JPH0712888Y2 - Chart used for measuring the thickness of fine crystals - Google Patents

Chart used for measuring the thickness of fine crystals

Info

Publication number
JPH0712888Y2
JPH0712888Y2 JP3634693U JP3634693U JPH0712888Y2 JP H0712888 Y2 JPH0712888 Y2 JP H0712888Y2 JP 3634693 U JP3634693 U JP 3634693U JP 3634693 U JP3634693 U JP 3634693U JP H0712888 Y2 JPH0712888 Y2 JP H0712888Y2
Authority
JP
Japan
Prior art keywords
crystal
thickness
log
color
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3634693U
Other languages
Japanese (ja)
Other versions
JPH0664104U (en
Inventor
厚 渡邉
Original Assignee
株式会社顕微光学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社顕微光学研究所 filed Critical 株式会社顕微光学研究所
Priority to JP3634693U priority Critical patent/JPH0712888Y2/en
Publication of JPH0664104U publication Critical patent/JPH0664104U/en
Application granted granted Critical
Publication of JPH0712888Y2 publication Critical patent/JPH0712888Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、偏光顕微鏡下に行う微
細結晶の厚さの測定方法に用いるチャートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chart used for measuring the thickness of fine crystals under a polarization microscope.

【0002】[0002]

【従来の技術】現在用いられている薬剤学のテキストブ
ックで粉末の粒子径の測定法として挙げられている顕微
鏡法にはグリーン径法、マーチン径法などがあるが、い
ずれも投影的な粉末の面積から立体としての粒子の径、
さらに比表面積等を計算しようとするもので板状または
偏平な板状の結晶粒子には適用出来ない。
2. Description of the Related Art Microscopic methods that are currently used as a method for measuring the particle size of powders in textbooks of pharmaceutics include the green size method and the Martin size method, both of which are projective powders. From the area of the particle diameter as a solid,
Furthermore, it is intended to calculate the specific surface area and the like and cannot be applied to plate-shaped or flat plate-shaped crystal particles.

【0003】結晶性医薬品の形状は千差万別であるが、
本考案者が第10改正日本薬局法(「日局10」)の結
晶性粉末薬品約165種について偏光顕微鏡で調べた結
果ではその半数は板状、偏平な板状、細長い板状等であ
り、これらの結晶からは顕微鏡台に平行な平面内に直交
する2つの偏光から通常その物質に固有の2つの屈折率
が測定され、これをキー屈折率と名づけた〔薬学雑誌第
104巻896頁、第105巻481頁、Chem.P
harm.bull.第28巻372頁(198
0)〕。
The shape of crystalline pharmaceuticals varies widely,
The present inventor examined about 165 kinds of crystalline powder chemicals of the 10th revised Japanese Pharmacopoeia (“Japanese Pharmacopoeia 10”) with a polarizing microscope and found that half of them were plate-shaped, flat plate-shaped, elongated plate-shaped, etc. , From these crystals, two refractive indices, which are peculiar to the substance, were usually measured from two polarized lights orthogonal to each other in a plane parallel to the microscope table, which was named as a key refractive index [Pharmaceutical Journal, Vol. 104, p. 896]. Vol. 105, p. 481, Chem. P
harm. bull. Volume 28 Pages 372 (198
0)].

【0004】一般に、このような結晶の厚さはX線粉末
法、電子顕微鏡法等を含めた他のどのような理化学的方
法でも測定できないが、偏光顕微鏡による光学的方法で
は岩石学、鉱物学等の領域で古くから研究されており、
浸液法で測定される2つの屈折率n1 およびn2 、直交
ニコル下に観察される干渉色から読まれるレターデーシ
ョンR、および垂直方向の結晶面の厚さDの3者間に次
式のような関係が成立することが知られている。
In general, the thickness of such a crystal cannot be measured by any other physicochemical method including X-ray powder method, electron microscope method, etc. Has been studied for a long time in areas such as
The two refractive indices n 1 and n 2 measured by the immersion method, the retardation R read from the interference color observed under the orthogonal Nicols, and the thickness D of the crystal plane in the perpendicular direction It is known that such a relationship is established.

