JPH07128263A - X-ray analyzing device - Google Patents

X-ray analyzing device

Info

Publication number
JPH07128263A
JPH07128263A JP5297362A JP29736293A JPH07128263A JP H07128263 A JPH07128263 A JP H07128263A JP 5297362 A JP5297362 A JP 5297362A JP 29736293 A JP29736293 A JP 29736293A JP H07128263 A JPH07128263 A JP H07128263A
Authority
JP
Japan
Prior art keywords
ray
rays
sample
fluorescent
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5297362A
Other languages
Japanese (ja)
Other versions
JP3160135B2 (en
Inventor
Katsuhisa Toda
勝久 戸田
Hisamasa Kono
久征 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP29736293A priority Critical patent/JP3160135B2/en
Publication of JPH07128263A publication Critical patent/JPH07128263A/en
Application granted granted Critical
Publication of JP3160135B2 publication Critical patent/JP3160135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To simultaneously execute both fluorescent X-ray analysis and X-ray diffraction analysis by providing an emitting device for emitting an X-ray containing plural kinds of characteristic X-rays mutually different in wavelength to a sample. CONSTITUTION:An X-ray tube (emitting device) 3 emits an X-ray B1 containing plural kinds of characteristic X-rays mutually different in wavelength such as RhKalpha-ray, RhKbeta-ray and RhLalpha-ray. In a sample 1 receiving the X-ray B1, the atoms are excited to generate a fluorescent X-ray B2 natural to the contained element, and the X-ray B1 is also partially diffracted as a diffracted X-ray B3 by the polycrystal of CaO. A first spectral element 4A spectrally diffracts the fluorescent X-ray B21 of the element to be measured, a second spectral element 4B spectrally diffracts the RhLalpha-ray (diffracted X-ray B3) which is a characteristic X-ray having a long wavelength. The spectrally diffracted fluorescent X-ray B21 and diffracted X-ray B3 are incident on first and second X-ray detectors 8A, 8B, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試料からの蛍光X線
および回折X線に基づいて試料の分析を行うX線分析装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray analyzer for analyzing a sample based on fluorescent X-rays and diffracted X-rays from the sample.

【0002】[0002]

【従来の技術】蛍光X線分析装置およびX線回折分析装
置は、ともにX線分析装置の一種である。蛍光X線分析
装置は、試料に励起X線を照射し、試料の原子を励起す
ることで、試料に含まれる元素固有の蛍光X線を検出し
て、試料の組成や膜厚などの分析を行う装置である。一
方、X線回折分析装置は、試料にX線を照射し、試料の
結晶構造(格子)で回折された回折X線を検出すること
で、試料の結晶構造を分析する装置である。
2. Description of the Related Art An X-ray fluorescence analyzer and an X-ray diffraction analyzer are both types of X-ray analyzer. An X-ray fluorescence analyzer irradiates a sample with excited X-rays and excites atoms in the sample, thereby detecting fluorescent X-rays specific to the elements contained in the sample and analyzing the composition and film thickness of the sample. It is a device to perform. On the other hand, the X-ray diffraction analyzer is an apparatus that analyzes the crystal structure of the sample by irradiating the sample with X-rays and detecting the diffracted X-rays diffracted by the crystal structure (lattice) of the sample.

【0003】[0003]

【発明が解決しようとする課題】一般に、試料を分析す
る場合、試料の組成または結晶構造の一方のみを分析す
ることが多く、組成および結晶構造の双方を分析するこ
とは少ない。しかし、セメント原料のクリンカなどで
は、その品質管理上、組成および結晶構造の両方を知る
必要がある。したがって、1つのX線分析装置で、蛍光
X線分析およびX線回折分析を可能とすることは有意義
である。
Generally, when a sample is analyzed, only one of the composition and the crystal structure of the sample is analyzed, and both the composition and the crystal structure are rarely analyzed. However, for clinker, which is a raw material for cement, it is necessary to know both the composition and the crystal structure for quality control. Therefore, it is significant to enable fluorescent X-ray analysis and X-ray diffraction analysis with one X-ray analysis device.

