JPH07132554A - Method for surface treatment - Google Patents

Method for surface treatment

Info

Publication number
JPH07132554A
JPH07132554A JP30587693A JP30587693A JPH07132554A JP H07132554 A JPH07132554 A JP H07132554A JP 30587693 A JP30587693 A JP 30587693A JP 30587693 A JP30587693 A JP 30587693A JP H07132554 A JPH07132554 A JP H07132554A
Authority
JP
Japan
Prior art keywords
gas
discharge
treated
surface treatment
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30587693A
Other languages
Japanese (ja)
Inventor
Yukihiro Kusano
行弘 草野
Tomoko Inagaki
智子 稲垣
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP30587693A priority Critical patent/JPH07132554A/en
Publication of JPH07132554A publication Critical patent/JPH07132554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease restriction of shape and size of an object to be treated and to perform efficiently and uniformly surface treatment of various materials by arranging the object to be treated so as to be separated at least at a specified distance from an electric discharging part between an applicator and an earth electrode when the surface treatment is performed by means of an atmospheric pressure plasma method. CONSTITUTION:An object 3 to be treated is arranged at places (a)-(e) being out of the electric discharging part between an applicator 2a and an earth electrode 2b arranged in a treating room 1 in such a way that it is separated at least 10 mm from this electric discharging part. In addition, gas is introduced into the treating room 1 from a gas feeding pipe 4 or between the electrodes 2a and 2b. In addition, as the gas being properly selected in accordance with the kind of the treatment, a gas contg. at least one of halogene atom, oxygen atom and nitrogen atom is pref. This method exhibits especially a large effect when it is applied to a vulcanized rubber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気圧プラズマ法によ
り各種材料、特に加硫ゴムにコーティング、エッチング
などの表面処理を施す表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for subjecting various materials, particularly vulcanized rubber, to surface treatment such as coating and etching by an atmospheric pressure plasma method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
基材表面を処理して親水性、撥水性等を与えるための表
面改質方法(表面処理方法)として、いくつかの方法が
知られており、環境保護の観点から種々の乾式(無溶
剤)表面処理法が研究され、提案されているが、このう
ちコロナ放電処理、低圧プラズマ処理などの気体放電を
利用した放電処理方法は、大気を汚染することもなく特
に有効な表面処理方法として注目されている。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Several methods are known as surface modification methods (surface treatment methods) for treating the surface of a base material to impart hydrophilicity, water repellency, and the like, and various dry methods (solvent-free) from the viewpoint of environmental protection. Although surface treatment methods have been studied and proposed, among them, discharge treatment methods using gas discharge such as corona discharge treatment and low-pressure plasma treatment attract attention as a particularly effective surface treatment method without polluting the atmosphere. ing.

【0003】コロナ放電処理は、大気圧において、主に
空気,窒素等の雰囲気中で行われ、放電処理の中でも安
価で簡便な処理方法である。しかし、コロナ放電では狭
い電極間に高電圧を印加することによって電子をビーム
状に放電するため、被処理物表面に処理むらができてし
まい、また、ガス温度が低温プラズマにおけるガス温度
に比べてかなり高いので、親水化以外の表面処理が極め
て難しいという問題点がある。また、コロナ放電処理に
よる親水化の度合いは、プラズマ処理による場合に比べ
て一般に不十分である。
Corona discharge treatment is performed at atmospheric pressure mainly in an atmosphere of air, nitrogen, etc., and is a cheap and simple treatment method among discharge treatments. However, in corona discharge, electrons are discharged in the form of a beam by applying a high voltage between narrow electrodes, resulting in uneven processing on the surface of the object to be processed, and the gas temperature is lower than that in low temperature plasma. Since it is considerably high, there is a problem that surface treatment other than hydrophilization is extremely difficult. Further, the degree of hydrophilization by corona discharge treatment is generally insufficient as compared with the case of plasma treatment.

【0004】一方、低圧プラズマ処理では、処理むらの
少ない均一な表面処理ができる上に、雰囲気ガス種や、
入力電力、周波数、圧力などを変えて処理を行うことに
より、様々な高機能表面を得ることが可能である。しか
し、低圧プラズマ処理は通常10〜10-4Torrの低
圧において行われるため、これを工業的に実施する場
合、大型の真空装置が必要となり、設備費や処理コスト
が大きくなる。更に、被処理物が水分やガス可塑剤など
を多く含む場合は、これらが減圧雰囲気中で気化し、被
処理物表面から放出され、このためプラズマ処理におい
て目的とする性能や機能が得られない場合もある。しか
も、このようなプラズマ処理では、処理中に熱が発生し
やすく、このため低融点物質からなる被処理物には適用
し難いという問題点がある。
On the other hand, in the low-pressure plasma treatment, a uniform surface treatment with less unevenness of treatment can be performed, and at the same time, atmospheric gas species,
It is possible to obtain various highly functional surfaces by changing the input power, frequency, pressure, etc. However, since the low-pressure plasma treatment is usually performed at a low pressure of 10 to 10 -4 Torr, a large-scale vacuum device is required when this is industrially performed, which increases equipment costs and treatment costs. Furthermore, when the object to be processed contains a large amount of water, gas plasticizer, etc., these are vaporized in a reduced pressure atmosphere and released from the surface of the object to be processed, so that the desired performance and function in plasma processing cannot be obtained. In some cases. Moreover, such a plasma treatment has a problem that heat is easily generated during the treatment, and thus it is difficult to apply it to an object to be treated which is made of a low melting point substance.

【0005】また、上記両処理方法の問題点を同時に解
決した表面処理方法として、大気圧において安定してグ
ロープラズマを得、これを用いて基材の表面を処理する
方法(大気圧グロープラズマ処理法)が提案されている
(特開平1−306569号、同2−15171号公報
等)。
Further, as a surface treatment method which solves the problems of both treatment methods at the same time, a method of stably obtaining glow plasma at atmospheric pressure and treating the surface of a substrate using the glow plasma (atmospheric pressure glow plasma treatment) Method) has been proposed (JP-A-1-306569, JP-A-2-15171, etc.).

