equipment.
【請求項6】 化石燃料の燃焼により生じた排ガス中の
二酸化炭素を一酸化炭素に転化する気相還元装置を燃焼
装置と排ガスの排出口の間に取付け、且つ二酸化炭素と
一酸化炭素を同時に含んだ状態の排ガスからメタノール
を製造する設備を発電設備に結合したことを特徴とする
環境調和型発電プラント。
6. A gas-phase reduction device for converting carbon dioxide in exhaust gas generated by combustion of fossil fuel into carbon monoxide is installed between the combustion device and the exhaust gas outlet, and carbon dioxide and carbon monoxide are simultaneously provided. An environment-friendly power generation plant characterized in that a facility for producing methanol from exhaust gas containing it is connected to a power generation facility.
JP5283528A 1993-11-12 1993-11-12 Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same Pending JPH07136462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5283528A JPH07136462A (en) 1993-11-12 1993-11-12 Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5283528A JPH07136462A (en) 1993-11-12 1993-11-12 Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same

Publications (1)

Publication Number Publication Date
JPH07136462A true JPH07136462A (en) 1995-05-30

Family

ID=17666708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5283528A Pending JPH07136462A (en) 1993-11-12 1993-11-12 Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same

Country Status (1)

Country Link
JP (1) JPH07136462A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390187A2 (en) * 1989-03-31 1990-10-03 Union Carbide Chemicals And Plastics Company, Inc. Poly(vinyl ethers) as shrinkage control agents
WO2001066463A1 (en) * 2000-03-07 2001-09-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing carbon monoxide by reverse conversion with an adapted catalyst
WO2003029174A3 (en) * 2001-10-01 2003-05-22 Technology Convergence Inc Methanol production process
US6736955B2 (en) 2001-10-01 2004-05-18 Technology Convergence Inc. Methanol production process
JP2006027949A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of using carbon oxide-containing gas
JP2008533287A (en) * 2005-03-16 2008-08-21 フュエルコア エルエルシー Systems, methods, and compositions for producing synthetic hydrocarbon compounds
JP2011523587A (en) * 2008-05-16 2011-08-18 ユニバーシティ オブ サザン カリフォルニア Reduce or reduce carbon dioxide emissions from human activities
WO2021157350A1 (en) * 2020-02-05 2021-08-12 Eneos株式会社 Method for generating carbon monoxide, method for producing precursor, and material for chemical looping system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390187A2 (en) * 1989-03-31 1990-10-03 Union Carbide Chemicals And Plastics Company, Inc. Poly(vinyl ethers) as shrinkage control agents
KR100760502B1 (en) * 2000-03-07 2007-10-04 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 Method for producing carbon monoxide by reverse conversion with an adapted catalyst
WO2001066463A1 (en) * 2000-03-07 2001-09-13 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing carbon monoxide by reverse conversion with an adapted catalyst
FR2806073A1 (en) * 2000-03-07 2001-09-14 Air Liquide Process for obtaining carbon monoxide by the inverse retroconversion of carbon dioxide and hydrogen in the presence of a catalyst based on zinc and chromium oxides.
WO2003029174A3 (en) * 2001-10-01 2003-05-22 Technology Convergence Inc Methanol production process
US6736955B2 (en) 2001-10-01 2004-05-18 Technology Convergence Inc. Methanol production process
US7714176B2 (en) 2001-10-01 2010-05-11 Technology Convergence Inc. Methanol production process
US8188322B2 (en) 2001-10-01 2012-05-29 Technology Convergence Inc. Methanol production process
JP2006027949A (en) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd Method of using carbon oxide-containing gas
JP2008533287A (en) * 2005-03-16 2008-08-21 フュエルコア エルエルシー Systems, methods, and compositions for producing synthetic hydrocarbon compounds
JP2011523587A (en) * 2008-05-16 2011-08-18 ユニバーシティ オブ サザン カリフォルニア Reduce or reduce carbon dioxide emissions from human activities
WO2021157350A1 (en) * 2020-02-05 2021-08-12 Eneos株式会社 Method for generating carbon monoxide, method for producing precursor, and material for chemical looping system
CN115066393A (en) * 2020-02-05 2022-09-16 引能仕株式会社 Method for producing carbon monoxide, method for producing precursor, and material for chemical cycle system
CN115066393B (en) * 2020-02-05 2024-01-02 引能仕株式会社 Method for producing carbon monoxide, method for producing precursor, and material for chemical circulation system

Similar Documents

Publication Publication Date Title
US6793899B2 (en) Plasmatron-catalyst system
JP5205693B2 (en) Method for immobilizing CO2 using microwaves
JP3334567B2 (en) Carbon dioxide fixation device
CN113451615A (en) Liquid ammonia cracking power generation system and method
CN214990264U (en) Novel liquid ammonia schizolysis power generation system
US20070214721A1 (en) Methods for Supercritical Water Reformation of Fuels and Generation of Hydrogen Using Supercritical Water
CN1627986A (en) Fuel processor for producing a hydrogen rich gas
EP0991465A1 (en) Active microchannel heat exchanger
Rahimpour et al. Hydrogen production from urea wastewater using a combination of urea thermal hydrolyser–desorber loop and a hydrogen-permselective membrane reactor
JPH05306101A (en) Hydrogen production
JPH07136462A (en) Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same
Ismagilov et al. Oxidation of unsymmetrical dimethylhydrazine over heterogeneous catalysts: Solution of environmental problems of production, storage and disposal of highly toxic rocket fuels
WO1999061368A1 (en) Hydrogen generation from reforming organic molecules using a palladium membrane reactor
Xiao et al. Investigation of a methanol processing system comprising of a steam reformer and two preferential oxidation reactors for fuel cells
Duell et al. Performance evaluation of kbh4 as energy carrier for shipping applications
Koukou et al. Simulation tools for the design of industrial-scale membrane reactors
JPH09266005A (en) Solid high polymer fuel cell system
JPH1186892A (en) System and method for carbon monoxide removing
Amphlett et al. The steam reforming of methanol: Mechanism and kinetics compared to the methanol synthesis process
JPH10185170A (en) Combustion apparatus
JPH08141365A (en) Fixing method for carbon dioxide contained in exhaust gas, and generating device utilizing the method
JPH06198129A (en) Method for fixing carbon dioxide in waste gas
JP2001322958A (en) Method for fixing carbon dioxide and device for fixing carbon dioxide
JPH07299330A (en) Exhaust gas treatment apparatus
Birbara et al. Development of an improved Sabatier reactor