【0005】[0005]

【数1】 R=D(n2 −n1 ## EQU1 ## R = D (n 2 −n 1 )

【0006】この関係は医薬品等の結晶粉末にも応用で
き、本考案者もかって「偏光顕微鏡による結晶性医薬品
の屈折率測定法とその応用」と題する総説論文(医薬品
研究第10巻第836〜843頁1979)でそのこと
を述べた。
This relationship can also be applied to crystalline powders of pharmaceuticals and the like, and the present inventor once proposed a review article entitled "Method of Measuring Refractive Index of Crystalline Pharmaceuticals by Polarizing Microscope and Its Application" (Pharmaceutical Research Vol. 10, 836-). That was described at page 843 (1979).

【0007】[0007]

【考案が解決しようとする課題】上記の総説があるにも
かかわらず製剤学の領域で微細結晶の厚さを光学的方法
で測定することは行われていない。それは浸液法による
屈折率の測定、干渉色とレターデーションの対応、これ
らの組合せによる結晶の厚さの計算等の煩雑さに原因が
あると考えられる。
Despite the above review, it has not been performed in the area of pharmaceutical science to measure the thickness of fine crystals by an optical method. It is considered that this is because of the complexity of the measurement of the refractive index by the immersion method, the correspondence between the interference color and the retardation, and the calculation of the crystal thickness by the combination thereof.

【0008】[0008]

【課題を解決するための手段】本考案者は、簡易迅速に
微細結晶の厚みを測定する方法を求めて苦心研究を重ね
て来たが、横軸にlog(n2 −n1 )、縦軸にlog
Dを(Dは結晶の厚さ)をとり、構成される直角座標の
平面上に、数1を変形して得られる方程式、D=R/
(n2 −n1 )を用いて(n2 −n1 )とDの組合せに
対するレターデーションRの軌跡を求めた結果、図1に
示されるような平行斜線群として表されること、したが
ってある結晶のlog(n2 −n1 )を示す点をを横軸
上に求め、その点を通る垂直線がその結晶のレターデー
ションRの斜線と交差する点から水平線を引いて横軸と
交差する点を求めれば簡易迅速に厚さDが得られること
を考案した。
[Means for Solving the Problems] The inventors of the present invention have made extensive efforts to find a simple and quick method for measuring the thickness of a fine crystal, and the horizontal axis indicates log (n 2 −n 1 ) and the vertical axis indicates vertical. Log on axis
D (where D is the thickness of the crystal) is taken as an equation obtained by transforming Equation 1 on the plane of the Cartesian coordinates, D = R /
(N 2 -n 1) using (n 2 -n 1) and the results of obtaining the locus of the retardation R for the combination and D, can be expressed as hatched group as shown in Figure 1, there is therefore The point indicating the log (n 2 −n 1 ) of the crystal is found on the horizontal axis, and the horizontal line is drawn from the point where the vertical line passing through the point intersects the oblique line of the retardation R of the crystal and intersects the horizontal axis. It was devised that the thickness D can be simply and quickly obtained by obtaining the points.

【0009】本考案は、偏光顕微鏡を用いる浸液法によ
り求めうる微細結晶の2つのキー屈折率n1 、n2 若し
くは、それに準ずる顕微鏡台に平行な平面内の互に直交
する2つの直線偏光の屈折率n1 、n2 (但しn2 >n
1 とする)の差の対数log(n2 −n1 )を直角座標
の横軸に、結晶の鏡筒軸方向の厚さDの対数logDを
縦軸にとり、その座標上にはlog(n2 −n1 )及び
logDに対応するレターデーションRの軌跡である平
行斜線群を描き微細結晶の厚さの測定に用いることを可
能としたチャートである。
The present invention is directed to two key refractive indices n 1 and n 2 of a fine crystal which can be obtained by an immersion method using a polarization microscope, or two linearly polarized light beams orthogonal to each other in a plane parallel to the microscope table corresponding thereto. Refractive index n 1 , n 2 (where n 2 > n
The horizontal axis of the differential logarithm log (n 2 -n 1) of the rectangular coordinate of 1 to), the logarithm logD thickness D of the barrel axis of the crystal are placed vertically, is on the coordinates log (n 2 is a chart that enables drawing of a group of parallel diagonal lines, which is a locus of retardation R corresponding to 2- n 1 ) and log D, and that can be used for measuring the thickness of fine crystals.