【0006】グロー放電(処理に用いる均一放電)は、
従来、「低気圧で生ずる」と定義されており、大気圧で
はアーク放電、コロナ放電、火花放電などの高温での不
均一な放電のみ考えられていた。即ち、大気圧でのグロ
ー放電は、一般には不可能と思われていたが、上記大気
圧グロープラズマ処理法により、ある条件下では、大気
圧でグロープラズマを得ることが可能であることが示さ
れた。
Glow discharge (uniform discharge used for processing) is
Conventionally, it is defined as "occurs at low pressure", and at atmospheric pressure, only non-uniform discharge at high temperature such as arc discharge, corona discharge, and spark discharge was considered. That is, although it was generally thought that glow discharge at atmospheric pressure was impossible, it was shown that, under certain conditions, glow plasma can be obtained at atmospheric pressure by the above atmospheric pressure glow plasma treatment method. Was done.

【0007】この大気圧グロープラズマ法による表面処
理は、大気圧付近の圧力下で実施されるため大型の真空
装置を必要とせず、また、水分やガス可塑剤などを多く
含む基材にも良好に対応し得、しかも処理時の発熱もほ
とんど生じることがない。このため、低融点の基材にも
適応可能であるといった特徴を有する上、局所的な処理
が可能で、部材の所定の部分だけを処理することもでき
る。
Since the surface treatment by the atmospheric pressure glow plasma method is carried out under a pressure near the atmospheric pressure, it does not require a large vacuum apparatus and is good for a substrate containing a large amount of water, a gas plasticizer and the like. In addition, heat generation during the process hardly occurs. Therefore, in addition to having a characteristic that it can be applied to a base material having a low melting point, local treatment is possible and only a predetermined portion of the member can be treated.

【0008】しかし、従来の大気圧グロープラズマ法に
おいては、コロナ放電処理、低圧プラズマ処理と同様
に、被処理物を実質的に放電プラズマ中に配置しなけれ
ばならなかった(特開平3−236475号、特開平4
−74525号、特開平2−50967号公報など)。
このため被処理物の形状や大きさに制約があり、また、
放電プラズマ中に、即ち電極と電極との間に被処理物を
配置した場合、放電プラズマに影響を与える上、被処理
物が大きいと放電電圧が高くなり放電しにくくなるなど
放電条件にも制約があった。
However, in the conventional atmospheric pressure glow plasma method, the object to be treated must be substantially disposed in the discharge plasma, as in the corona discharge treatment and the low pressure plasma treatment (JP-A-3-236475). No. 4, JP-A-4
-74525, JP-A-2-50967, etc.).
Therefore, there are restrictions on the shape and size of the object to be processed, and
When the object to be processed is placed in the discharge plasma, that is, between the electrodes, the discharge plasma is affected, and if the object to be processed is large, the discharge voltage becomes high and it becomes difficult to discharge. was there.

【0009】一方、大気圧グロープラズマで発生したガ
スを直接被処理物に吹き付ける方法も提案されている
(特開平3−21908号公報)。しかし、この方法で
は、ガスの流れの影響が著しいため、被処理物全体を一
時に均一処理することが難しかった。
On the other hand, a method has also been proposed in which a gas generated by atmospheric pressure glow plasma is directly blown onto an object to be processed (Japanese Patent Laid-Open No. 21908/1993). However, in this method, it is difficult to uniformly process the entire object at once because the influence of the gas flow is significant.

【0010】本発明は上記事情に鑑みなされたもので、
被処理物の形状や大きさに制約が少なく、大気圧グロー
プラズマ法を用いて各種材料の表面処理を効率よく均一
に行うことができる表面処理方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances.
An object of the present invention is to provide a surface treatment method in which the shape and size of an object to be treated are less restricted and the surface treatment of various materials can be efficiently and uniformly performed by using the atmospheric pressure glow plasma method.

【0011】[0011]

【課題を解決するための手段及び作用】本発明者は上記
目的を達成するため鋭意検討を行った結果、所用のガス
存在下において大気圧又はその近傍の圧力中で印加電極
と接地電極との間に電圧を印加してグロープラズマを発
生させ、被処理物表面を大気圧プラズマ法により処理す
る場合に、被処理物を上記両電極間の放電部分と分離
し、これと離間した位置に配置しても十分な処理が可能
であること、この場合特にガスとしてハロゲン原子、酸
素原子又は窒素原子を含むものを使用し、また被処理物
として加硫ゴムを用いた場合、プラズマ放電部と被処理
物配置部とを10mm以上分離しても、良好な表面処理
が行われ、従ってこのようにプラズマ放電部と被処理物
配置部とを分離することにより、被処理物の形状や大き
さの制約が少なく、また、電極間に被処理物を配置して
いないので放電プラズマに影響を与えることもないと共
に、放電条件の制約も少ないので、効率よく表面処理を
行うことができることを知見し、本発明をなすに至っ
た。
Means for Solving the Problems and Actions The inventors of the present invention have conducted extensive studies in order to achieve the above object, and as a result, in the presence of the desired gas, the application electrode and the ground electrode are formed under atmospheric pressure or a pressure in the vicinity thereof. When a voltage is applied between the electrodes to generate glow plasma and the surface of the object to be processed is processed by the atmospheric pressure plasma method, the object to be processed is separated from the discharge part between the two electrodes and is placed at a position separated from this. Even if sufficient treatment is possible, in particular, when a gas containing a halogen atom, an oxygen atom or a nitrogen atom is used as the gas and a vulcanized rubber is used as the object to be treated, the plasma discharge part and the object to be treated are Good surface treatment is performed even if the treatment object placement portion is separated by 10 mm or more. Therefore, by separating the plasma discharge portion and the treatment object placement portion in this way, the shape and size of the treatment object can be reduced. There are few restrictions, Further, since the object to be treated is not disposed between the electrodes, it does not affect the discharge plasma, and there are few restrictions on the discharge conditions, so that it is possible to efficiently perform the surface treatment, and the present invention is made. Came to.

【0012】以下、本発明を更に詳しく説明すると、本
発明の表面処理方法は、所用のガス存在下において大気
圧中で印加電極と接地電極との間に電圧を印加してグロ
ープラズマを発生させ、被処理物表面を大気圧プラズマ
法により処理する表面処理方法において、被処理物を上
記両電極間の放電部分と10mm以上離間した位置に配
置するものである。
The present invention will be described in more detail below. In the surface treatment method of the present invention, a glow plasma is generated by applying a voltage between an application electrode and a ground electrode in the presence of a desired gas at atmospheric pressure. In the surface treatment method of treating the surface of the object to be treated by the atmospheric pressure plasma method, the object to be treated is arranged at a position separated by 10 mm or more from the discharge part between the two electrodes.

