JPH07131936A - Dc transmission controller - Google Patents

Dc transmission controller

Info

Publication number
JPH07131936A
JPH07131936A JP5273561A JP27356193A JPH07131936A JP H07131936 A JPH07131936 A JP H07131936A JP 5273561 A JP5273561 A JP 5273561A JP 27356193 A JP27356193 A JP 27356193A JP H07131936 A JPH07131936 A JP H07131936A
Authority
JP
Japan
Prior art keywords
power
voltage
converter
control
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5273561A
Other languages
Japanese (ja)
Inventor
Yasuyuki Sugiura
康之 杉浦
Shigeta Ueda
茂太 上田
Mitsusachi Motobe
光幸 本部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5273561A priority Critical patent/JPH07131936A/en
Publication of JPH07131936A publication Critical patent/JPH07131936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

PURPOSE:To perform the power control inclusive of the direction of the power flow by controlling the voltage of a converter, which mainly supplies power, and its DC terminal to be constant, and performing the constant control of power, according to circulation power, in respect of other converters, in case that there are plurality of self exciting power converters being coupled through a DC line. CONSTITUTION:For example, the power converter of a power receiver and transmitter 1 performs DC constant control by a voltage controller 49, and besides the power converters of power receiver and transmitters 2, 3,...47, and 48 control the circulation power of power converters, according to the directions required by the system and necessary power by means of circulation voltage controllers 52, 54, 56, and 58. And, a voltage controllers 46 changes over switches 59-63 and changes over one unit into DC voltage constant control out of other residual power converters in case that the power converter to perform DC voltage fixed control goes wrong, and other power converters controls the power of power converters, according to the direction required by the system and power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流送電あるいは交流
系統連系に使用する大容量半導体電力変換器を使用した
装置に係り、とくに複数台の電力変換器間で電力の融通
を行う時、直流端子の電圧の管理と潮流方向を含めた電
力制御を簡単に行うことが出来る直流送電制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus using a large-capacity semiconductor power converter used for DC power transmission or AC system interconnection, and particularly when electric power is exchanged between a plurality of power converters. The present invention relates to a DC power transmission control device that can easily control the voltage of a DC terminal and control power including a power flow direction.

【0002】[0002]

【従来の技術】半導体スイッチング素子を用いて交流を
直流に変換する順変換器または直流を交流に変換する逆
変換器において直流側電圧と交流側電圧とを検出して電
力を制御する制御装置において電力の融通方向を一定方
向にして直流送電を行っていた。 この例としては特開
昭63ー290128号公報に記載された手段がある。
2. Description of the Related Art In a controller for controlling electric power by detecting a DC side voltage and an AC side voltage in a forward converter for converting alternating current to direct current or an inverse converter for converting direct current to alternating current using a semiconductor switching element. DC power transmission was performed with the direction of power interchange fixed. An example of this is the means described in JP-A-63-290128.

【0003】[0003]

【発明が解決しようとする課題】特開昭63ー2901
28号公報に記載された例では順変換器と逆変換器の電
流方向が一定のため両方向による電力変換器相互間の電
力の融通が難しい。
Problems to be Solved by the Invention JP-A-63-2901
In the example disclosed in Japanese Patent No. 28, since the electric current directions of the forward converter and the inverse converter are constant, it is difficult to exchange electric power between the electric power converters in both directions.

【0004】さらに、電力変換器が複数台の多端子の直
流送電になると、潮流方向も頻繁に変化するため、電力
制御が複雑になる。このため、多端子の直流送電を行う
とき、どの電力変換器からも送受電でき、融通電力を安
定に供給できる、制御の容易な信頼性の高い直流送電シ
ステムを構成する必要がある。
Further, when a plurality of multi-terminal DC power transmissions are used for the power converter, the power flow direction also frequently changes, which complicates power control. For this reason, when multi-terminal DC power transmission is performed, it is necessary to configure a highly reliable DC power transmission system that can transmit and receive power from any power converter and can stably supply interchange power.

【0005】本発明はこのような事情に鑑みてなされた
ものであり、直流端子の電圧の管理と潮流方向を含めた
電力制御を簡単に行なうことができる直流送電制御装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a DC power transmission control device capable of easily controlling the voltage of a DC terminal and controlling the power including the flow direction. And

【0006】[0006]

【課題を解決するための手段】本発明の直流送電制御装
置は、交流を直流に変換すると共に直流を交流に変換す
る双方向に電力を融通可能な複数台の電圧形自励式電力
変換器で構成する直流送電システムにおいて、複数台の
電力変換器は、直流送電路の分岐点の直流端子の電圧を
検出して直流電圧を一定にするように制御する直流電圧
一定制御手段と、系統が必要とする方向と必要な電力に
応じて電力変換器の融通電力を制御する融通電力制御手
段とを備え、前記システムは、1台の電力変換器は直流
電圧一定制御を行い、かつ他の電力変換器は系統が必要
とする方向と必要な電力に応じて電力変換器の融通電力
を制御すると共に、直流電圧一定制御行う電力変換器が
故障したときは他の残りの電力変換器のうち、1台を直
流電圧一定制御に切替え、その他の電力変換器は系統が
必要とする方向と必要な電力に応じて電力変換器の電力
を制御する制御手段を有することを特徴とする。
The DC power transmission control device of the present invention is a plurality of voltage type self-exciting power converters capable of bidirectionally accommodating electric power for converting AC into DC and DC into AC. In the DC power transmission system to be configured, a plurality of power converters require a DC voltage constant control means for detecting the voltage at the DC terminal at the branch point of the DC power transmission path and controlling the voltage to keep it constant, and a system. And a flexible power control means for controlling the flexible power of the power converter in accordance with the required power, and in the system, one power converter performs constant DC voltage control, and another power converter. The controller controls the interchanged power of the power converter according to the direction required by the system and the required power, and when the power converter that performs constant DC voltage control fails, of the other remaining power converters, 1 For constant DC voltage control Instead, other power converter is characterized by having a control means for controlling the power of the power converter according to the required power and the direction required by the system.

【0007】本発明の直流送電制御装置は、前記直流電
圧一定制御を行う電力変換器は運転されている複数台の
電力変換器のうち、最も大きい容量を持つ電力変換器で
あることを特徴とする。
In the DC power transmission control device of the present invention, the power converter for performing the DC voltage constant control is a power converter having the largest capacity among a plurality of operating power converters. To do.

【0008】すなわち、本発明の目的は、複数台、有す
る自励式電力変換器のうちの1台を自励式電力変換器の
直流電圧を一定にする制御を行うことで直流送電系の直
流端子電圧を任意の値に設定し、他の複数台の自励式電
力変換器を電力指令に基づいて電力一定制御を行うこと
により達成される。
That is, the object of the present invention is to control one of the plural self-excited power converters so that the direct-current voltage of the self-excited power converter is constant so that the DC terminal voltage of the DC power transmission system is controlled. Is set to an arbitrary value, and a plurality of other self-exciting power converters are controlled to perform constant power control based on a power command.