【0010】又、レターデーションRの軌跡である平行
斜線群を、それぞれのRに対応するカラーで彩色すれば
カラーの縞模様が形成され、実用上さらに便利な図2の
チャートとすることが出来る。図2では彩色の代わり
に、それぞれの色相が文字で記入されている。
If the group of parallel diagonal lines which is the locus of the retardation R is colored with a color corresponding to each R, a color stripe pattern is formed, and the chart of FIG. 2 can be made more practically convenient. . In FIG. 2, instead of coloring, each hue is written in characters.

【0011】本考案にいう微細結晶とは、偏光顕微鏡を
用いる浸液法によりキー屈折率、またはそれに準ずる顕
微鏡台に平行な平面内の互に直交する2つの直線偏光の
屈折率を測定し、干渉色を観察するに適した大きさの結
晶を意味し、その投影面の粒径は、一般に0.005〜
0.5mm程度が好ましい。
The term "fine crystal" as used in the present invention means the key refractive index or the refractive index of two linearly polarized lights which are orthogonal to each other in a plane parallel to the microscope stand, which is determined by the immersion method using a polarization microscope. It means a crystal of a size suitable for observing interference colors, and the grain size of its projection surface is generally 0.005 to
It is preferably about 0.5 mm.

【0012】本考案の方法に用いるチャートにおいては
直角座標の横軸に微細結晶の2つのキー屈折率(または
それに準ずる屈折率)n1 およびn2 (但しn2
1 )の差の対数log(n2 −n1 )をとる。キー屈
折率(またはそれに準ずる屈折率)n1 およびn2 は、
薬学雑誌第104巻896頁、第105巻481頁、1
985年5月1日株式会社医薬ジャーナル社発行、最近
の製剤技術とその応用2、329〜332頁特公昭60
−27376号公報等に記載された方法により求めるこ
とが出来る。
In the chart used in the method of the present invention, the two key refractive indices (or corresponding refractive indices) n 1 and n 2 of fine crystals are plotted on the abscissa of the Cartesian coordinates (where n 2 >).
n 1) taking the logarithm log (n 2 -n 1) of the difference. The key refractive index (or its corresponding refractive index) n 1 and n 2 are
Pharmaceutical magazine Vol. 104, p. 896, vol. 105, p. 481, 1.
May 1, 1985, Published by Pharmaceutical Journal Co., Ltd., Recent formulation technology and its application 2, 329-332, Japanese Patent Publication Sho 60
It can be determined by the method described in Japanese Patent Publication No. 27376.

【0013】キー屈折率とは、浸液法の操作で微細結晶
を浸液に懸濁し、スライドグラスとカバーグラスの間に
はさむとき、結晶の晶癖により結晶学的に同一のセクシ
ョンが常にスライドに並行に(従って顕微鏡台に並行
に)位置し、そのセクションを垂直に通過する2つの互
いに直交する直線偏光の屈折率はその物質に固有の値と
して測定できる場合に、本考案者らがこれを名付け、か
つ定義したものである〔Chem.Pharm.bul
l.第28巻372頁(1980)〕。
The key refractive index means that when fine crystals are suspended in the immersion liquid by the immersion method and sandwiched between a slide glass and a cover glass, the crystallographically identical sections always slide due to the crystal habit of the crystals. If the refractive indices of two mutually orthogonal linearly polarized light beams that are parallel to each other (and thus parallel to the microscope stage) and pass vertically through the section can be measured as an intrinsic value of the substance, the present inventors Is defined and defined [Chem. Pharm. bul
l. 28, p. 372 (1980)].

【0014】キー屈折率に準ずる屈折率とは、結晶の晶
癖により常に同一のセクションがスライドガラスに並行
するとは限らないが、比較的高い確率で出現するセクシ
ョンがあるので、そのセクションの互いに直交する2つ
の偏光の屈折率を意味している。例えば、針状結晶が斜
消光するような場合、消光角が同一な場合のセクション
の2つの屈折率などは、それに該当する。
The index of refraction according to the key index of refraction does not always mean that the same section is parallel to the slide glass due to the crystal habit of the crystal, but since there are sections that appear with a relatively high probability, the sections are orthogonal to each other. It means the refractive index of the two polarized lights. For example, in the case where a needle-shaped crystal extinguishes obliquely, the two refractive indexes of the section in the case where the extinction angles are the same correspond to that.