【0013】ここで、本発明の表面処理方法で用いる処
理室の材料としては、特に制限されないが、プラスチッ
ク(塩化ビニル、アクリル、ナイロン、フッ素樹脂)、
ガラス、セラミックス等の絶縁体やアルミニウム、ステ
ンレス等の金属などが挙げられ、また、大きさ、形状等
いかなるものも使用することができる。
Here, the material of the processing chamber used in the surface treatment method of the present invention is not particularly limited, but includes plastics (vinyl chloride, acrylic, nylon, fluororesin),
Examples include insulators such as glass and ceramics, metals such as aluminum and stainless steel, and any size and shape can be used.

【0014】処理室が放電室も兼ねる場合、処理室内部
に配置され、電圧が印加される電極は、プラズマを発生
させることができるものであれば、大きさ、形状等いか
なるものも使用することができる。なお、電極の材料と
してはアルミニウム、鉄、ステンレス、グラファイトな
どを挙げることができるが、これに限定されるものでは
なく、あらゆる導電性材料を用いることができる。
When the treatment chamber also serves as the discharge chamber, any electrode such as a size or a shape, which is arranged inside the treatment chamber and to which a voltage is applied, can be used as long as it can generate plasma. You can Note that examples of the material of the electrode include aluminum, iron, stainless steel, graphite, and the like, but the material is not limited thereto, and any conductive material can be used.

【0015】また、放電室と処理室とが分離している場
合、放電室として上下の面が電極からなるものを使用す
ることができる。処理室としては、上記の材料と同様の
材料で作製されたものを使用することができる。また、
放電室と処理室をつなぐパイプとしては、SUS管、鋼
管、塩化ビニル管、テフロン管、アクリル管、ナイロン
管などを挙げることができるがこれに限定されるもので
はない。
When the discharge chamber and the processing chamber are separated, a discharge chamber having upper and lower surfaces made of electrodes can be used. As the processing chamber, one made of a material similar to the above material can be used. Also,
Examples of the pipe connecting the discharge chamber and the processing chamber include SUS pipe, steel pipe, vinyl chloride pipe, Teflon pipe, acrylic pipe, and nylon pipe, but are not limited thereto.

【0016】本発明に係る表面処理方法において用いる
ことができるガスは2種類あり、1つは大気圧グロープ
ラズマを安定的に得るための大気圧グロー放電しやすい
ガスで、このガスが処理室内をフローすることにより処
理室内に配置された被処理物の表面処理を行うことがで
きる。もう1つは処理の種類に応じて適宜選定されるガ
スであり、従来、大気圧グロープラズマ処理、低圧プラ
ズマ処理等で用いられるすべてのガスを用途に応じて使
用することができる。
There are two kinds of gases that can be used in the surface treatment method according to the present invention, and one is a gas that is easily subjected to atmospheric pressure glow discharge in order to stably obtain atmospheric pressure glow plasma. By the flow, the surface treatment of the object to be treated arranged in the treatment chamber can be performed. The other is a gas that is appropriately selected according to the type of treatment, and all gases conventionally used in atmospheric pressure glow plasma treatment, low pressure plasma treatment, etc. can be used according to the application.

【0017】大気圧グロープラズマを安定的に得るため
には、前者の不活性ガス等の大気圧グロー放電しやすい
ガスで処理の種類に応じて選定されたガスを希釈するこ
とが好ましい。大気圧グロー放電しやすいガスとして、
具体的にはヘリウム,ネオン,アルゴン等の不活性ガ
ス、酸素,水素,窒素,空気等の汎用ガス、アセトン,
メチルエチルケトン等の大気圧グロー放電しやすい有機
物のガスなどの1種又は2種以上のガスの混合物を用い
ることができるが、特にアセトンやメチルエチルケトン
をアルゴンで希釈した混合ガス、ヘリウム、ネオンなど
が好ましい。
In order to stably obtain the atmospheric pressure glow plasma, it is preferable to dilute the gas selected according to the type of treatment with a gas such as the former inert gas which easily causes the atmospheric pressure glow discharge. As a gas that is easy to glow at atmospheric pressure,
Specifically, inert gases such as helium, neon, and argon, general-purpose gases such as oxygen, hydrogen, nitrogen, and air, acetone,
It is possible to use one or a mixture of two or more gases such as an organic gas that easily causes an atmospheric pressure glow discharge such as methyl ethyl ketone. Particularly, a mixed gas obtained by diluting acetone or methyl ethyl ketone with argon, helium, neon or the like is preferable.

【0018】大気圧グロープラズマを得るための圧力は
大気圧グロープラズマの特長を活かし得る範囲であれば
よく、大気圧又は大気圧近傍とすることができる。具体
的には200〜2000Torr、好ましくは500〜
1000Torrとすることができる。
The pressure for obtaining the atmospheric pressure glow plasma may be in the range where the features of the atmospheric pressure glow plasma can be utilized, and can be at or near atmospheric pressure. Specifically, it is 200 to 2000 Torr, preferably 500 to
It can be 1000 Torr.

【0019】また、処理の種類に応じて適宜選定される
ガスとしては、例えば加硫ゴムと他のゴム材料や金属、
樹脂等の他材料と接合して複合材料を製造したり、例え
ばゴルフボールなどの製造において、加硫ゴムに塗装を
施するための前処理などとして加硫ゴムの表面処理を行
う場合、ハロゲン原子、酸素原子、窒素原子の少なくと
も一つを含むガス、特にハロゲン原子を含むガスやこれ
に酸素原子、窒素原子を含むガスを混合した混合ガスを
用いることが好ましく、これにより本発明の目的を有利
に達成することができる。
As the gas appropriately selected according to the type of treatment, for example, vulcanized rubber and other rubber materials or metals,
When a composite material is manufactured by joining it with another material such as resin, or when the surface treatment of vulcanized rubber is performed as a pretreatment for coating the vulcanized rubber in the production of golf balls, for example, halogen atoms It is preferable to use a gas containing at least one of an oxygen atom and a nitrogen atom, particularly a gas containing a halogen atom or a mixed gas in which a gas containing an oxygen atom and a nitrogen atom is mixed, which makes the object of the present invention advantageous. Can be achieved.