【0009】[0009]

【作用】交流系統をGTO等の半導体スイッチング素子
を用いた自励式電力変換器により交流電力を直流電力に
変換し、直流送電路を介して他の系統に電力を送電し、
GTO等の半導体スイッチング素子を用いた他の自励式
電力変換器を介して、直流電力を交流電力に変換して電
力を供給する直流送電システムにおいて、直流系統を介
して結合される自励式電力変換器が複数台ある場合に、
主に電力を供給する自励式電力変換器はその直流端子の
電圧を一定に制御し、他の残りの自励式電力変換器は融
通電力に応じて電力の一定制御を行う。
[Function] The AC system converts AC power into DC power by the self-exciting power converter using a semiconductor switching element such as GTO, and transmits the power to another system via the DC power transmission path.
In a DC power transmission system for converting DC power into AC power and supplying the power via another self-exciting power converter using a semiconductor switching element such as GTO, self-exciting power conversion coupled via a DC system If there are multiple vessels,
The self-excited power converter that mainly supplies electric power controls the voltage at its DC terminal to be constant, and the other remaining self-excited power converters perform constant control of power according to the interchanged power.

【0010】[0010]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1には本発明に係る直流送電制御装置の一実施
例の構成が示されている。同図は多端子による直流送電
制御装置を示しており、3端子の例を示している。同図
において、1は第1の送受電装置、2は第2の送受電装
置、3は第3の送受電装置である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an embodiment of a DC power transmission control device according to the present invention. The figure shows a DC power transmission control device with multiple terminals, and shows an example of three terminals. In the figure, 1 is a first power transmission / reception device, 2 is a second power transmission / reception device, and 3 is a third power transmission / reception device.

【0011】第1の送受電装置1に関し、4は交流系
統、5は直流系統、6は半導体スイッチング素子を用い
て交流を直流に、または直流を交流に変換する自励式電
力変換器である。
Regarding the first power transmission / reception apparatus 1, 4 is an AC system, 5 is a DC system, and 6 is a self-exciting power converter that converts AC into DC or DC into AC using a semiconductor switching element.

【0012】自励式電力変換器6はGTO等の自己消弧
素子で構成される。7は交流系統4と電力変換器6との
電圧の昇降を行う変圧器、8は直流送電線路リアクタン
ス、9はコンデンサ、10は直流電圧指令回路、11は
直流電圧検出器、12は制御装置である。
The self-excited power converter 6 is composed of a self-extinguishing element such as GTO. 7 is a transformer for raising and lowering the voltage between the AC system 4 and the power converter 6, 8 is a DC transmission line reactance, 9 is a capacitor, 10 is a DC voltage command circuit, 11 is a DC voltage detector, and 12 is a controller. is there.

【0013】また第2の送受電装置に関し、13は交流
系統、14は直流系統、15は半導体スイッチング素子
を用いて交流を直流に、または直流を交流に変換する自
励式電力変換器である。
Regarding the second power transmitting / receiving device, 13 is an alternating current system, 14 is a direct current system, and 15 is a self-exciting power converter for converting alternating current into direct current or direct current into alternating current using a semiconductor switching element.

【0014】自励式電力変換器15はGTO等の自己消
弧素子で構成される。16は交流系統13と電力変換器
15との電圧の昇降を行う変圧器、17は直流送電線路
リアクタンス、18はコンデンサ、19は電力指令回
路、20は交流系統13の系統電圧および周波数を測定
する計器用変圧器、21は交流系統2の電流を測定する
計器用変流器、22は電力検出器、23は制御装置であ
る。
The self-excited power converter 15 is composed of a self-extinguishing element such as GTO. 16 is a transformer that raises and lowers the voltage between the AC system 13 and the power converter 15, 17 is a DC transmission line reactance, 18 is a capacitor, 19 is a power command circuit, and 20 is a system voltage and frequency of the AC system 13. An instrument transformer, 21 is a current transformer for measuring the current of the AC system 2, 22 is a power detector, and 23 is a controller.

【0015】さらに第3の送受電装置に関し、24は交
流系統、25は直流系統、26は半導体スイッチング素
子を用いて交流を直流に、または直流を交流に変換する
自励式電力変換器である。自励式電力変換器26はGT
O等の自己消弧素子で構成される。27は交流系統24
と電力変換器26との電圧の昇降を行う変圧器、28は
直流送電線路リアクタンス、29はコンデンサ、30は
電力指令回路、31は交流系統24の電圧および周波数
を測定する計器用変圧器、32は交流系統24の電流を
測定する計器用変流器、33は電力検出器、34は制御
装置である。
Further, regarding the third power transmitting / receiving device, 24 is an alternating current system, 25 is a direct current system, and 26 is a self-exciting power converter for converting alternating current into direct current or direct current into alternating current using a semiconductor switching element. The self-excited power converter 26 is GT
It is composed of a self-extinguishing element such as O. 27 is an AC system 24
, A transformer that raises and lowers the voltage between the power converter 26 and the power converter 26, 28 is a DC transmission line reactance, 29 is a capacitor, 30 is a power command circuit, 31 is a voltage transformer for measuring the voltage and frequency of the AC system 24, 32 Is a current transformer for measuring the current of the AC system 24, 33 is a power detector, and 34 is a controller.

【0016】第3の送受電装置3は第1の送受電装置1
と第2の送受電装置2が接続されている直流電線路の途
中の接点35で連結されている。
The third power transmission / reception device 3 is the first power transmission / reception device 1.
And the second power transmission / reception device 2 are connected by a contact 35 in the middle of the DC power line.

【0017】いま、直流送電系の端子電圧は第1の送受
電装置1で決定する。これは系統の許容耐電圧を決定す
るものである。直流系統5のコンデンサ9の両端の電圧
が直流電圧検出器11で検出され、この検出された直流
電圧検出値と直流電圧指令値との偏差が比較器10Aで
求められ、この偏差が制御装置12に与えられる。
Now, the terminal voltage of the DC power transmission system is determined by the first power transmission / reception device 1. This determines the allowable withstand voltage of the system. The voltage across the capacitor 9 of the DC system 5 is detected by the DC voltage detector 11, the deviation between the detected DC voltage detection value and the DC voltage command value is obtained by the comparator 10A, and this deviation is determined by the controller 12 Given to.

【0018】制御装置12は電圧一定制御を行うべく、
パルス幅変調(PWM)パルスを生成し、自励式電力変
換器6に供給する。この結果、直流系統5の端子電圧を
一定に制御することができる。
The control device 12 performs constant voltage control,
A pulse width modulation (PWM) pulse is generated and supplied to the self-excited power converter 6. As a result, the terminal voltage of the DC system 5 can be controlled to be constant.

【0019】次に、第2の送受電装置に関し、融通電力
一定制御を行う。交流系統13の3相電圧が計器用変圧
器20で、3相電流が計器用変流器21でそれぞれ、検
出され、電力検出器22は該3相電圧と3相電流から交
流系統13の電力を検出する。 比較器19Aは電力指
令回路19から出力される電力指令値と電力検出器22
で検出された電力検出値とを比較してその偏差を求め
る。
Next, with respect to the second power transmitting / receiving device, the interchange power constant control is performed. The three-phase voltage of the AC system 13 is detected by the instrument transformer 20 and the three-phase current is detected by the instrument current transformer 21, and the power detector 22 detects the power of the AC system 13 from the three-phase voltage and the three-phase current. To detect. The comparator 19A has a power command value output from the power command circuit 19 and a power detector 22.
The deviation is obtained by comparing with the detected power value detected in.

