JP4035757B2 - Power supply system by parallel operation of power converter - Google Patents

Power supply system by parallel operation of power converter Download PDF

Info

Publication number
JP4035757B2
JP4035757B2 JP2001119301A JP2001119301A JP4035757B2 JP 4035757 B2 JP4035757 B2 JP 4035757B2 JP 2001119301 A JP2001119301 A JP 2001119301A JP 2001119301 A JP2001119301 A JP 2001119301A JP 4035757 B2 JP4035757 B2 JP 4035757B2
Authority
JP
Japan
Prior art keywords
bus
power
voltage
power converter
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001119301A
Other languages
Japanese (ja)
Other versions
JP2002315196A (en
Inventor
聡 稲荷田
瑛一 豊田
清 仲田
哲 堀江
寛之 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001119301A priority Critical patent/JP4035757B2/en
Publication of JP2002315196A publication Critical patent/JP2002315196A/en
Application granted granted Critical
Publication of JP4035757B2 publication Critical patent/JP4035757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子によって構成され、直流電源から交流電力を得る電力変換装置の並列運転による電源システムに係り、特に、電力変換装置の出力電力を平衡化する技術に関する。
【0002】
【従来技術】
この種技術として、特開平9―149653号公報に電力変換装置の並列運転に関する記述がある。この公報には、複数の電力変換装置を並列接続し、このうち一台で出力電圧を制御するとともに、残りの電力変換装置は負荷電流を並列接続されている電力変換装置の台数で割った電流を出力するように制御する電力変換装置の並列運転方式が記載されている。
【0003】
【発明が解決しようとする課題】
鉄道車両、大型の製造ラインのように分散配置された複数の電力変換装置から交流母線を介して分散配置された複数の負荷に電力を供給する電源システムに、前記公報に記載されている技術を適用するためには、各負荷装置の電流を検出するとともに、負荷電流の総和を演算することが必要となるため、各負荷の電流を検出する検出手段、検出した負荷電流に関連する情報を伝送する伝送手段、総負荷電流を演算する手段、稼働している電力変換器を検出する手段、演算した総負荷電流および稼働している電力変換器の台数を各電力変換装置に伝送する伝送手段が新たに必要となる。
【0004】
本発明の課題は、複数の電力変換装置および複数の負荷装置が分散配置されているシステムにおいても、負荷装置の電流検出手段、複雑な伝送装置を必要とすることなく、電力変換装置の出力をバランスさせるに好適な電力変換装置の並列運転による電源システムを提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、交流母線に接続され、交流母線に供給する交流電流に応じて交流母線電圧を調整する第一の電力変換装置と、交流母線に接続され、交流母線の電圧に応じて出力電流を調整する第二の電力変換装置からなる電力変換装置の並列運転による電源システムにおいて、第一の電力変換装置は、交流母線に供給する交流電流を変数とする第一の関数に基づいて交流母線の電圧を制御する手段と、第二の電力変換装置は、交流母線電圧を変数とする第二の関数に基づいて交流母線に供給する交流電流を制御する手段を備え、第一の関数と第二の関数は互いに逆関数の関係にある。
【0006】
【発明の実施の形態】
本発明の実施形態を図面を用いて説明する。
図1は、本発明の電力変換装置の並列運転による電源システムの一実施形態を示す。本実施形態の電源システムは、交流母線4と、交流母線4に接続される電力変換装置1、21、22と、電力変換装置1、21、22から交流母線4を介して交流電力を得る負荷装置31、32、33、34から構成され、電力変換装置3台のうち1台が電圧制御モード、2台が電流制御モードの例である。
図1において、電力変換装置1は、出力電流I1を変数とする関数f(I1)に基づいて交流母線4の電圧V0を制御する。一方、電力変換装置21、22は、交流母線4の電圧V0を変数とする関数g(V0)に基づいて交流母線に供給する出力電流I21、I22をそれぞれ制御する。このとき、f(I1)とg(V0)は、お互いに逆関数の関係、すなわち、
g~1(x)=f(x) (1)
となるように、f(x)およびg(x)を決定する。
電力変換装置1の出力電流をI1とすると、交流母線4の電圧V0は、電力変換装置1によって、
V0=f(I1) (2)
に制御される。
一方、電力変換装置21および22は、交流母線の電圧V0に基づいてそれぞれ
I21=g(V0) (3)
I22=g(V0) (4)
の電流を交流母線4に供給する。
式(3)、(4)に式(2)を代入すると、
I21=g(f(I1)) (5)
I22=g(f(I1)) (6)
を得る。
ここで、g(x)とf(x)は逆関数であるから、式(5)、(6)より、
I21=I1 (7)
I22=I1 (8)
となり、三台の電力変換装置の出力電流および電力をバランスさせることが可能となる。
【0007】
ここで、関数f(x)、g(x)の一例として、
f(x)=kx+V00 (9)
g(x)=(x−V00)/k (10)
の場合について説明する。
電力変換装置1の電流をI1とすると、交流母線4の電圧V0は、式(9)より、
V0=kI1+V00 (11)
に制御される。
一方、電力変換装置21、22の出力電流I21、I22は、式(10)よりそれぞれ
I21=(V0−V00)/k (12)
I22=(V0−V00)/k (13)
に制御される。
式(12)、(13)に式(11)を代入すれば、
I21=(kI1+V00−V00)/k=I1 (14)
I22=(kI1+V00−V00)/k=I1 (15)
となり、三台の電力変換装置の出力電流が一致する。
図1の実施形態では、電力変換装置3台、負荷装置4台の構成について述べたが、電力変換装置が2台以上、負荷装置が1台以上であれば、電力変換装置および負荷装置が何台でもあっても同様の作用が得られる。もちろん電圧制御モードの変換装置が2台以上であっても良い。
【0008】
図2は、本発明の他の実施形態を示す。本実施形態が図1の実施形態と違うところは、電力変換装置1、21、22に対して運転指令を与えるとともに電力変換装置1、21、22の稼働状況をモニタする統括制御装置70と、電力変換装置1、21、22と交流母線4の間に遮断器11、121、122を設ける構成である。
統括制御装置70は、電力変換装置1、21、22に対し、オン、オフの指令および交流母線電圧を制御するモードで動作するか、出力電流を制御するモードで動作するかの指令を与える。一方、電力変換装置1、21、22は、稼働しているか否かを統括制御装置70に対して出力する。
図2において、電力変換装置が停止した場合には、必要に応じて停止した電力変換装置を該当の遮断器により交流母線から切り離す。また、交流母線電圧を制御するモードで動作している電力変換装置が停止した場合には、出力電流を制御するモードで動作している電力変換装置のうち一台の運転モードを交流母線電圧を制御するモードに切り換える。
例えば、電力変換装置1を交流母線電圧制御モード、電力変換装置21、22を出力電流制御モードで運転している状態において、電力変換装置1が停止した場合、遮断器11により電力変換装置1を交流母線4から切り離し、電力変換装置21ないしは22のいずれか一方を交流母線電圧制御モードに切り換える。ここでは、電力変換装置21の運転モードを切り換えた場合について説明する。
この場合の交流母線電圧は、式(9)より
V0=kI21+V00 (16)
一方、電力変換装置22の出力電流は、式(10)より
I22=(V0−V00)/k (17)
となる。式(16)、(17)より
I22=(kI21+V00−V00)/k=I21 (18)
が成立し、電力変換装置の出力をバランスさせた状態で運転を継続することが可能となる。
図2の実施形態では、電力変換装置3台、負荷装置4台の構成において電力変換装置1台が停止した場合について述べたが、電力変換装置および負荷装置の台数に関わらず同様の作用が得られる。
【0009】
上述の実施形態では、電圧および電流がスカラ量である場合を例にとって説明したが、本発明は、電圧および電流量が交流量の振幅、位相情報を有するベクトル量であっても有効である。また、交流電源システムを主題に本発明を説明したが、直流電源システムにも容易に適用可能であることは言うまでもない。
【0010】
【発明の効果】
以上説明したように、本発明によれば、各々の電力変換装置が負荷電流の総和、稼働している電力変換装置の台数などの情報を必要とすることなく、各電力変換装置の出力をバランスさせることができるので、複数の電力変換装置および複数の負荷装置が分散配置されているシステムにおいても、複雑な伝送装置を必要とすることなく、電力変換装置の並列運転を実現することができる。
【図面の簡単な説明】
【図1】本発明の電力変換装置の並列運転による電源システムの一実施形態
【図2】本発明の他の実施形態
【符号の説明】
1…交流母線の電圧を制御する電力変換装置、21,22…交流母線の電圧に応じて出力電流を制御する電力変換装置、31,32,33,34…交流負荷、4…交流母線、70…統括制御装置、11,121,122…遮断器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power supply system that is constituted by semiconductor elements and obtains AC power from a DC power supply and that operates in parallel, and particularly relates to a technique for balancing output power of the power converter.