【0020】この場合、酸素原子を含むガスとしてはO
2,H22,CO2等のガス、アルコール類,ケトン類,
エーテル類等の酸素含有有機物のガスなどが挙げられ、
このうち特にO2が好適に使用される。
In this case, the gas containing oxygen atoms is O
2 , H 2 O 2 , CO 2 and other gases, alcohols, ketones,
Examples include oxygen-containing organic gas such as ethers,
Of these, O 2 is particularly preferably used.

【0021】窒素原子を含むガスとしてはN2,NH3
NF3,NO,NO2,N23などが挙げられ、このうち
特にNH3が好適に使用される。
Gases containing nitrogen atoms include N 2 , NH 3 ,
NF 3 , NO, NO 2 , N 2 O 3 and the like can be mentioned, of which NH 3 is particularly preferably used.

【0022】ハロゲン原子(F,Cl,Br,I)を含
むガスとしてはF 2,Cl2,Br2,I2等の単体ガス、
HF,HCl,HBr,HI等のハロゲン化水素、CF
4,CHF3,CH2 2,CH3F,CClF3,CCl2
2,CHClF 2,C26,CBrF3,CHCl3,C
2Cl2,CH3CCl3,CCl4等のハロゲン化炭化
水素、SiF4,SiHF3,SiF3CH3等のシラン化
合物、SF6、NF3などが挙げられる。このうち取扱
いの容易性の点からハロゲン化炭化水素が好適に使用さ
れる。また、上記酸素や窒素を含むガスとの組み合わせ
は、取扱いの容易性の点からフロン、ハロンや下記のも
のが特に好ましい。
Containing halogen atoms (F, Cl, Br, I)
F as gas 2, Cl2, Br2, I2Single gas such as
Hydrogen halide such as HF, HCl, HBr, HI, CF
Four, CHF3, CH2F 2, CH3F, CClF3, CCl2
F 2, CHClF 2, C2H6, CBrF3, CHCl3, C
H2Cl2, CH3CCl3, CClFourHalogenated carbonization of
Hydrogen, SiFFour, SiHF3, SiF3CH3Silanization of etc.
Compound, SF6, NF3And so on. Of these, handling
In terms of ease of use, halogenated hydrocarbons are preferably used.
Be done. In addition, the combination with the gas containing oxygen and nitrogen
For easy handling, CFC, Halon and
Is particularly preferable.

【0023】O2+CCl2 2,O2+CClF3,O2
CHClF 2,O2+CBrF3,O2+CF4,O2+CF
4+CHCl3,O2+CF4+CH2Cl2,O2+CF4
CCl4,O2+CF4+CH3Cl3,NH3,NH3+O2
O2+ CCl2F 2, O2+ CClF3, O2+
CHClF 2, O2+ CBrF3, O2+ CFFour, O2+ CF
Four+ CHCl3, O2+ CFFour+ CH2Cl2, O2+ CFFour+
CClFour, O2+ CFFour+ CH3Cl3, NH3, NH3+ O2

【0024】これらのガスは必ずしも常温でガス状であ
る必要はなく、供給の方法は放電領域の温度や、常温で
の状態(固体、液体、気体)などにより、選定される。
即ち、放電領域の温度や常温下においてガス状である場
合は、これをそのまま処理容器内へ流入させることがで
き、また、液状である場合には、蒸気圧が比較的高けれ
ばその蒸気をそのまま流入してもよいし、その液体を不
活性ガス等でバブリングして流入してもよい。一方、ガ
ス状でなく、しかも蒸気圧が比較的低い場合には、加熱
することによりガス状又は蒸気圧が高い状態にして用い
ることができる。
These gases do not necessarily have to be gaseous at room temperature, and the supply method is selected depending on the temperature of the discharge region, the state at room temperature (solid, liquid, gas).
That is, if it is gaseous at the temperature of the discharge region or at room temperature, it can be flowed into the processing container as it is, and if it is liquid, if the vapor pressure is relatively high, the vapor can be left as it is. The liquid may be introduced, or the liquid may be bubbled with an inert gas or the like to be introduced. On the other hand, when it is not in a gaseous state and has a relatively low vapor pressure, it can be used in a state of being in a gaseous state or a high vapor pressure by heating.

【0025】これらのガスを処理室内に導入する場合、
例えば後述する図1に示すように処理室上方から導入す
ることによって処理室内に拡散するようにしてもよく、
また、図2に示すように電極間に吹き付けるようにして
導入してもよい。更に、図3に示すように放電室と処理
室とを分離し、放電室に導入されたガスを放電室で発生
したプラズマによって大気圧グロー放電したガスを処理
室に導入し、拡散するようにしてもよい。
When introducing these gases into the processing chamber,
For example, as shown in FIG. 1 which will be described later, it may be diffused into the processing chamber by introducing it from above the processing chamber,
Alternatively, it may be introduced by spraying between the electrodes as shown in FIG. Further, as shown in FIG. 3, the discharge chamber and the processing chamber are separated, and the gas introduced into the discharge chamber is subjected to atmospheric pressure glow discharge by the plasma generated in the discharge chamber and introduced into the processing chamber so that the gas is diffused. May be.

【0026】本発明に係るプラズマの発生方法として
は、プラズマを発生し、かつこれにより被処理物の表面
で反応を起こすことができる方法であればいかなる方法
も採用することができる。電圧の印加方法は、大きく分
けて直流、交流の2通りあるが、工業的には交流放電の
方が容易である。
As a method for generating plasma according to the present invention, any method can be adopted as long as it is a method capable of generating plasma and causing a reaction on the surface of the object to be treated. There are roughly two types of voltage application methods, DC and AC, but AC discharge is easier industrially.

【0027】交流放電の場合は、安定した大気圧グロー
プラズマを容易に得るため、電極の少なくとも一方を絶
縁体で被覆することが推奨される。絶縁体としては、ア
ルミナ、雲母などのセラミック、テフロン、ポリエステ
ル、ナイロン、アクリル、塩ビなどのプラスチックなど
が例として挙げられるが、これに限定されるものではな
い。
In the case of AC discharge, it is recommended to cover at least one of the electrodes with an insulator in order to easily obtain stable atmospheric pressure glow plasma. Examples of the insulator include ceramics such as alumina and mica, and plastics such as Teflon, polyester, nylon, acrylic, and vinyl chloride, but are not limited thereto.