【0015】考案者が第10改正日本薬局方収載の結晶
性医薬品150種について屈折率(n1 ,n2 )を測定
した結果ではlog(n2 −n1 )が、バ−3.0〜0
の範囲内に分散していることが判っている。また縦軸の
厚さは1μm〜100μmの範囲を常用対数で目盛れ
ば、通常の医薬品などの結晶粉末の厚さは大体この範囲
に入り、特に頻度の多い5μm〜50μmの範囲は対数
を用いるために最も見やすい領域に現すことが出来る。
The inventor measured the refractive index (n 1 , n 2 ) of 150 kinds of crystalline pharmaceuticals listed in the 10th revised Japanese Pharmacopoeia and found that log (n 2 −n 1 ) was from 3.0 to 3.0. 0
It is known to be dispersed within the range of. Also, if the thickness of the vertical axis is in the range of 1 μm to 100 μm with a common logarithm, the thickness of the crystal powder of a usual drug or the like falls within this range, and the logarithm is used particularly in the range of 5 μm to 50 μm. Therefore, it can be displayed in the most visible area.

【0016】レターデーションRは、結晶を鏡筒軸の方
向に通過する互いに直交する2つの偏光の速度差によっ
て生ずる干渉色において、色彩が識別できるのは大体5
0〜2.000nmの範囲である。表1には、Rの0〜
2.000nmの各波長における干渉色の英語名、略
名、日本語名が表示されている。さらにこのレターデー
ションがジプサム検板を挿入して結晶と偏光の振動方向
が一致してRが相加された場合(通常ジプサム検板のR
は530nm)およびその反対の場合(Rが相殺された
場合)にどのように変化するかをカラーの略名で表示し
た。
The retardation R is a color which can be discriminated in an interference color caused by a difference in velocity of two polarized lights which pass through the crystal in the direction of the lens barrel axis and are orthogonal to each other.
It is in the range of 0 to 2.000 nm. In Table 1, R of 0
The English name, abbreviated name, and Japanese name of the interference color at each wavelength of 2.000 nm are displayed. Furthermore, when this retardation is inserted into a Gypsum plate and the vibration directions of the crystal and the polarized light coincide with each other and R is added (usually
530 nm) and vice versa (when R is offset), the abbreviation of color is shown.

【0017】表1の相加、相殺の表示でわかるように、
Rの値の小さい領域(50〜350nm)では色調の変
化が灰色−白色−淡黄色間で緩慢であるため、干渉色の
色調からRの細かい領域を読み取ることが難しい。この
場合ジプサム検板を挿入すると、表1からわかるように
ジプサム検板を挿入したことにによる相加、相殺の結果
50〜250nm間でも色調が鮮やかになり識別し易く
なる。
As can be seen from the display of addition and cancellation in Table 1,
In the region where the value of R is small (50 to 350 nm), the change of the color tone is slow between gray-white-pale yellow, and it is difficult to read the region of fine R from the color tone of the interference color. In this case, when the Gypsum inspection plate is inserted, as can be seen from Table 1, as a result of the addition and the cancellation due to the insertion of the Gypsum inspection plate, the color tone becomes vivid even in the range of 50 to 250 nm and the discrimination becomes easy.

【0018】[0018]

【表1】 [Table 1]

【0019】本考案によるチャートの使用は、次のよう
に行うことが出来る。厚さを測定しようとする微細結晶
の屈折率が、例えば、n′1,n′2 (n′2 >n′1
であるとする。図1の横軸上にlog(n′2
n′1 )の点をとり、その点を通って縦軸に平行に定規
をあてるとこの平行線はRの平行斜線群を切るからその
線上に結晶のRと同一のR(平行斜線群がカラーの縞模
様で表されている場合は結晶の干渉色と同一色調のR)
を求め、その点から横軸に平行に定規をあてればこの横
軸平行線が縦軸と交わる点に目盛られているD値がその
結晶の厚さを示す。結晶のR(又は干渉色)が複数で現
れているときは対応する厚さも複数で求めれるから、求
められた結晶の厚みと結晶の投影図と組み合わせて作図
すれば、簡単な結晶の形態図をつくることができる。
The use of the chart according to the invention can be carried out as follows. The refractive index of the fine crystal whose thickness is to be measured is, for example, n ′ 1, n ′ 2 (n ′ 2 > n ′ 1 )
Suppose On the horizontal axis of FIG. 1, log (n ′ 2
n '1) takes a point, the parallel lines when exposed to parallel ruler to the longitudinal axis through the point parallel from off shaded group of crystals that line R and the same R (hatched group R If it is represented by a colored stripe pattern, it has the same tone as the interference color of the crystal R)
Then, if a ruler is placed parallel to the horizontal axis from that point, the D value graduated at the point where this horizontal parallel line intersects the vertical axis indicates the thickness of the crystal. When multiple Rs (or interference colors) appear in a crystal, the corresponding thickness is also calculated in multiples. Therefore, if you draw a diagram by combining the calculated crystal thickness and the crystal projection, a simple crystal morphology diagram Can be made.