[0002]
[Prior art]
As this kind of technology, JP-A-9-149653 describes a parallel operation of power converters. In this publication, a plurality of power converters are connected in parallel, and one of them controls the output voltage, and the remaining power converters have a current divided by the number of power converters connected in parallel. The parallel operation system of the power converter which controls to output is described.
[0003]
[Problems to be solved by the invention]
The technology described in the above publication is applied to a power supply system that supplies power to a plurality of loads that are distributed and distributed via an AC bus from a plurality of power conversion devices that are distributed and distributed like a railway vehicle and a large production line. In order to apply, it is necessary to detect the current of each load device and calculate the sum of the load currents. Therefore, detection means for detecting the current of each load, and information related to the detected load current are transmitted. Means for calculating the total load current, means for detecting the operating power converter, transmission means for transmitting the calculated total load current and the number of operating power converters to each power converter. Newly needed.
[0004]
The problem of the present invention is that, even in a system in which a plurality of power conversion devices and a plurality of load devices are distributed, the output of the power conversion device can be obtained without requiring a current detection means of the load device and a complicated transmission device. An object of the present invention is to provide a power supply system by parallel operation of power converters suitable for balancing.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a first power conversion device that is connected to an AC bus and adjusts the AC bus voltage according to an AC current supplied to the AC bus, and connected to the AC bus and according to the voltage of the AC bus In the power supply system based on the parallel operation of the power conversion device composed of the second power conversion device that adjusts the output current, the first power conversion device is based on a first function having the AC current supplied to the AC bus as a variable. And the second power converter includes a means for controlling an alternating current supplied to the alternating current bus based on a second function having the alternating current bus voltage as a variable. The function and the second function are inversely related to each other.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a power supply system by parallel operation of the power conversion device of the present invention. The power supply system of the present embodiment includes an AC bus 4, power converters 1, 2, 22 connected to the AC bus 4, and a load that obtains AC power from the power converters 1, 2, 22 through the AC bus 4. It is composed of devices 31, 32, 33, and 34, and one of the three power conversion devices is an example of the voltage control mode, and two are examples of the current control mode.
In FIG. 1, the power conversion device 1 controls the voltage V0 of the AC bus 4 based on a function f (I1) having the output current I1 as a variable. On the other hand, the power converters 21 and 22 respectively control the output currents I21 and I22 supplied to the AC bus based on a function g (V0) having the voltage V0 of the AC bus 4 as a variable. At this time, f (I1) and g (V0) are inversely related to each other, that is,
g ~ 1 (x) = f (x) (1)
F (x) and g (x) are determined so that
When the output current of the power converter 1 is I1, the voltage V0 of the AC bus 4 is
V0 = f (I1) (2)
Controlled.
On the other hand, power converters 21 and 22 have I21 = g (V0) (3) based on voltage V0 of the AC bus.
I22 = g (V0) (4)
Is supplied to the AC bus 4.
Substituting equation (2) into equations (3) and (4),
I21 = g (f (I1)) (5)
I22 = g (f (I1)) (6)
Get.
Here, since g (x) and f (x) are inverse functions, from equations (5) and (6),
I21 = I1 (7)
I22 = I1 (8)
Thus, the output current and power of the three power converters can be balanced.
[0007]
Here, as an example of the functions f (x) and g (x),
f (x) = kx + V00 (9)
g (x) = (x−V00) / k (10)
The case will be described.
Assuming that the current of the power conversion device 1 is I1, the voltage V0 of the AC bus 4 is obtained from the equation (9):