【0028】処理室がガラス等の絶縁体からなる場合に
は外部電極方式を採用することができる。また、コイル
型方式による放電や導波管型方式により放電も可能であ
る。
When the processing chamber is made of an insulating material such as glass, the external electrode method can be adopted. Further, a coil type discharge or a waveguide type discharge is also possible.

【0029】なお、直流放電の場合、電極からの直接の
電子流入により直流グローを形成、安定化させるため、
高電圧印加側及び接地側共に絶縁体で被覆しない方がよ
い。
In the case of direct current discharge, in order to form and stabilize a direct current glow by direct inflow of electrons from the electrode,
It is better not to cover the high voltage application side and the ground side with an insulator.

【0030】而して、本発明においては、上記のような
表面処理方法において、被処理物を電極間の放電部と離
間して配置するものである。
Thus, in the present invention, in the surface treatment method as described above, the object to be treated is arranged apart from the discharge part between the electrodes.

【0031】例えば、図1,2に示した装置において、
処理室1内に配設した印加電極2aと接地電極2bとの
放電部以外の箇所にこの放電部と離間して被処理物3を
配置するものである。なお、図1においては、ガスはガ
ス供給管4から処理室1内に導入され、処理室1内を拡
散していくものであり、また図2においては、先端が電
極2a,2b間に配置されたガス供給管5からこれら電
極2a,2b間にガスが直接供給されるようにしたもの
である。なお、図中6はガス排出管、7は交流電源であ
る。
For example, in the apparatus shown in FIGS.
The object 3 to be processed is arranged apart from the discharge part of the application electrode 2a and the ground electrode 2b arranged in the processing chamber 1 apart from the discharge part. In addition, in FIG. 1, gas is introduced into the processing chamber 1 from the gas supply pipe 4 and diffuses in the processing chamber 1. Further, in FIG. 2, the tip is disposed between the electrodes 2a and 2b. The gas is directly supplied from the gas supply pipe 5 between the electrodes 2a and 2b. In the figure, 6 is a gas exhaust pipe, and 7 is an AC power supply.

【0032】また、図3に示すように放電室8と処理室
9とが分離した処理装置を用いることもできる。即ち、
図3に示す装置において、絶縁体で被覆された電極10
a,10b間にガス供給管11からガスを供給し、放電
室8で発生したプラズマによって大気圧グロー放電した
ガスをガス導入管12を介して処理室9に導入し、拡散
させることにより、被処理物13の表面処理を行うもの
である。なお、図中14はガス排出管である。
Further, as shown in FIG. 3, it is possible to use a processing apparatus in which the discharge chamber 8 and the processing chamber 9 are separated. That is,
In the device shown in FIG. 3, an electrode 10 coated with an insulator is used.
Gas is supplied from the gas supply pipe 11 between a and 10b, and the gas that has been subjected to atmospheric pressure glow discharge by the plasma generated in the discharge chamber 8 is introduced into the processing chamber 9 through the gas introduction pipe 12 and diffused. The surface treatment of the processed material 13 is performed. In the figure, 14 is a gas exhaust pipe.

【0033】ここで、被処理物は電極間以外ならば処理
室内のいかなる箇所に配置してもよいが、表面処理を均
一に行うためには、電極から10mm以上離れているこ
とが必要であり、その距離を10mm〜10m、特に1
0mm〜1mとすることが好ましい。
Here, the object to be treated may be arranged at any place in the treatment chamber except between the electrodes, but it is necessary to be separated from the electrodes by 10 mm or more in order to perform the surface treatment uniformly. , The distance is 10 mm to 10 m, especially 1
It is preferably 0 mm to 1 m.

【0034】本発明方法によって処理される被処理物
は、プラスチック、ゴム、金属、セラミック等、有機質
固体、無機質固体のいずれであってもよく、また、その
形状は板状、シート状、繊維状、ブロック状等のいかな
る形状であっても差し支えないが、本発明の表面処理方
法は、特に加硫ゴムの表面処理に用いた場合、その効果
が大きい。このような加硫ゴムとしては、特に制限され
るものではなく、NR(天然ゴム)系、SBR(スチレ
ン・ブタジエンゴム)系、IR(イソプレンゴム)系、
NBR(アクリロニトリル・ブタジエンゴム)系、EP
M(エチレン・プロピレンゴム)系、EPDM(エチレ
ン・プロピレン・ジエンゴム)系、BR(ブタジエンゴ
ム)系、IIR(ブチルゴム)系、CR(クロロプレン
ゴム)系等のいずれの加硫ゴムにも適用することができ
る。また、加硫ゴムの形状は板状、シート状、球状、筒
状、柱状、ブロック状等のいかなる形状であっても差し
支えない。
The object to be treated by the method of the present invention may be any of organic solids and inorganic solids such as plastics, rubbers, metals and ceramics, and the shape thereof is plate-like, sheet-like or fibrous. Although any shape such as a block shape may be used, the surface treatment method of the present invention is particularly effective when used for the surface treatment of vulcanized rubber. Such vulcanized rubber is not particularly limited, and includes NR (natural rubber) type, SBR (styrene-butadiene rubber) type, IR (isoprene rubber) type,
NBR (acrylonitrile butadiene rubber) type, EP
Applicable to any vulcanized rubber such as M (ethylene / propylene rubber), EPDM (ethylene / propylene / diene rubber), BR (butadiene rubber), IIR (butyl rubber), CR (chloroprene rubber). You can The vulcanized rubber may have any shape such as a plate shape, a sheet shape, a spherical shape, a cylindrical shape, a columnar shape, and a block shape.