【0020】医薬品等の結晶においては板状、偏平な板
状、鱗片状等の結晶が多いが、これらは本考案によるチ
ャートから容易に厚さを求めることが出来る。これらの
結晶を浸液法でカバーグラスをかけて偏光顕微鏡下に観
察すると、ステージに平行する広い面が特有の干渉色を
示し、周辺部に次数の低い干渉色の細い縞模様が現れる
ので、この縞模様を観察して、1次の赤(5−R)、2
次の赤(10−0R)および3次の赤(14C)等を順
次識別して中央の広い面の干渉色の次数を決定する事が
出来る。
Most of the crystals of pharmaceuticals and the like are plate-shaped, flat plate-shaped, and scale-shaped crystals, and their thickness can be easily determined from the chart according to the present invention. When these crystals are observed under a polarizing microscope with a cover glass by the immersion method, a wide surface parallel to the stage shows a unique interference color, and a thin striped pattern of a low order interference color appears in the peripheral part. Observe this striped pattern and see the primary red (5-R), 2
The next red (10-0R) and the third red (14C) can be sequentially identified to determine the order of the interference color of the central wide surface.

【0021】被検結晶の多くは視野の中に大きさと厚さ
の違う何種類かの結晶が共存している。前記の板状、鱗
片状等の結晶は視野の中のほとんどすべての結晶が同一
の面(同じn1 、n2 をもつ)を現しているとみてよい
ので、これらの各種の大きさの結晶についてそれぞれの
中央部の干渉色から異なる厚さを求めることかでき、そ
の結果複数の比表面積を求める事が出来る。
Most of the crystals to be inspected coexist in the visual field with several kinds of crystals having different sizes and thicknesses. It can be considered that almost all crystals in the field of view described above have the same plane (having the same n 1 and n 2 ), and therefore, the crystals of various sizes described above. It is possible to obtain different thicknesses from the interference colors of the respective central portions, and as a result, it is possible to obtain a plurality of specific surface areas.

【0022】微細結晶の投影的な平面の面積ついては、
製剤学の習慣によるグリーン径等を求めてもよいが、本
考案者が提唱している方法として、平面の面積をそれと
ほぼ同面積の矩形になおしてその2辺からパラメータ
a,bを求め厚さのパラメータcと共に体積と表面積を
求める方法がある。〔Chem.Pharm.bul
l.第30巻、第2958頁(1982)〕。
Regarding the projected plane area of the fine crystal,
The green diameter and the like may be obtained according to the custom of formulation, but as a method proposed by the present inventor, the plane area is converted into a rectangle having almost the same area and the parameters a and b are obtained from the two sides of the rectangle. There is a method of obtaining the volume and surface area together with the parameter c of the depth. [Chem. Pharm. bul
l. 30: 2958 (1982)].

【0023】以下に、本考案によるチャートの使用例を
実施例の形で具体的に説明する。
Hereinafter, an example of using the chart according to the present invention will be specifically described in the form of an embodiment.