V0 = kI1 + V00 (11)
Controlled.
On the other hand, the output currents I21 and I22 of the power conversion devices 21 and 22 are I21 = (V0−V00) / k (12) from the equation (10), respectively.
I22 = (V0−V00) / k (13)
Controlled.
Substituting equation (11) into equations (12) and (13),
I21 = (kI1 + V00−V00) / k = I1 (14)
I22 = (kI1 + V00−V00) / k = I1 (15)
Thus, the output currents of the three power converters match.
In the embodiment of FIG. 1, the configuration of three power conversion devices and four load devices has been described. However, if there are two or more power conversion devices and one or more load devices, what are the power conversion devices and load devices? The same effect can be obtained even with a table. Of course, there may be two or more voltage control mode converters.
[0008]
FIG. 2 shows another embodiment of the present invention. The present embodiment is different from the embodiment of FIG. 1 in that an overall control device 70 that gives an operation command to the power converters 1, 2, 22, and monitors the operating status of the power converters 1, 22, 22, The circuit breakers 11, 121, 122 are provided between the power converters 1, 2, 22 and the AC bus 4.
The overall control device 70 gives to the power conversion devices 1, 2, 22 a command to operate in the mode for controlling the on / off command and the AC bus voltage or the mode for controlling the output current. On the other hand, the power conversion devices 1, 2, 22 output whether or not they are operating to the overall control device 70.
In FIG. 2, when a power converter device stops, the power converter device stopped as needed is cut off from an AC bus by a corresponding circuit breaker. In addition, when the power converter operating in the mode for controlling the AC bus voltage stops, the operation mode of one of the power converters operating in the mode for controlling the output current is changed to the AC bus voltage. Switch to the control mode.
For example, when the power converter 1 is stopped in a state where the power converter 1 is operated in the AC bus voltage control mode and the power converters 21 and 22 are operated in the output current control mode, the circuit breaker 11 Disconnect from AC bus 4 and switch any one of power converters 21 or 22 to AC bus voltage control mode. Here, the case where the operation mode of the power converter 21 is switched will be described.
In this case, the AC bus voltage is V0 = kI21 + V00 (16) from equation (9).
On the other hand, the output current of the power converter 22 is I22 = (V0−V00) / k (17) from the equation (10).
It becomes. From Expressions (16) and (17), I22 = (kI21 + V00−V00) / k = I21 (18)
Is established, and the operation can be continued in a state where the outputs of the power converter are balanced.
In the embodiment of FIG. 2, the case where one power conversion device is stopped in the configuration of three power conversion devices and four load devices has been described, but the same effect is obtained regardless of the number of power conversion devices and load devices. It is done.
[0009]
In the above-described embodiment, the case where the voltage and current are scalar quantities has been described as an example. However, the present invention is effective even when the voltage and current quantities are vector quantities having AC amplitude and phase information. Further, although the present invention has been described on the subject of an AC power supply system, it goes without saying that the present invention can be easily applied to a DC power supply system.
[0010]
【The invention's effect】
As described above, according to the present invention, each power conversion device balances the output of each power conversion device without requiring information such as the sum of load currents and the number of power conversion devices in operation. Therefore, even in a system in which a plurality of power conversion devices and a plurality of load devices are distributed, parallel operation of the power conversion devices can be realized without requiring a complicated transmission device.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a power supply system by parallel operation of the power conversion device of the present invention. FIG. 2 shows another embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Power converter which controls the voltage of an alternating current bus, 21,22 ... Power converter which controls output current according to the voltage of an alternating current bus, 31, 32, 33, 34 ... AC load, 4 ... AC bus, 70 ... General control device, 11, 121, 122 ... Breaker