【0020】制御装置23はこの偏差から有効電力一定
制御を行うべく、PWMパルスを生成し、自励式電力変
換器15に供給する。この結果、第2の送受電装置2の
直流系統14の電圧を管理することなく交流系統13よ
り電力の融通を受ける事が出来る。また、電力指令回路
19から出力される電力指令値の符号を負に設定すると
交流系統13に電力を供給することが出来る。
The control device 23 generates a PWM pulse and supplies it to the self-excited power converter 15 in order to perform the active power constant control from this deviation. As a result, it is possible to receive power interchange from the AC system 13 without managing the voltage of the DC system 14 of the second power transmitting and receiving device 2. Further, when the sign of the power command value output from the power command circuit 19 is set to a negative value, power can be supplied to the AC system 13.

【0021】また、第3の送受電装置3の場合も第2の
送受電装置2と同様、融通電力一定制御を行う。第3の
送受電装置3は第1の送受電装置1と第2の送受電装置
2が接続されている直流電線路の途中の接点35で連結
され、直流送電線路リアクタンス28を介して自励式変
換器26と連結されている。交流系統24の3相電圧が
計器用変圧器31で、3相電流が計器用変流器32で、
それぞれ検出され、電力検出器33は該3相電圧と3相
電流から交流系統24の電力を検出する。
Also, in the case of the third power transmitting / receiving device 3, similar to the second power transmitting / receiving device 2, the interchange power constant control is performed. The third power transmission / reception device 3 is connected to the first power transmission / reception device 1 and the second power transmission / reception device 2 by a contact 35 in the middle of the DC power line, and is self-excited conversion via the DC power transmission line reactance 28. Is connected to the container 26. The three-phase voltage of the AC system 24 is the instrument transformer 31, and the three-phase current is the instrument current transformer 32.
Each is detected, and the power detector 33 detects the power of the AC system 24 from the three-phase voltage and the three-phase current.

【0022】比較器30Aは電力指令回路30から出力
される電力指令値と電力検出器33で検出された電力検
出値とを比較してその偏差を求める。
The comparator 30A compares the power command value output from the power command circuit 30 with the power detection value detected by the power detector 33 to obtain the deviation.

【0023】制御装置34はこの偏差から有効電力一定
制御を行うべく、PWMパルスを生成し、自励式電力変
換器26に供給する。この結果、第3の送受電装置3の
直流系統25の電圧を管理することなく、交流系統24
より電力の融通を受ける事が出来る。
The control device 34 generates a PWM pulse and supplies it to the self-excited power converter 26 in order to perform the active power constant control based on this deviation. As a result, the AC system 24 does not have to manage the voltage of the DC system 25 of the third power transmitting and receiving device 3.
More power can be accommodated.

【0024】また、電力指令回路30から出力される電
力指令値の符号を負に設定すると交流系統24に電力を
供給することが出来る。
If the sign of the power command value output from the power command circuit 30 is set to a negative value, power can be supplied to the AC system 24.

【0025】さらに、図1では第3の送受電装置までを
記載してあるが、多数の送受電装置が直流系統につなが
っている場合、それぞれの送受電装置の電力指令の値を
正負に設定することで複数の交流系統間で自由に送受電
を行うことができる。
Further, although FIG. 1 shows up to the third power transmitting / receiving device, when a large number of power transmitting / receiving devices are connected to the DC system, the power command value of each power transmitting / receiving device is set to positive or negative. By doing so, it is possible to freely transmit and receive power between a plurality of AC systems.

【0026】次に本発明に係る直流送電制御装置の具体
的構成を図2に示す。本実施例では簡単化のため、2端
子の例を示している。同図において図1に示した要素と
同一の要素には同一の参照番号を付してある。
Next, FIG. 2 shows a specific configuration of the DC power transmission control device according to the present invention. In this embodiment, an example of two terminals is shown for simplification. In the figure, the same elements as those shown in FIG. 1 are designated by the same reference numerals.

【0027】同図において第1の直流送受電装置1は直
流系統の電圧を管理をする装置、第2の直流送受電装置
2は電力を管理をする装置として機能するものとする。
36は電力や送電系の指令を与える、上位の指令部であ
る。
In the figure, the first DC power transmitting / receiving device 1 functions as a device for managing the voltage of the DC system, and the second DC power transmitting / receiving device 2 functions as a device for managing the power.
Reference numeral 36 is a higher order command unit that gives commands for power and power transmission systems.

【0028】また第1の直流送受電装置1および第2の
直流送受電装置2は電圧の管理および電力の管理を行う
ことが出来るように電圧フィードバック系と電力フィー
ドバック系の2つの制御系を有している。
The first DC power transmission / reception device 1 and the second DC power transmission / reception device 2 have two control systems, a voltage feedback system and a power feedback system, so as to manage the voltage and the power. is doing.

【0029】上位の指令部36において、37は直流電
圧指令部、38は融通電力指令部、39は潮流方向指令
部、40は上位無効電力指令部1、41は上位無効電力
指令部2、42はスイッチ1、43はスイッチ2、44
はスイッチ3、45はスイッチ4である。
In the higher order command section 36, 37 is a DC voltage command section, 38 is an interchange power command section, 39 is a power flow direction command section, 40 is a higher reactive power command section 1, 41 is a higher reactive power command section 2, 42. Is switch 1, 43 is switch 2, 44
Is a switch 3 and 45 is a switch 4.

【0030】第1の直流送受電装置1において、10
1、102は比較器、104は電圧一定制御部、105
は有効電力指令部、103は無効電力指令部、106は
スイッチ5、107は電流制御部、108はベクトル演
算部、109はPWMパルス発生部、110は第1の交
流系統4の電圧および周波数を測定する計器用変圧器、
111は第1の交流系統4の電流を測定する計器用変流
器、112は交流系統4の位相角θを検出する同期検出
器、113は3相電圧を2相の電圧に変換する3相/2
相電圧変換器、114は3相電流を2相の電流に変換す
る3相/2相電流変換器、115は系統4の電力を検出
する電力検出器である。116、117および119は
サンプリング時間毎に交流系統4の電圧および電流のア
ナログ値をディジタル値に変換するA/D変換器であ
る。また118は自励式電力変換器6の入力交流電圧を
測定するための計器用変圧器である。
In the first DC power transmitter / receiver 1, 10
1, 102 are comparators, 104 is a constant voltage controller, 105
Is an active power command unit, 103 is a reactive power command unit, 106 is a switch 5, 107 is a current control unit, 108 is a vector operation unit, 109 is a PWM pulse generation unit, and 110 is the voltage and frequency of the first AC system 4. Measuring instrument transformer,
Reference numeral 111 is a current transformer for measuring the current of the first AC system 4, 112 is a synchronous detector for detecting the phase angle θ of the AC system 4, and 113 is a three-phase voltage that converts a three-phase voltage into a two-phase voltage. / 2
A phase voltage converter, 114 is a three-phase / two-phase current converter that converts a three-phase current into a two-phase current, and 115 is a power detector that detects the power of the grid 4. Reference numerals 116, 117 and 119 are A / D converters that convert the analog values of the voltage and current of the AC system 4 into digital values at each sampling time. Reference numeral 118 is an instrument transformer for measuring the input AC voltage of the self-excited power converter 6.