【0035】本発明により表面処理された加硫ゴムの表
面は高度に接着し易い表面に改質されているため、例え
ば加熱、圧着、加熱圧着などの公知の方法により加硫ゴ
ム表面に他の部材を容易に接着することができる。この
ように表面処理された加硫ゴムと他の部材とを接合する
場合、一般的には接着剤を用いるが、この接着剤として
は、例えばシラン系カップリング剤、アミノシラン系カ
ップリング剤、エポキシ系、ウレタン系、フェノール
系、アクリル系、ゴム系接着剤などが用いられ、加硫ゴ
ムと接合する他の部材の種類やその表面状態、接着の方
法より適宜選定することができる。なお、部材の種類や
加硫ゴムの表面処理条件によっては接着剤を用いずに直
接接着することも可能である。
Since the surface of the vulcanized rubber which has been surface-treated according to the present invention has been modified to be a surface which is highly easily adhered, the surface of the vulcanized rubber can be changed to another surface by a known method such as heating, pressure bonding or thermocompression bonding. The members can be easily bonded. When joining the vulcanized rubber thus surface-treated and other members, an adhesive is generally used. Examples of the adhesive include a silane coupling agent, an aminosilane coupling agent, and an epoxy. Adhesives such as system adhesives, urethane adhesives, phenol adhesives, acrylic adhesives, and rubber adhesives are used, and can be appropriately selected according to the type of other members to be bonded to the vulcanized rubber, the surface condition thereof, and the bonding method. Depending on the type of the member and the surface treatment conditions of the vulcanized rubber, it is possible to directly bond without using an adhesive.

【0036】本発明方法は種々の加硫ゴム複合材料の製
造などに好適に適用され、特に、ゴルフボール、防振ゴ
ム、再生タイヤ等の製造に好適に採用される。
The method of the present invention is suitably applied to the production of various vulcanized rubber composite materials, and is particularly suitable for the production of golf balls, anti-vibration rubbers, recycled tires and the like.

【0037】以下、実施例と比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。
Hereinafter, the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0038】[実施例1〜10、比較例1〜4]下記に
示す組成のゴム組成物を加硫して得た加硫ゴム(直径約
40mmの球状体)を下記方法で表面処理し、これに不
織布をウレタン系接着剤で接着、硬化させた後、その剥
離力(接着力)を測定した。結果を表1に示す。ゴム組成物処方 トランスポリイソプレン 30部 SBR(日本合成ゴム社製,1502) 50部 NR 20部 硫黄 1部 亜鉛華 5部 Nocrac NS−6(大内新興化学工業(株)製) 1部表面処理方法 図1に示す処理放電装置において、処理室が300mm
×300mm×300mm(外寸)のアクリル製容器、
電極が70mm×150mmの平行平板型のものを用
い、被処理物を図1のa〜eの位置に配置した。なお、
図1において、被処理物位置a,b,c,d,eは具体
的には下記の位置を示す。
[Examples 1 to 10 and Comparative Examples 1 to 4] The vulcanized rubber (spherical body having a diameter of about 40 mm) obtained by vulcanizing the rubber composition having the following composition was surface-treated by the following method, The nonwoven fabric was adhered to this with an urethane adhesive and cured, and the peeling force (adhesive force) was measured. The results are shown in Table 1. Rubber composition formulation trans polyisoprene 30 parts SBR (manufactured by Japan Synthetic Rubber Co., Ltd., 1502) 50 parts NR 20 parts sulfur 1 part zinc white 5 parts Nocrac NS-6 (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) 1 part surface treatment Method In the processing discharge device shown in FIG. 1, the processing chamber has a size of 300 mm.
× 300 mm × 300 mm (outside dimensions) acrylic container,
A parallel plate type electrode having an electrode of 70 mm × 150 mm was used, and the object to be processed was placed at positions a to e in FIG. In addition,
In FIG. 1, the object positions a, b, c, d, and e specifically indicate the following positions.

【0039】a:電極の横で電極端部から被処理物中心
までの距離が40mm b:電極の横で電極端部から被処理物中心までの距離が
100mm c:bの上方でbから被処理物中心までの距離が100
mm d:bの下方、bから被処理物中心までの距離が100
mm e:電極に対してdと対称の位置
A: The distance from the end of the electrode to the center of the object to be processed is 40 mm beside the electrode. B: The distance from the end of the electrode to the center of the object to be processed is 100 mm beside the electrode. Distance to center of processed material is 100
mm d: Below b, the distance from b to the center of the object is 100
mm e: Position symmetrical to d with respect to the electrode

【0040】次に、表1に示す反応ガス及び希釈ガスの
混合ガスを導入し、表1に示す処理条件で表面処理を行
った。比較のため、電極間に被処理物を配置し、表1に
示す条件で表面処理を行った。
Next, a mixed gas of the reaction gas and the diluent gas shown in Table 1 was introduced, and surface treatment was performed under the treatment conditions shown in Table 1. For comparison, an object to be treated was placed between the electrodes and surface treatment was performed under the conditions shown in Table 1.

【0041】また、図1の装置の代りに図2の装置を用
いて同様に表面処理を行った。
Further, the apparatus shown in FIG. 2 was used instead of the apparatus shown in FIG.

【0042】[0042]

【表1】 [Table 1]

【0043】表1の結果から、電極間に被処理物を配置
せず、放電部と離間して被処理物を配置することによ
り、電極間にほぼ隙間なく被処理物を配置した場合(比
較例1〜4)と比べ、ガスの導入が拡散法、吹き付け法
いずれの場合も表面処理が良好になされていることがわ
かる。
From the results shown in Table 1, when the object to be processed is arranged without any gap between the electrodes by disposing the object to be processed apart from the discharge part without disposing the object to be processed between the electrodes (comparison As compared with Examples 1 to 4), it can be seen that the surface treatment is performed well regardless of whether the gas is introduced by the diffusion method or the blowing method.

【0044】[実施例11〜20]上記実施例と同様に
して被処理物の配置位置を変えて表2に示す条件で表面
処理を行い、被処理物の配置位置による表面処理の相違
を調べた。結果を表2に示す。
[Examples 11 to 20] Similar to the above example, the arrangement position of the object to be treated was changed to perform the surface treatment under the conditions shown in Table 2, and the difference in the surface treatment depending on the arrangement position of the object to be treated was examined. It was The results are shown in Table 2.

【0045】[0045]

【表2】 [Table 2]

【0046】表2の結果から、ガス導入法、電極に対す
る被処理物の配置位置による影響は少なく、また、電極
から十分に離れた箇所に被処理物を配置した場合でも良
好に表面処理されることがわかる。
From the results shown in Table 2, there is little influence of the gas introduction method and the position of the object to be treated with respect to the electrode, and the surface treatment is excellent even when the object to be treated is disposed at a position sufficiently distant from the electrode. I understand.