Claims (1)

交流母線に接続され、前記交流母線に供給する交流電流に応じて前記交流母線電圧を調整する第一の電力変換装置と、前記交流母線に接続され、前記交流母線の電圧に応じて出力電流を調整する第二の電力変換装置からなる電力変換装置の並列運転による電源システムにおいて、
前記第一の電力変換装置は、前記交流母線に供給する交流電流を変数とする第一の関数に基づいて前記交流母線の電圧を制御する手段と、前記第二の電力変換装置は、前記交流母線電圧を変数とする第二の関数に基づいて前記交流母線に供給する交流電流を制御する手段を備え、
前記第一の関数と前記第二の関数は互いに逆関数の関係にあることを特徴とする電力変換装置の並列運転による電源システム。
A first power converter connected to the AC bus and adjusting the AC bus voltage according to the AC current supplied to the AC bus, and connected to the AC bus and outputs an output current according to the voltage of the AC bus. In the power supply system by the parallel operation of the power converter composed of the second power converter to be adjusted,
The first power converter is configured to control a voltage of the AC bus based on a first function having an AC current supplied to the AC bus as a variable, and the second power converter includes the AC Means for controlling the alternating current supplied to the alternating current bus based on a second function with the bus voltage as a variable;
The power system according to the parallel operation of the power conversion device, wherein the first function and the second function are in an inverse function relationship with each other.
JP2001119301A 2001-04-18 2001-04-18 Power supply system by parallel operation of power converter Expired - Lifetime JP4035757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119301A JP4035757B2 (en) 2001-04-18 2001-04-18 Power supply system by parallel operation of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119301A JP4035757B2 (en) 2001-04-18 2001-04-18 Power supply system by parallel operation of power converter