【0031】第2の直流送受電装置2において、20
1、202は比較器、204は電圧一定制御部、205
は有効電力指令部、203は無効電力指令部、206は
スイッチ6、207は電流制御部、208はベクトル演
算部、209はPWMパルス発生部、210は交流系統
13の位相角θを検出する同期検出器、211は3相電
圧を2相の電圧に変換する3相/2相電圧変換器、21
2は3相電流を2相の電流に変換する3相/2相電流変
換器、213は交流系統13の電力を検出する電力検出
器である。214、215および217はサンプリング
時間毎に交流系統13の電圧および電流のアナログ値を
ディジタル値に変換するA/D変換器である。216は
自励式電力変換器15の交流電圧を測定するための計器
用変圧器である。
In the second DC power transmitter / receiver 2, 20
1, 202 are comparators, 204 is a constant voltage controller, 205
Is an active power command unit, 203 is a reactive power command unit, 206 is a switch 6, 207 is a current control unit, 208 is a vector calculation unit, 209 is a PWM pulse generation unit, 210 is a synchronization for detecting the phase angle θ of the AC system 13. A detector, 211 is a three-phase / two-phase voltage converter for converting a three-phase voltage into a two-phase voltage, 21
Reference numeral 2 is a 3-phase / 2-phase current converter that converts a 3-phase current into a 2-phase current, and 213 is a power detector that detects the power of the AC system 13. Reference numerals 214, 215 and 217 are A / D converters that convert the analog values of the voltage and current of the AC system 13 into digital values at each sampling time. Reference numeral 216 is a voltage transformer for measuring the AC voltage of the self-excited power converter 15.

【0032】上記構成において第1の直流送受電装置1
が直流電圧の管理、第2の直流送受電装置2が電力の管
理を行う時、第1の直流送受電装置1の電圧指令ER1は
直流電圧指令部37からスイッチ2(43)とスイッチ
1(42)を介し、比較器101に入力される。
In the above structure, the first DC power transmitting / receiving device 1
When the second DC power transmission / reception device 2 manages the power, the voltage command ER1 of the first DC power transmission / reception device 1 is sent from the DC voltage command unit 37 to the switch 2 (43) and the switch 1 ( 42) and is input to the comparator 101.

【0033】比較器101は直流系統5の直流電圧検出
値EF1と比較し、その偏差をもとに電圧一定制御部10
4は比例、積分制御を行い、その出力はスイッチ5(1
06)を介して有効電流指令Iq1として電流制御部1
07に供給される。有効電流指令Iq1は次式で表わさ
れる。
The comparator 101 compares the detected DC voltage value EF1 of the DC system 5 with the voltage constant controller 10 based on the deviation.
4 performs proportional and integral control, and its output is switch 5 (1
06) as the effective current command Iq1 through the current control unit 1
It is supplied to 07. The active current command Iq1 is expressed by the following equation.

【0034】[0034]

【数1】 [Equation 1]

【0035】ここでKPdは比例定数であり、KIdは積分
定数である。
Here, KPd is a proportional constant and KId is an integral constant.

【0036】一方、上位系の無効電力指令部1(40)
から無効電力指令が無効電力制御部103に与えられ
る。無効電力指令部103では無効電力指令と交流系統
4の系統電圧と自励式電力変換器6の入力交流電圧から
無効電流指令Id1を求め、電流制御部107に供給す
る。この時、交流系統4の系統電圧を計器用変圧器11
0で検出し、3相のアナログ電圧をA/D変換器116
でディジタル値に変換し、自励式電力変換器6の入力交
流電圧は計器用変圧器118で検出し、3相のアナログ
電圧をA/D変換器119でディジタル値に変換する。
On the other hand, the reactive power command unit 1 (40) of the upper system
Gives a reactive power command to the reactive power control unit 103. The reactive power command unit 103 obtains a reactive current command Id1 from the reactive power command, the system voltage of the AC system 4, and the input AC voltage of the self-excited power converter 6, and supplies it to the current control unit 107. At this time, the system voltage of the AC system 4 is changed to the instrument transformer 11
0 is detected and the three-phase analog voltage is detected by the A / D converter 116.
Is converted to a digital value, the input AC voltage of the self-excited power converter 6 is detected by the instrument transformer 118, and the three-phase analog voltage is converted to a digital value by the A / D converter 119.

【0037】また、交流系統4の電流を計器用変流器1
11で検出し、3相のアナログ電流をA/D変換器11
7でディジタル値に変換し、3相/2相電圧変換器11
3および3相/2相電流変換器114で3相/2相変換
し、d軸q軸上で制御を行う。 電流制御部107は電
圧一定制御部104の出力をq軸電流指令Iq1とし、
無効電力指令部103の出力をd軸電流指令Id1とし
て、3相/2相電流変換器114のd−q軸電流検出値
を受けて式(1)と同様な手法で比例、積分制御を行
う。一般に3相から2相のd−q軸に変換する式を式
(2)から式(6)に示す。
In addition, the current of the AC system 4 is changed to the current transformer 1 for measuring instrument.
11, and the three-phase analog current is detected by the A / D converter 11
Converted to digital value at 7 and 3 phase / 2 phase voltage converter 11
Three-phase / two-phase current converter 114 performs three-phase / two-phase conversion, and control is performed on the d axis and q axis. The current control unit 107 sets the output of the constant voltage control unit 104 as the q-axis current command Iq1,
The output of the reactive power command unit 103 is set as the d-axis current command Id1 and the dq-axis current detection value of the three-phase / two-phase current converter 114 is received to perform proportional and integral control by the same method as the equation (1). . In general, the equations for converting the three-phase to the two-phase dq axes are shown in the equations (2) to (6).

【0038】[0038]

【数2】 [Equation 2]

【0039】[0039]

【数3】 [Equation 3]

【0040】ここでIu,Iv,Iwは3相電流である。同
様に電圧の3相/2相変換に関し、A/D変換器116
でディジタル値に変換した値から式(4)、(5)で求
める。
Here, Iu, Iv, and Iw are three-phase currents. Similarly, regarding the 3-phase / 2-phase conversion of the voltage, the A / D converter 116
From the value converted into the digital value in step (4), the value is calculated by equations (4) and (5).

【0041】[0041]

【数4】 [Equation 4]

【0042】[0042]

【数5】 [Equation 5]

【0043】ここでVu,Vv,Vwは3相電圧である。Here, Vu, Vv, and Vw are three-phase voltages.

【0044】電流制御部107は比例、積分演算を行
い、その出力は2相の電圧Vq1、Vd1である。
The current control unit 107 performs proportional and integral calculations, and outputs the two-phase voltages Vq1 and Vd1.