【0047】[実施例21,22、比較例5,6]下記
に示す配合のゴム組成物を加硫した加硫ゴム(34×7
5×5mm)の表面処理を図1,2の装置を用い、表3
に示す条件で行い、被処理加硫ゴムについて下記方法で
接着力を評価した。結果を表3に示す。ゴム組成物処方 SBR(日本合成ゴム社製,1502) 50部 NR 50部 カーボンブラック 60部 硫黄 2部 亜鉛華 5部 老化防止剤(注1) 1 加硫促進剤(注2) 1 (注1)N,N’−ジフェニル−p−フェニレンジアミ
ン(DPPD) (注2)N−オキシジエチレン−2−ベンゾチアゾール
(NOBS)表面処理方法 実施例21,22については10枚ずつ、比較例5,6
については2枚ずつ表面処理し、処理面にフェノール系
接着剤を塗布した後、塗布面同士を重ね合わせ、150
℃で30分間加熱圧着して接着させ、図4に示すように
T字剥離テストを行い、接着力を測定した。なお、図4
において15は加硫ゴム試験片、16は接着剤である。
[Examples 21 and 22, Comparative Examples 5 and 6] Vulcanized rubber (34 × 7) obtained by vulcanizing the rubber composition having the following composition.
5 × 5 mm) surface treatment using the apparatus of FIGS.
The adhesion strength of the vulcanized rubber to be treated was evaluated by the following method. The results are shown in Table 3. Rubber composition formulation SBR (Nippon Synthetic Rubber Co., Ltd., 1502) 50 parts NR 50 parts Carbon black 60 parts Sulfur 2 parts Zinc white 5 parts Antioxidant (Note 1) 1 Vulcanization accelerator (Note 2) 1 (Note 1 ) N, N'-diphenyl-p-phenylenediamine (DPPD) (Note 2) N-oxydiethylene-2-benzothiazole (NOBS) surface treatment method For Examples 21 and 22, 10 sheets each, Comparative Examples 5 and 6
For each of the two, the surface treatment was performed two by two, and the treated surface was coated with a phenolic adhesive, and then the coated surfaces were overlapped with each other.
Adhesion was measured by thermocompression bonding at 30 ° C. for 30 minutes, and a T-shaped peel test was performed as shown in FIG. 4 to measure the adhesive strength. Note that FIG.
In the above, 15 is a vulcanized rubber test piece, and 16 is an adhesive.

【0048】[0048]

【表3】 [Table 3]

【0049】[実施例23〜26]図3に示す処理装置
において、処理室が300mm×300mm×300m
m(外寸)のアクリル製容器、電極が80mm×150
mmの人工合成雲母で被覆した平行平板型(3mm間
隔)のもの、ガス導入管12の長さが700mmのもの
を用い、実施例1と同様の処方のゴム組成物を加硫した
得た加硫ゴム(70mm×10mm×2mm)を反応ガ
スとしてO2+CHClF2を用いて、表4に示す処理時
間で加硫ゴムの表面処理を行い、実施例21と同様にし
て接着力試験を行った。結果を表4に併記する。
[Embodiments 23 to 26] In the processing apparatus shown in FIG. 3, the processing chamber has a size of 300 mm × 300 mm × 300 m.
m (outside size) acrylic container, electrode 80 mm x 150
A rubber composition having the same formulation as in Example 1 was vulcanized by using a parallel plate type (3 mm interval) coated with artificial synthetic mica of 3 mm and a gas introduction tube 12 having a length of 700 mm. The surface treatment of the vulcanized rubber was performed for the treatment time shown in Table 4 using O 2 + CHClF 2 with the vulcanized rubber (70 mm × 10 mm × 2 mm) as the reaction gas, and the adhesive strength test was performed in the same manner as in Example 21. . The results are also shown in Table 4.

【0050】[0050]

【表4】 [Table 4]

【0051】[実施例27]図2に示したものと同様の
処理装置(図5)において、電極2a,2b間の距離を
3mmとし、実施例1と同様の処方のゴム組成物を加硫
した得た加硫ゴム(70mm×10mm×2mm)を反
応ガスとしてO2+CHClF2を用いて、電極2a,2
bと被処理物17との距離dを変え、処理時間60秒で
加硫ゴムの表面処理を行い、実施例21と同様にして接
着力試験を行った。結果を図6に示す。図6から、電極
から10 〜103mm程度離れた箇所に被処理物を置い
た場合、複数のサンプルにおける接着力の差が小さく、
処理むらが少ないことがわかる。
[Embodiment 27] Similar to that shown in FIG.
In the processing device (FIG. 5), the distance between the electrodes 2a and 2b
3 mm, and vulcanize the rubber composition having the same formulation as in Example 1.
The obtained vulcanized rubber (70 mm × 10 mm × 2 mm)
O as a response gas2+ CHClF2Using the electrodes 2a, 2
By changing the distance d between b and the object to be processed 17, the processing time is 60 seconds.
The vulcanized rubber was surface-treated and then treated in the same manner as in Example 21.
An adhesion test was conducted. Results are shown in FIG. From FIG. 6, the electrode
From 10 -103Place the object to be processed at a place about mm away
The difference in adhesive strength between multiple samples is small,
It can be seen that there is little processing unevenness.

【0052】[0052]

【発明の効果】本発明によれば、被処理物の形状や大き
さに制約が少なく、大気圧グロープラズマを用いて各種
材料の表面処理を効率よく行うことができる。また、被
処理物を電極から十分に離した状態でも表面処理するこ
とができるので、放電装置の設計、処理条件などの自由
度が大きいという利点がある。
According to the present invention, there are few restrictions on the shape and size of the object to be treated, and surface treatment of various materials can be efficiently performed using atmospheric pressure glow plasma. Further, since the surface treatment can be performed even when the object to be treated is sufficiently separated from the electrode, there is an advantage that the degree of freedom in designing the discharge device and treating conditions is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例に用いる大気圧プラ
ズマ処理装置の一例を示す概略図である。
FIG. 1 is a schematic view showing an example of an atmospheric pressure plasma processing apparatus used in Examples and Comparative Examples of the present invention.