【0024】[0024]

【実施例1】無水アンピシリン結晶の測定 無水アンピシリンはやや細長い偏平な板状結晶で、浸液
法によるキー屈折率はn1 :1.607,n2 :1.6
51と測定されている。(薬学雑誌第104巻、899
頁)。従って、log(n2 −n1 )=バー2.644
である。偏光顕微鏡で観察した結晶の形状は図3(2)
にスケッチしたとおりで、ジプサム検板を用いてR:1
50nmと観測された。図2のチャートの横軸上バー
2.644点に図のように直線を引き、R:150nm
との交点から図のように横軸に平行な点線を引いて縦軸
と交差する点から厚さ(D)=3.5μmが得られた。
平均的な結晶について三次元パラメータa,b,c(c
は厚さ)のaおよびbを顕微鏡下に実測し、これらの数
値から比表面積を次のように算出した。 a:0.025mm,b:0.051mm,c:0.0
035mm 体積V:abc=0.00000446mm3 表面積S:0.00308mm2 比表面積SS=S/V:700.4mm-1(比重1とし
て)
Example 1 Measurement of anhydrous ampicillin crystal Anhydrous ampicillin is a slightly elongated flat plate crystal, and the key refractive index by the immersion method is n 1 : 1.607, n 2 : 1.6.
It is measured as 51. (Pharmaceutical magazine Vol. 104, 899
page). Therefore, log (n 2 −n 1 ) = bar 2.644
Is. The crystal shape observed with a polarization microscope is shown in Fig. 3 (2).
As sketched in, using the Gypsum inspection plate, R: 1
It was observed to be 50 nm. A line is drawn on the horizontal axis bar 2.644 points of the chart of FIG. 2 as shown in the figure, and R: 150 nm
As shown in the figure, a dotted line parallel to the horizontal axis was drawn from the intersection with and the thickness (D) = 3.5 μm was obtained from the point intersecting the vertical axis.
Three-dimensional parameters a, b, c (c
The thickness a) and b were measured under a microscope, and the specific surface area was calculated from these values as follows. a: 0.025 mm, b: 0.051 mm, c: 0.0
035mm Volume V: abc = 0.00000446mm 3 Surface area S: 0.00308mm 2 Specific surface area SS = S / V: 700.4mm -1 (as specific gravity 1)

【0025】[0025]

【実施例2】セファロリジン結晶の測定セファロリジン
の結晶粉末を偏光顕微鏡で観察したところ、図3(1)
に形状をスケッチしたように大きさが区々であった。そ
こで視野の結晶を図のようにA,B,Cの3つのグルー
プに分け、それぞれの三次元パラメータa,b,cを求
めた。パラメータa,bは顕微鏡下に実測した。パラメ
ータc(厚さ)については、本品のキー屈折率n1
1.595,n2 :1.728とからlog(n2−n
1 )=バー1.124を求め、実施例1の場合と同様に
して、図2に示すようにバー1.124垂直線を引き、
その線上にA群、B群、C群それぞれに少しずつ異なる
Rとの交点を求めて、各点からの水平線と縦軸との交点
を求めA群については5μm、B群は4μm、C群は3
μmの厚さを得た。そして比表面積を次のように計算し
た。
Example 2 Measurement of Cephaloridine Crystals When the crystal powder of cephaloridine was observed with a polarizing microscope, FIG.
There were various sizes as sketched on the shape. Therefore, the crystals in the visual field were divided into three groups A, B, and C as shown in the figure, and the three-dimensional parameters a, b, and c were obtained. The parameters a and b were measured under a microscope. Regarding the parameter c (thickness), the key refractive index n 1 of this product:
1.595, n 2 : 1.728 and log (n 2 −n
1 ) = Bar 1.124 is determined, and in the same manner as in Example 1, a bar 1.124 vertical line is drawn as shown in FIG.
On the line, the intersections with R, which are slightly different for each of the A, B, and C groups, are obtained, and the intersection between the horizontal line and the vertical axis from each point is obtained to obtain 5 μm for the A group, 4 μm for the B group, and C group. Is 3
A thickness of μm was obtained. Then, the specific surface area was calculated as follows.

【0026】 A群の場合 a:0.09mm, b:0.11mm, c:0.005mm 体積V:abc=0.0000495mm3 表面積S:0.0218mm2 比表面積SS=S/V:440mm-1 総重量:0.0000495×3=0.0001485mgGroup A: a: 0.09 mm, b: 0.11 mm, c: 0.005 mm Volume V: abc = 0.0000495 mm 3 Surface area S: 0.0218 mm 2 Specific surface area SS = S / V: 440 mm − 1 total weight: 0.0000495 × 3 = 0.0001485mg