【0045】ベクトル演算部108は2相の電圧Vq
1、Vd1を式(6)及び式(7)を用い、3相の電圧
Vu1、Vv1,Vw1に戻す。3相/2相変換または
2相/3相変換時の位相角θはサンプリング時間毎の交
流系統4の位相を同期検出器112で検出して求められ
る。
The vector calculation unit 108 calculates the two-phase voltage Vq.
1 and Vd1 are returned to the three-phase voltages Vu1, Vv1, and Vw1 by using the expressions (6) and (7). The phase angle θ at the time of 3-phase / 2-phase conversion or 2-phase / 3-phase conversion is obtained by detecting the phase of the AC system 4 at each sampling time with the synchronization detector 112.

【0046】[0046]

【数6】 [Equation 6]

【0047】[0047]

【数7】 [Equation 7]

【0048】ベクトル演算部108により2相/3相変
換された3相電圧Vu1、Vv1,Vw1からPWMパ
ルス発生部109でPWMパルスを作り、このPWMパ
ルスを自励式電力変換器6を構成するGTO等の半導体
スィチング素子のゲート信号として与え、直流系統5の
直流電圧を一定に制御できる。
A PWM pulse is generated from the three-phase voltages Vu1, Vv1 and Vw1 which are converted into two-phase / three-phase by the vector operation unit 108, and a PWM pulse is generated by the PWM pulse generation unit 109, and this PWM pulse constitutes the self-excited power converter 6. It is possible to control the DC voltage of the DC system 5 to be constant by giving it as a gate signal of a semiconductor switching element such as.

【0049】第2の直流送受電装置2の電力指令PR2は
融通電力指令部38からスイッチ3(44)とスイッチ
4(45)を介し比較器202に入力される。
The power command PR2 of the second DC power transmitter / receiver 2 is input from the interchange power command unit 38 to the comparator 202 via the switch 3 (44) and the switch 4 (45).

【0050】比較器202は交流系統13の電力検出値
PF2と比較しその偏差をもとに有効電力制御部205は
比例、積分制御を行う。
The comparator 202 compares the detected power value PF2 of the AC system 13 and the active power control unit 205 performs proportional and integral control based on the deviation.

【0051】電力検出値PF2は次のように求める。The power detection value PF2 is obtained as follows.

【0052】交流系統13の電圧を計器用変圧器20で
検出し、3相の電圧をA/D変換器214でディジタル
値に変換し、また、交流系統13の電流を計器用変流器
21で検出し、3相の電流をA/D変換器215でディ
ジタル値に変換し、3相/2相電圧変換器211および
3相/2相電流変換器212は式(2)から式(5)を
用い、第1の直流送受電装置1と同様に2相の電圧、電
流Vq2、Vd2、Iq2、Id2を求める。電力検出
値PF2は式(8)で求められる。
The voltage of the AC system 13 is detected by the meter transformer 20, the three-phase voltage is converted into a digital value by the A / D converter 214, and the current of the AC system 13 is measured by the meter current transformer 21. And the three-phase current is converted into a digital value by the A / D converter 215, and the three-phase / two-phase voltage converter 211 and the three-phase / 2-phase current converter 212 are expressed by equations (2) to (5). ) Is used to determine the two-phase voltages and the currents Vq2, Vd2, Iq2, and Id2 as in the first DC power transmitting / receiving device 1. The detected power value PF2 is obtained by the equation (8).

【0053】[0053]

【数8】 [Equation 8]

【0054】一方、有効電力制御部205では式(9)
を用いて演算し、その出力はスイッチ6(206)を介
して有効電流指令Iq2として電流制御部207に供給
する。
On the other hand, in the active power control unit 205, equation (9)
And the output is supplied to the current control unit 207 as the active current command Iq2 via the switch 6 (206).

【0055】[0055]

【数9】 [Equation 9]

【0056】ここでKPP2は比例定数であり、KIP2は積
分定数である。
Here, KPP2 is a proportional constant and KIP2 is an integral constant.

【0057】一方、上位系の無効電力指令部2(41)
から無効電力指令が無効電力指令部203に与えられ
る。無効電力指令部203では無効電力指令と交流系統
13の電圧と電力変換器15の交流電圧から無効電流指
令Id2として電流制御部207に与える。電流制御部
207は比例、積分演算を行い、その出力はVq2、V
d2である。
On the other hand, the reactive power command unit 2 (41) of the upper system
Supplies the reactive power command to the reactive power command unit 203. The reactive power command unit 203 gives a reactive current command Id2 to the current control unit 207 from the reactive power command, the voltage of the AC system 13 and the AC voltage of the power converter 15. The current control unit 207 performs proportional and integral calculations, and the output is Vq2, V
d2.

【0058】ベクトル演算部208は2相の電圧Vq
2、Vd2を式(6)から式(7)を用い、3相の電圧
Vu2、Vv2,Vw2に戻す。3相/2相変換または
2相/3相変換時の位相角θはサンプリング時間毎の交
流系統13の位相を同期検出器210で検出して求めら
れる。
The vector calculation unit 208 calculates the two-phase voltage Vq.
2 and Vd2 are returned to the three-phase voltages Vu2, Vv2, and Vw2 by using the formulas (6) to (7). The phase angle θ at the time of 3-phase / 2-phase conversion or 2-phase / 3-phase conversion is obtained by detecting the phase of the AC system 13 at each sampling time with the synchronization detector 210.

【0059】2相/3相変換された3相の電圧Vu2、
Vv2,Vw2からPWMパルス発生部209でPWM
パルスを作り、自励式電力変換器15のGTO等の半導
体スィチング素子のゲート信号として与え、交流系統1
3の交流電力を一定に制御できる。
Three-phase voltage Vu2 converted from two-phase / three-phase,
PWM from Vv2, Vw2 by PWM pulse generator 209
A pulse is generated and given as a gate signal of a semiconductor switching element such as a GTO of the self-excited power converter 15, and the AC system 1
The AC power of 3 can be controlled to be constant.

【0060】また、電力制御部46から融通電力の方向
に対し、潮流方向指令39に指令を与え、スイッチ4
2、43、44、45、106、206を切り替えて直
流電圧制御か、交流電力制御かを切り替えることができ
る。
Further, the power control unit 46 gives a command to the power flow direction command 39 in the direction of the interchange power, and the switch 4
2, 43, 44, 45, 106, 206 can be switched to switch between DC voltage control and AC power control.

【0061】また、電力制御部46はべクトル演算器1
08および208の演算結果により各電力変換器の異常
を検出し、判断することができる。
Further, the power control unit 46 is the vector computing unit 1
An abnormality in each power converter can be detected and determined based on the calculation results of 08 and 208.

【0062】図2では2端子の直流送電を例にとり直流
送電制御装置の構成を示し、説明したが、多端子の直流
電力制御になったとき、直流電圧制御を実施している電
力変換器が故障したときは他の残りの内の1台の電力変
換器が直流電圧一定制御行い、その他の電力変換器はそ
れぞれが必要とする方向と必要な電力に応じて融通電力
を制御するように切り換えることで系統を安定化するこ
とができる。
In FIG. 2, the configuration of the DC power transmission control device is shown and explained by taking the DC power transmission of two terminals as an example. However, when the multi-terminal DC power control is performed, the power converter performing the DC voltage control is When a failure occurs, one of the other power converters performs constant DC voltage control, and the other power converters switch so as to control the interchange power according to the direction required and the power required. By doing so, the system can be stabilized.