【図2】本発明の実施例及び比較例に用いる大気圧プラ
ズマ処理装置の他の例を示す概略図である。
FIG. 2 is a schematic view showing another example of the atmospheric pressure plasma processing apparatus used in Examples and Comparative Examples of the present invention.

【図3】本発明の実施例に用いる大気圧プラズマ処理装
置の例を示す概略図である。
FIG. 3 is a schematic diagram showing an example of an atmospheric pressure plasma processing apparatus used in an embodiment of the present invention.

【図4】本発明の実施例及び比較例におけるT字剥離テ
ストの説明図である。
FIG. 4 is an explanatory diagram of a T-shaped peel test in Examples and Comparative Examples of the present invention.

【図5】本発明の実施例において用いる大気圧プラズマ
処理装置を示す概略図である。
FIG. 5 is a schematic view showing an atmospheric pressure plasma processing apparatus used in an example of the present invention.

【図6】本発明の実施例における電極と被処理物の距離
と接着力との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between a distance between an electrode and an object to be processed and an adhesive force in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 処理室 2a 印加電極 2b 接地電極 3 被処理物 4 ガス供給管 6 ガス排出管 7 交流電源 8 放電室 9 処理室 10a印加電極 10b接地電極 11 ガス供給管 12 ガス導入管 13 被処理物 14 ガス排出管 DESCRIPTION OF SYMBOLS 1 processing chamber 2a application electrode 2b grounding electrode 3 object to be processed 4 gas supply pipe 6 gas discharge tube 7 AC power supply 8 discharge chamber 9 processing chamber 10a applying electrode 10b grounding electrode 11 gas supply tube 12 gas introduction pipe 13 object to be processed 14 gas Discharge pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所用のガス存在下において大気圧又はそ
の近傍の圧力中で印加電極と接地電極との間に電圧を印
加してグロープラズマを発生させ、被処理物表面を大気
圧プラズマ法により処理する表面処理方法において、被
処理物を上記両電極間の放電部分と10mm以上離間し
た位置に配置することを特徴とする表面処理方法。
1. A glow plasma is generated by applying a voltage between an application electrode and a ground electrode in the presence of a desired gas under atmospheric pressure or a pressure in the vicinity thereof to generate a glow plasma, and the surface of the object to be processed is treated by the atmospheric pressure plasma method. In the surface treatment method for treating, the object to be treated is arranged at a position separated by 10 mm or more from the discharge part between the both electrodes.
【請求項2】 上記ガスがハロゲン原子、酸素原子又は
窒素原子を含むものである請求項1記載の方法。
2. The method according to claim 1, wherein the gas contains a halogen atom, an oxygen atom or a nitrogen atom.
【請求項3】 被処理物が加硫ゴムである請求項1又は
2記載の方法。
3. The method according to claim 1, wherein the object to be treated is a vulcanized rubber.
【請求項4】 上記被処理物を配置する処理室と、該処
理室の上流に位置し、かつ上記プラズマを発生させる放
電室とを有する処理装置を用いることにより、上記被処
理物と上記放電部分とを離間した位置に配置することを
特徴とする請求項1記載の方法。
4. A processing apparatus having a processing chamber in which the object to be processed is arranged and a discharge chamber located upstream of the processing chamber and generating the plasma is used, whereby the object to be processed and the discharge are discharged. The method according to claim 1, wherein the portion and the portion are spaced apart from each other.
JP30587693A 1993-11-11 1993-11-11 Method for surface treatment Pending JPH07132554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30587693A JPH07132554A (en) 1993-11-11 1993-11-11 Method for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30587693A JPH07132554A (en) 1993-11-11 1993-11-11 Method for surface treatment

Publications (1)

Publication Number Publication Date
JPH07132554A true JPH07132554A (en) 1995-05-23

Family

ID=17950405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30587693A Pending JPH07132554A (en) 1993-11-11 1993-11-11 Method for surface treatment

Country Status (1)

Country Link
JP (1) JPH07132554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315915B1 (en) 1999-09-02 2001-11-13 Acushnet Company Treatment for facilitating bonding between golf ball layers and resultant golf balls

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315915B1 (en) 1999-09-02 2001-11-13 Acushnet Company Treatment for facilitating bonding between golf ball layers and resultant golf balls
US8137212B2 (en) 1999-09-02 2012-03-20 Acushnet Company Treatment for facilitating bonding between golf ball layers and resultant golf balls

Similar Documents

Publication Publication Date Title
EP0606014B1 (en) Surface treating method
US5085727A (en) Plasma etch apparatus with conductive coating on inner metal surfaces of chamber to provide protection from chemical corrosion
US5041304A (en) Surface treatment method
GB2259185A (en) Method and apparatus for surface treatment
JP3395507B2 (en) Surface treatment method for vulcanized rubber and method for producing rubber-based composite material
US5284543A (en) Method for preparing a rubber-based composite material
US5268200A (en) Method of forming plasma etch apparatus with conductive coating on inner metal surfaces of chamber to provide protection from chemical corrosion
US6013153A (en) Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
JP2002151478A (en) Method and apparatus for dry etching
EP0841838B1 (en) Plasma treatment apparatus and plasma treatment method
US6092486A (en) Plasma processing apparatus and plasma processing method
JP3232643B2 (en) Method for producing rubber-based composite material
JPH07132554A (en) Method for surface treatment
JPH10199697A (en) Surface treatment device by atmospheric pressure plasma
WO2000001528A1 (en) Methods for plasma modification of substrates
US5988104A (en) Plasma treatment system
JP3057742B2 (en) Surface treatment method of fluorine-based member and method of compounding fluorine-based member
JP3146647B2 (en) Surface treatment method for vulcanized rubber
JPH06108257A (en) Atmospheric pressure blow-off plasma reaction device
JPS6344965A (en) Formation of multilayer film
JP3269237B2 (en) Surface treatment method
WO2009116579A1 (en) Plasma processing method and plasma processing apparatus
JP2003064207A (en) Dry surface treatment method for making surface of porous material hydrophilic
JPH08217897A (en) Method for plasma surface treatment and device for plastic surface treatment
JP2000129015A (en) Surface modification method of fluorine resin molded article