【0027】 B群の場合 a:0.06mm, b:0.07mm, c:0.004mm 体積V:abc=0.0000168mm3 表面積S:0.00944mm2 比表面積SS=S/V:562mm-1 総重量:0.0000126×8=0.0001008mgIn the case of Group B: a: 0.06 mm, b: 0.07 mm, c: 0.004 mm Volume V: abc = 0.0000168 mm 3 Surface area S: 0.00944 mm 2 Specific surface area SS = S / V: 562 mm − 1 total weight: 0.0000126 x 8 = 0.0001008mg

【0028】 C群の場合 a:0.02mm, b:0.03mm, c:0.003mm 体積V:abc=0.0000018mm3 表面積S:0.0015mm2 比表面積SS=S/V:833mm-1(比重1として) 総重量:0.0000018×19=0.0000342mgIn the case of group C: a: 0.02 mm, b: 0.03 mm, c: 0.003 mm Volume V: abc = 0.0000018 mm 3 Surface area S: 0.0015 mm 2 Specific surface area SS = S / V: 833 mm − 1 (As specific gravity 1) Total weight: 0.0000018 × 19 = 0.0000342 mg

【0029】A,B,C群の重量比 A:52.4% B:35.5% C:12.1% 比表面積の重荷平均=530.8mm-1 Weight ratio of A, B, and C groups A: 52.4% B: 35.5% C: 12.1% Weight average of specific surface area = 530.8 mm -1

【0030】[0030]

【考案の効果】本考案によれば、特定のチャートを用い
ることにより、偏光顕微鏡下に観察される微細結晶の干
渉色Rから迅速かつ簡易にその結晶の厚さを測定するこ
とが出来る。
According to the present invention, by using a specific chart, the thickness of the crystal can be measured quickly and easily from the interference color R of the fine crystal observed under the polarization microscope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案のチャートの例で、横軸は微細結晶の2
つのキー屈折率(またはそれに準ずる顕微鏡台に平行な
平面内の互に直交する2つの直線偏光の屈折率)n1
2 (但しn2 >n1 とする)の差の対数log(n2
−n1 )を表し、縦軸は結晶の鏡筒軸方向の厚さ、Dの
対数logDを表し、座標上にはlog(n2 −n1
及びlogDに対応するレターデーションRの軌跡が平
行斜線群として現されている。
FIG. 1 is an example of a chart of the present invention, in which the horizontal axis indicates fine crystal 2
One key refractive index (or a corresponding refractive index of two linearly polarized lights orthogonal to each other in a plane parallel to the microscope table) n 1 ,
The logarithm of the difference between n 2 (where n 2 > n 1 ) log (n 2
-N 1 ), the vertical axis represents the thickness of the crystal in the axial direction of the lens barrel, the logarithm of D, logD, and log (n 2 −n 1 ) on the coordinates.
And loci of retardation R corresponding to logD are shown as a group of parallel diagonal lines.

【図2】本考案のチャートの例でレターデーションRの
軌跡に対応するそれぞれの色相が文字で記入されてい
る。本図には 実施例1の無水アンピシリン、実施例2
のセファロリジン結晶の測定に用いた、それぞれ縦軸お
よび横軸に平行にな線が記入されている。
FIG. 2 is an example of a chart of the present invention in which each hue corresponding to the locus of the retardation R is written in characters. This figure shows anhydrous ampicillin of Example 1, Example 2
Lines parallel to the vertical axis and the horizontal axis used for the measurement of the cephaloridine crystal in Example 2 are drawn.