【0063】図3はn台の多端子直流送受電装置の直流
電圧制御と融通電力を制御するための制御部の要部の構
成を示した図であり、図4は電力制御部46で融通電力
制御を行うための処理フローである。図につけた要素の
番号は第1図、2図と同一の要素には同一の参照符号を
付してある。47は第(nー1)番目の直流送受電装置、4
8は第n番目の直流送受電装置、49、51、53、5
5、57は各装置の電圧制御部、50、52、54、5
6、58は各装置の融通電力制御部である。
FIG. 3 is a diagram showing a configuration of a main part of a control unit for controlling the DC voltage control and the interchange power of the n multi-terminal DC power transmission / reception devices, and FIG. It is a processing flow for performing power control. The numbers of the elements attached to the drawings are the same as those in FIGS. 1 and 2, and the same reference numerals are attached. 47 is the (n-1) th DC power transmitting / receiving device, 4
8 is the nth DC power transmitting / receiving device, 49, 51, 53, 5
5 and 57 are voltage control units of respective devices, 50, 52, 54 and 5
Reference numerals 6 and 58 are interchange power control units of each device.

【0064】また電圧制御部は図2の比較器101、電
圧一定制御部104で構成される電圧一定制御部に相当
し、融通電力制御部は比較器102、有効電力指令部1
05で構成される有効電力指令部に相当する。59、6
0、61、62、63は各直流送受電装置の電圧制御部
と融通電力制御部とを切り替えるスイッチであり、図2
のスイッチ42、43で構成されるスイッチに相当す
る。64、65、66、67、68は各直流送受電装置
の異常を検出し、電力制御部46に異常検出信号を伝達
する信号線である。直流送受電装置の番号をつける基本
方針は装置の容量の大きい順で送電を主体とする頻度の
多い順からNo.1,No.2・・・N0.nとする。
The voltage control unit corresponds to the voltage constant control unit composed of the comparator 101 and the voltage constant control unit 104 shown in FIG. 2, and the flexible power control unit is the comparator 102 and the active power command unit 1.
It corresponds to the active power command unit constituted by 05. 59, 6
Reference numerals 0, 61, 62, and 63 are switches that switch between the voltage control unit and the interchange power control unit of each DC power transmission / reception device.
Of the switches 42 and 43. Reference numerals 64, 65, 66, 67 and 68 are signal lines for detecting an abnormality in each DC power transmitting / receiving device and transmitting an abnormality detection signal to the power control unit 46. The basic policy for assigning numbers to DC power transmitters / receivers is No. 1 in descending order of frequency, mainly in the order of capacity. 1, No. 2 ... N0. n.

【0065】次に電力制御部46の動作を図4を参照し
て説明する。同図において直流送電装置の運転が開始さ
れると(ステップ69)、まずNo.1の装置1が稼働
しているか否かが判定される(ステップ70)。
Next, the operation of the power control section 46 will be described with reference to FIG. In the figure, when the operation of the DC power transmission device is started (step 69), first, No. It is determined whether the first device 1 is operating (step 70).

【0066】稼働しているならばステップ71でNo.
1の装置が正常かどうかが判定される。その判定の基準
例は図2のベクトル演算部108のデータが基準値以内
か否かで異常値の判定が行われる。正常ならばステップ
72でNo.1の装置1を直流電圧制御とし、ステップ
73でNo.2の装置2からNo.nの装置48を電力
制御に選択する。そこでステップ83で運転中止がある
までステップ84でシステム変更をチェックし、変更が
なければ運転中止(ステップ83)とシステム変更チェ
ック(ステップ84)の処理を繰り返す。
If it is operating, step 71 is executed.
It is determined whether the device of 1 is normal. As a reference example of the determination, an abnormal value is determined based on whether the data of the vector calculation unit 108 in FIG. 2 is within the reference value. If it is normal, in step 72 No. The device 1 of No. 1 is set to DC voltage control, and in step 73 No. No. 2 device 2 to No. n devices 48 are selected for power control. Therefore, the system change is checked in step 84 until the operation is stopped in step 83. If there is no change, the operation stop (step 83) and the system change check (step 84) are repeated.

【0067】システム変更があった時はステップ69に
戻って次のシステムを実行する。運転中止があった時は
ステップ86で運転を中止し、ステップ87で終了す
る。
When the system is changed, the process returns to step 69 to execute the next system. When the operation is stopped, the operation is stopped in step 86, and the process ends in step 87.

【0068】同様にステップ71、72、73、74の
処理はNo.2の装置以下で運転する場合、ステップ7
5、76、77、78の処理はNo.3の装置以下で運
転する場合、ステップ79、80、81、82の処理は
No.(nー1)の装置以下で運転する場合である。
Similarly, the processing of steps 71, 72, 73 and 74 is No. When operating with equipment of 2 or less, step 7
Nos. 5, 76, 77, and 78 are processed. When operating with the device of No. 3 or less, the processing of steps 79, 80, 81 and 82 is No. This is the case where the device is operated below the (n-1) device.

【0069】本発明の実施例によれば交流を直流に変換
すると共に、直流を交流に変換する双方向に電力を融通
可能な複数台の電圧形自励式電力変換器で構成する直流
送電システムにおいて、そのうち1台の電力変換器はそ
の電力変換器の直流電圧出力を指令とし、直流電圧出力
を検出して直流電圧一定制御を行い、残りの複数台の電
力変換器は送電または受電電力指令とし、電力出力を検
出して電力一定制御をするようにしたので直流電力の制
御を容易とし、系統の電圧を安定に保つことができると
共に、電力の管理が容易になる。
According to the embodiment of the present invention, in the direct current transmission system which is composed of a plurality of voltage type self-excited power converters capable of converting the alternating current into the direct current and bidirectionally converting the direct current into the alternating current. , One of the power converters uses the DC voltage output of the power converter as a command, performs DC voltage constant control by detecting the DC voltage output, and sets the remaining multiple power converters as a power transmission or power reception command. Since the electric power output is detected and the electric power is controlled to be constant, the DC electric power can be easily controlled, the voltage of the system can be kept stable, and the electric power can be easily managed.

【0070】また本実施例では電圧制御を1台の自励式
電力変換器で行い、残りの自励式電力変換器は電力制御
を行い、直流電圧を管理しないように構成したので、送
電線路の長短による線路インピーダンスが変化しても直
流送電路の電圧はかち合う事無く、安定な制御が可能と
なる。
Further, in this embodiment, the voltage control is performed by one self-exciting power converter, and the remaining self-exciting power converters are configured to perform power control and not manage the DC voltage. Even if the line impedance changes due to, the voltage of the DC transmission line does not conflict, and stable control is possible.

【0071】更に本実施例では多端子網の主なる分岐点
の電圧を、直流電圧一定制御を担当する電力変換器が検
出し、直流電圧制御をするように構成したので、直流送
電系統が過電圧または不足電圧となることなく安定な制
御を行なうことができる。
Further, in the present embodiment, the voltage at the main branch point of the multi-terminal network is detected by the power converter in charge of the constant DC voltage control, and the DC voltage control is performed. Alternatively, stable control can be performed without causing an undervoltage.