Publications (2)

Publication Number Publication Date
JP2002315196A JP2002315196A (en) 2002-10-25
JP4035757B2 true JP4035757B2 (en) 2008-01-23

Family

ID=18969547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119301A Expired - Lifetime JP4035757B2 (en) 2001-04-18 2001-04-18 Power supply system by parallel operation of power converter

Country Status (1)

Country Link
JP (1) JP4035757B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121838A (en) * 2004-10-22 2006-05-11 Hitachi Ltd Power supply system and power converter
JP4579643B2 (en) * 2004-10-22 2010-11-10 株式会社日立製作所 Power supply system and power converter
JP4978082B2 (en) * 2006-03-31 2012-07-18 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP2012070630A (en) * 2011-12-19 2012-04-05 Hitachi Ltd Electrical power system
DE102017112944A1 (en) * 2017-06-13 2018-12-13 Wobben Properties Gmbh Wind turbine or wind farm for feeding electrical power

Also Published As

Publication number Publication date
JP2002315196A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP2526992B2 (en) AC output converter parallel operation system
US8374008B2 (en) Power converter
US5406470A (en) AC/DC converter
US5121315A (en) D.C.-A.C. power converter with multiple conversions
JP6299831B1 (en) Active filter device, air conditioning device, and air conditioning system
WO2004068687A1 (en) Power supply system with single phase or multiple phase inverters operating in parallel
JP4035757B2 (en) Power supply system by parallel operation of power converter
JP2005033923A (en) Parallel operation control system for uninterruptible power supply unit
JP4099713B2 (en) Control method and control circuit for uninterruptible power supply system
CN106664038B (en) The neutral point potential control method of single-phase NPC inverter
CN110557042B (en) Inverter control device
WO2016199377A1 (en) Power storage system, power storage device, and operation method for power storage device
JP2004236427A (en) Uninterruptible power supply unit
JP2021097530A (en) Distributed power supply system
JPH07131936A (en) Dc transmission controller
JP3543068B2 (en) Distributed control type power supply system
JP2006296110A (en) Unit inverter device
US10784714B2 (en) 3 phase UPS bus balancer
JP4400442B2 (en) Parallel operation control method for uninterruptible power supply
JP7358007B2 (en) Vehicle charging system
US20130063992A1 (en) Connection apparatus for power converter
JP2010120513A (en) Ac feeder device for electric railway
JPH0759272A (en) Switching circuit for ac power supply
JPH0739151A (en) Controlling device for switching power supply
US20230402840A1 (en) Power supply system and power supply unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Ref document number: 4035757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

EXPY Cancellation because of completion of term