【図3】図3(1)(2)は、それぞれ実施例2のセフ
ァロリジン結晶、実施例1の無水アンピシリン結晶の偏
光顕微鏡写真の模式図である。
3 (1) and 3 (2) are schematic views of a polarization microscope photograph of the cephaloridine crystal of Example 2 and the anhydrous ampicillin crystal of Example 1, respectively.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 偏光顕微鏡を用いる浸液法により求め
うる微細結晶の2つのキー屈折率n1 、n2 若しくは、
それに準ずる顕微鏡台に平行な平面内の互に直交する2
つの直線偏光の屈折率n1 、n2 (但しn2 >n1 とす
る)の差の対数log(n2 −n1 )を直角座標の横軸
に、結晶の鏡筒軸方向の厚さDの対数logDを縦軸に
とり、その座標上にはlog(n2 −n1 )及びlog
Dに対応するレターデーションRの軌跡である平行斜線
群を描いたことを特徴とする微細結晶の厚さの測定に用
いるチャート。
1. Two key refractive indices n 1 , n 2 of fine crystals which can be obtained by an immersion method using a polarization microscope, or
According to it, the planes parallel to the microscope stand are orthogonal to each other 2
One of the refractive index n 1 of the linearly polarized light, n 2 the logarithm log (n 2 -n 1) the horizontal axis of the Cartesian coordinates of the difference (where n 2> n 1 to), the thickness of the barrel axis of the crystal The logarithm of D, D, is plotted on the vertical axis, and log (n 2 −n 1 ) and log are plotted on the coordinates.
The chart used for the measurement of the thickness of the fine crystal which drew the parallel diagonal line group which is the locus | trajectory of the retardation R corresponding to D.
【請求項2】 レターデーションRの軌跡である平行
斜線群において、それぞれのRに対応するカラーで彩色
し、全体としてカラーの縞模様で表される請求項1記載
のチャート
2. The chart according to claim 1, wherein in the group of parallel diagonal lines which is the locus of the retardation R, the color is colored with a color corresponding to each R and is represented by a color stripe pattern as a whole.
JP3634693U 1993-06-07 1993-06-07 Chart used for measuring the thickness of fine crystals Expired - Lifetime JPH0712888Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3634693U JPH0712888Y2 (en) 1993-06-07 1993-06-07 Chart used for measuring the thickness of fine crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3634693U JPH0712888Y2 (en) 1993-06-07 1993-06-07 Chart used for measuring the thickness of fine crystals

Publications (2)

Publication Number Publication Date
JPH0664104U JPH0664104U (en) 1994-09-09
JPH0712888Y2 true JPH0712888Y2 (en) 1995-03-29

Family

ID=12467282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3634693U Expired - Lifetime JPH0712888Y2 (en) 1993-06-07 1993-06-07 Chart used for measuring the thickness of fine crystals

Country Status (1)

Country Link
JP (1) JPH0712888Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189830B (en) * 2020-01-19 2022-08-19 山东省地质矿产勘查开发局第一地质大队 Identification method of neutral volcanic rock-andesite

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
坪井誠太郎著「偏光顕微鏡」岩波書店(1964.2.20)PP.160−161

Also Published As

Publication number Publication date
JPH0664104U (en) 1994-09-09

Similar Documents

Publication Publication Date Title
Duwe et al. Bending elastic moduli of lipid bilayers: modulation by solutes
DeRosier et al. Structure of the tubular variants of the head of bacteriophage T4 (Polyheads): I. Arrangement of subunits in some classes of polyheads
Johannsen Manual of petrographic methods
CN106556356A (en) A kind of multi-angle measuring three-dimensional profile system and measuring method
CN107941168A (en) Reflective striped surface shape measurement method and device based on speckle location position
Beraldin et al. Performance evaluation of three active vision systems built at the national research council of canada
JPH0712888Y2 (en) Chart used for measuring the thickness of fine crystals
JPH11514434A (en) Method and apparatus for determining camera position and orientation using image data
EP1178434A3 (en) Image measurement method, image measurement apparatus and image measurement program storage medium
JP2001343328A (en) DISPLAY METHOD FOR CHANGE IN pH DISTRIBUTION
JPS6296803A (en) Method for measuring thickness of microfine crystal and chart used in said method
Mitchell et al. Stereomicroscope photogrammetry for the measurement of small objects
Spurr et al. Tree height measurements from aerial photographs
Barker Graphical and Tabular Methods in Crystallography as the Foundation of a New System of Practice: With a Multiple Tangent Table and a 5-figure Table of Natural Cotangents
US1583965A (en) Optical apparatus
CN101509767B (en) Viewing distance and walk-off angle detecting method and device for simulation training virtual image display system
JPH11223527A (en) Method for measuring by total station
CN215348879U (en) Multifunctional portable prism overturning racket
Alli The radial intercepts method for measuring bronchial mucous gland volume.
Nuttall et al. A method of examining stereoscopic photographs
JPH01242905A (en) Method for measuring actual size of visual device
Hallert Photogrammetry and culture history
FR2599491A1 (en) Photogrammetric method
JP2509303Y2 (en) Light section microscope
SU823853A1 (en) Optical meter of techological values