【0072】また本実施例では複数台の各電力変換器は
直流電圧一定制御を行う手段と、系統が必要とする方向
と必要な電力に応じて電力変換器の電力を制御する手段
の両方を備え、直流電圧一定制御を行う電力変換器が故
障したときは他の残りの電力変換器の1台が直流電圧一
定制御を行い、その他の電力変換器は系統が必要とする
方向と必要な電力に応じて電力変換器の電力を制御する
ように構成したので、直流送電系統が過電圧または不足
電圧となることがなく、安定な制御を行なうことができ
る。
Further, in this embodiment, each of the plurality of power converters has both means for performing constant DC voltage control and means for controlling the power of the power converter according to the direction required by the system and the required power. When a power converter that has a constant DC voltage control fails, one of the remaining power converters performs a constant DC voltage control, and the other power converters have the required direction and the required power for the system. Since the electric power of the power converter is controlled according to the above, stable control can be performed without the DC power transmission system becoming overvoltage or undervoltage.

【0073】[0073]

【発明の効果】以上に説明したように本発明によれば、
1台の電力変換器は直流電圧一定制御を行い、かつ他の
電力変換器は系統が必要とする方向と必要な電力に応じ
て電力変換器の融通電力を制御すると共に、直流電圧一
定制御を行う電力変換器が故障したときは他の残りの電
力変換器のうち、一台を直流電圧一定制御に切り替え、
その他の電力変換器は系統が必要とする方向と必要な電
力に応じて電力変換器の電力を制御するように構成した
ので、直流送電システムにおいて直流端子の電圧の管理
と潮流方向を含めた電力制御を容易におこなう事ができ
る。
As described above, according to the present invention,
One power converter performs constant DC voltage control, and the other power converter controls the interchange power of the power converter according to the direction required by the system and the required power, and also performs constant DC voltage control. When the power converter to perform fails, switch one of the remaining power converters to DC voltage constant control,
The other power converters are configured to control the power of the power converter according to the direction required by the grid and the required power, so in the DC power transmission system, the power management including the DC terminal voltage management and the power flow direction is included. Control can be performed easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る直流送電制御装置の一実施例の構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a DC power transmission control device according to the present invention.

【図2】本発明に係る直流送電制御装置の具体的構成を
示すブロック図である。
FIG. 2 is a block diagram showing a specific configuration of a DC power transmission control device according to the present invention.

【図3】n台の多端子直流送受電装置の直流電圧制御と
融通電力制御を行なうための制御部の要部の構成を示す
ブロック図である。
FIG. 3 is a block diagram showing a configuration of a main part of a control unit for performing DC voltage control and flexible power control of n multi-terminal DC power transmission / reception devices.

【図4】図3に示した電力制御部の制御内容を示すフロ
ーチャートである。
FIG. 4 is a flowchart showing the control contents of the power control unit shown in FIG.

【符号の説明】[Explanation of symbols]

1 第1の送受電装置 2 第2の送受電装置 3 第3の送受電装置 4 交流系統 5 直流系統 6 自励式電力変換器 7 変圧器 8 直流送電線路リアクタンス 9 コンデンサ 10 直流電圧指令回路 11 直流電圧検出器 12 制御装置 13 交流系統 14 直流系統 15 自励式電力変換器 16 変圧器 17 直流送電線路リアクタンス 18 コンデンサ 19 電力指令回路 20 計器用変圧器 21 計器用変流器 22 電力検出器 23 制御装置 24 交流系統 25 直流系統 26 自励式電力変換器 27 変圧器 28 直流送電線路リアクタンス 29 コンデンサ 30 電力指令回路 31 計器用変圧器 32 計器用変流器 33 電力検出器 34 制御装置 36 上位の指令部 37 直流電圧指令部 38 融通電力指令部 39 潮流方向指令部 40 上位無効電力指令部1 41 上位無効電力指令部2 42 スイッチ1 43 スイッチ2 44 スイッチ3 45 スイッチ4 46 電力制御部 47 第(nー1)番目の直流送受電装置 48 第n番目の直流送受電装置 49 電圧制御部 51 電圧制御部 53 電圧制御部 55 電圧制御部 57 電圧制御部 50 融通電圧制御部 52 融通電圧制御部 54 融通電圧制御部 56 融通電圧制御部 58 融通電圧制御部 101 比較器 102 比較器 104 電圧一定制御部 105 有効電力指令部 103 無効電力指令部 106 スイッチ5 107 電流制御部 108 ベクトル演算部 109 PWMパルス発生部 110 計器用変圧器 111 計器用変流器 112 同期検出器 113 3相/2相電圧変換器 114 3相/2相電流変換器 115 電力検出器 116 A/D変換器 117 A/D変換器 119 A/D変換器 118 計器用変圧器 203 無効電力指令部 206 スイッチ6 207 電流制御部 208 ベクトル演算部 209 PWMパルス発生部 210 同期検出器 211 3相/2相電圧変換器 212 3相/2相電流変換器 213 電力検出器 214 A/D変換器 215 A/D変換器 217 A/D変換器 216 計器用変圧器 1 1st power transmission / reception device 2 2nd power transmission / reception device 3 3rd power transmission / reception device 4 AC system 5 DC system 6 Self-excited power converter 7 Transformer 8 DC transmission line reactance 9 Capacitor 10 DC voltage command circuit 11 DC Voltage detector 12 Control device 13 AC system 14 DC system 15 Self-excited power converter 16 Transformer 17 DC transmission line reactance 18 Capacitor 19 Power command circuit 20 Meter transformer 21 Meter current transformer 22 Power detector 23 Controller 24 AC system 25 DC system 26 Self-excited power converter 27 Transformer 28 DC transmission line reactance 29 Capacitor 30 Power command circuit 31 Meter transformer 32 Meter current transformer 33 Power detector 34 Controller 36 Upper command section 37 DC voltage command unit 38 Flexible power command unit 39 Power flow direction command unit 40 Upper reactive power Control unit 1 41 Upper reactive power command unit 2 42 Switch 1 43 Switch 2 44 Switch 3 45 Switch 4 46 Power control unit 47 (n-1) th DC power transmission / reception device 48 nth DC power transmission / reception device 49 Voltage Control unit 51 Voltage control unit 53 Voltage control unit 55 Voltage control unit 57 Voltage control unit 50 Flexible voltage control unit 52 Flexible voltage control unit 54 Flexible voltage control unit 56 Flexible voltage control unit 58 Flexible voltage control unit 101 Comparator 102 Comparator 104 Constant voltage control unit 105 Active power command unit 103 Reactive power command unit 106 Switch 5 107 Current control unit 108 Vector calculation unit 109 PWM pulse generation unit 110 Meter transformer 111 Meter current transformer 112 Synchronous detector 113 3 phase / 2 Phase voltage converter 114 3 phase / 2 phase current converter 115 Power detector 116 A / D conversion 117 A / D converter 119 A / D converter 118 Instrument transformer 203 Reactive power command unit 206 Switch 6 207 Current control unit 208 Vector calculation unit 209 PWM pulse generation unit 210 Sync detector 211 Three-phase / two-phase voltage conversion Converter 212 three-phase / two-phase current converter 213 power detector 214 A / D converter 215 A / D converter 217 A / D converter 216 instrument transformer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 交流を直流に変換すると共に直流を交流
に変換する双方向に電力を融通可能な複数台の電圧形自
励式電力変換器で構成する直流送電システムにおいて、 複数台の電力変換器は、直流送電路の分岐点の直流端子
の電圧を検出して直流電圧を一定にするように制御する
直流電圧一定制御手段と、 系統が必要とする方向と必要な電力に応じて電力変換器
の融通電力を制御する融通電力制御手段とを備え、 前記システムは、1台の電力変換器は直流電圧一定制御
を行い、かつ他の電力変換器は系統が必要とする方向と
必要な電力に応じて電力変換器の融通電力を制御すると
共に、直流電圧一定制御を行う電力変換器が故障したと
きは他の残りの電力変換器のうち、1台を直流電圧一定
制御に切替え、その他の電力変換器は系統が必要とする
方向と必要な電力に応じて電力変換器の電力を制御する
制御手段を有することを特徴とする直流送電制御装置。
1. A DC power transmission system comprising a plurality of voltage type self-excited power converters capable of bidirectionally accommodating electric power for converting AC to DC and DC to AC. Is a DC voltage constant control means for detecting the voltage of the DC terminal at the branch point of the DC power transmission line and controlling it so that the DC voltage is constant, and a power converter according to the direction required by the system and the required power. And a flexible power control means for controlling the flexible power of the system, wherein the system has one power converter performing a constant DC voltage control, and the other power converters have a direction and a power required by the system. According to the control of the interchanged power of the power converter, when the power converter performing the constant DC voltage control fails, one of the remaining power converters is switched to the constant DC voltage control, and the other power is controlled. The converter needs a grid A DC power transmission control device comprising: a control unit that controls the power of the power converter according to the direction in which the power is to be supplied and the required power.
【請求項2】 前記直流電圧一定制御を行う電力変換器
は運転されている複数台の電力変換器のうち、最も大き
い容量を持つ電力変換器であることを特徴とする請求項
1に記載の直流送電制御装置。
2. The power converter for performing the DC voltage constant control is a power converter having the largest capacity among a plurality of operating power converters. DC power transmission control device.
JP5273561A 1993-11-01 1993-11-01 Dc transmission controller Pending JPH07131936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5273561A JPH07131936A (en) 1993-11-01 1993-11-01 Dc transmission controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273561A JPH07131936A (en) 1993-11-01 1993-11-01 Dc transmission controller

Publications (1)

Publication Number Publication Date
JPH07131936A true JPH07131936A (en) 1995-05-19

Family

ID=17529526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273561A Pending JPH07131936A (en) 1993-11-01 1993-11-01 Dc transmission controller

Country Status (1)

Country Link
JP (1) JPH07131936A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079089A (en) * 2012-10-10 2014-05-01 Rikiya Abe Control method for digital grid router
JP2014117015A (en) * 2012-12-06 2014-06-26 Univ Of Tokyo Multi-terminal type power conversion apparatus
JP2014161199A (en) * 2013-01-24 2014-09-04 Nec Corp Power network system, power router and management device thereof, operation method, and operation program for power router
JPWO2014115569A1 (en) * 2013-01-28 2017-01-26 阿部 力也 Power router and its operation control method and program, power network system, management device control program
JP2017175918A (en) * 2012-10-19 2017-09-28 国立大学法人 東京大学 Power router, power network system, power interchange method, and program for controlling operation of power router
JP2019165531A (en) * 2018-03-19 2019-09-26 株式会社日立製作所 Multi-terminal direct-current power transmission system and control method of multi-terminal direct-current power transmission system
JP2019208337A (en) * 2018-05-30 2019-12-05 三菱電機株式会社 Control device for dc converter
US10840813B2 (en) 2016-06-02 2020-11-17 Mitsubishi Electric Corporation Power conversion system
US10958068B2 (en) 2017-01-19 2021-03-23 Mitsubishi Electric Corporation DC transmission system and DC/DC converter used in the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079089A (en) * 2012-10-10 2014-05-01 Rikiya Abe Control method for digital grid router
JP2017175918A (en) * 2012-10-19 2017-09-28 国立大学法人 東京大学 Power router, power network system, power interchange method, and program for controlling operation of power router
JP2014117015A (en) * 2012-12-06 2014-06-26 Univ Of Tokyo Multi-terminal type power conversion apparatus
JP2014161199A (en) * 2013-01-24 2014-09-04 Nec Corp Power network system, power router and management device thereof, operation method, and operation program for power router
JPWO2014115569A1 (en) * 2013-01-28 2017-01-26 阿部 力也 Power router and its operation control method and program, power network system, management device control program
US10840813B2 (en) 2016-06-02 2020-11-17 Mitsubishi Electric Corporation Power conversion system
US10958068B2 (en) 2017-01-19 2021-03-23 Mitsubishi Electric Corporation DC transmission system and DC/DC converter used in the same
JP2019165531A (en) * 2018-03-19 2019-09-26 株式会社日立製作所 Multi-terminal direct-current power transmission system and control method of multi-terminal direct-current power transmission system
JP2019208337A (en) * 2018-05-30 2019-12-05 三菱電機株式会社 Control device for dc converter

Similar Documents

Publication Publication Date Title
RU2740938C1 (en) System and method of monitoring system of parallel converters
US9190846B2 (en) Power quality management system and methods of controlling phase unbalance
CN107852023B (en) Uninterruptible power supply device
JP6323635B1 (en) Parallel power supply
KR101804469B1 (en) UPS having 3 Phase 4 wire inverter with 3-leg
US11271508B2 (en) Power conversion device, motor driving system, and control method
JP2008228548A (en) Power converter and power conversion method for performing parallel operation of inverters
US9831793B2 (en) Control apparatus for a power converter
JPH07131936A (en) Dc transmission controller
KR101196729B1 (en) Apparatus for actively controlling synchronization of microgrid and method thereof
JP4893486B2 (en) Power compensation system
WO2021205700A1 (en) Power conversion device
WO2022070269A1 (en) Power conversion device
EP0615334B1 (en) A power conversion system, and a method of power conversion using such a power conversion system
KR101704377B1 (en) The each phase output voltage controller for 3 phase space vector pulse width modulation inverter
KR101414887B1 (en) Multi-level inverter and method for operating the same
JP2003032895A (en) Method of measuring loss in tidal current controller, and its use
CN110401214B (en) Multi-terminal hybrid direct-current power transmission system
JPH07336892A (en) Method and equipment for controlling self-excited dc transmission facility
CN113890103A (en) Photovoltaic system and control method
JP4035757B2 (en) Power supply system by parallel operation of power converter
KR101936564B1 (en) Apparatus for controlling multilevel inverter
RU2793193C1 (en) High voltage frequency converter control unit with active rectifier
JPH1189235A (en) Dc voltage allotment balance controller in self-excited dc power transmission system
EP3832828A1 (en) Power supply grid system