【0004】しかし、従来は、以下に説明する理由によ
り、1つの装置で2種類の分析を行うことはなされてい
なかった。X線の回折条件は、下記のブラッグの式によ
り与えられる。 2dsin θ=nλ d:結晶の面間隔 θ:回折角 λ:回折されるX線の波長 n:反射の次数(1,2,3…) ここで、クリンカ中のCaOの結晶の面間隔dは、2.40
56Åであり、用いるX線B1の波長λを1.5418Å(Cu
Kα線)とすると、回折角θは18.69 °になる。したが
って、図3(a)のように、反射型のX線回折を行う場合
には、試料1への入射角α(α=θ)を比較的小さな角
度に設定する。
However, conventionally, two types of analyzes have not been performed by one device for the reason described below. The X-ray diffraction condition is given by the following Bragg equation. 2dsin θ = nλ d: Crystallographic spacing θ: Diffraction angle λ: Diffracted X-ray wavelength n: Order of reflection (1, 2, 3 ...) Here, CaO crystallographic spacing d in the clinker is , 2.40
56Å, and the wavelength λ of the X-ray B1 used is 1.5418Å (Cu
Kα line), the diffraction angle θ becomes 18.69 °. Therefore, as shown in FIG. 3A, when performing reflection type X-ray diffraction, the incident angle α (α = θ) on the sample 1 is set to a relatively small angle.

【0005】一方、図3(b)に示すように、蛍光X線
分析装置では、試料1に照射される励起X線B1の強度
を大きくして蛍光X線B2の強度を大きくするために、
励起X線B1の入射角αが90°程度の大きな角度に設
定される。
On the other hand, as shown in FIG. 3B, in the fluorescent X-ray analyzer, in order to increase the intensity of the excited X-ray B1 and the intensity of the fluorescent X-ray B2 with which the sample 1 is irradiated,
The incident angle α of the excited X-ray B1 is set to a large angle of about 90 °.

【0006】このように、X線回折と蛍光X線分析で
は、試料1に入射させるX線B1の入射角αが大きく異
なっているので、1つの装置で2種類の分析を行うこと
はなされていない。
As described above, in X-ray diffraction and fluorescent X-ray analysis, since the incident angle α of the X-ray B1 incident on the sample 1 is largely different, two kinds of analyzes have been performed by one device. Absent.

【0007】なお、図3(c)のように、X線回折にお
いて、入射角αを大きくすることも考えられる。しか
し、こうすると、回折X線B3を試料1の表面に取り出
す透過型のX線回折となり、一方、試料1の厚さは一般
に2mm〜3mm程度であるから、十分な強度の回折X線B
3を取り出すことができないので、入射角αを大きくす
ることはできない。
It is also possible to increase the incident angle α in X-ray diffraction as shown in FIG. 3 (c). However, when this is done, transmission-type X-ray diffraction is performed in which the diffracted X-rays B3 are extracted onto the surface of the sample 1. On the other hand, the thickness of the sample 1 is generally about 2 mm to 3 mm.
Since 3 cannot be taken out, the incident angle α cannot be increased.

【0008】この発明は、かかる課題に鑑みてなされた
もので、1つの装置で、蛍光X線分析およびX線回折分
析の両方を行い得るX線分析装置を提供することを目的
とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an X-ray analysis apparatus capable of performing both fluorescent X-ray analysis and X-ray diffraction analysis with one apparatus.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、蛍光X線分析装置の基本的構成に加
え、試料に照射するX線に含まれる波長の長い特性X線
であって試料により回折されて反射された特性X線を分
光する分光素子と、この分光素子によって回折された波
長の長い特性X線を検出する回折X線検出器とを備えて
いる。
In order to achieve the above object, the present invention provides a characteristic X-ray having a long wavelength contained in an X-ray irradiating a sample, in addition to the basic structure of a fluorescent X-ray analyzer. A spectroscopic element that disperses the characteristic X-rays diffracted and reflected by the sample and a diffractive X-ray detector that detects the characteristic X-rays having a long wavelength diffracted by the spectroscopic element are provided.

【0010】[0010]

【作用】この発明によれば、特性X線のうち波長の長い
特性X線を用いてX線回折分析を行うので、回折角が大
きくなる。そのため、X線を大きな入射角度で試料に入
射させても、試料の表面から回折X線を取り出すことが
可能となる。
According to the present invention, since the X-ray diffraction analysis is performed using the characteristic X-rays having a long wavelength among the characteristic X-rays, the diffraction angle becomes large. Therefore, even if X-rays are incident on the sample at a large incident angle, it is possible to extract the diffracted X-rays from the surface of the sample.

【0011】[0011]

【実施例】以下、この発明の一実施例を図面にしたがっ
て説明する。図1において、試料1は、セメント原料の
クリンカで、CaOの多結晶を含んでいる。X線分析装
置は、X線管(照射装置)3と、フィルタ装置2と、第
1および第2の分光素子4A,4Bと、第1および第2
の測定器5A,5Bを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, sample 1 is a clinker as a cement raw material and contains a polycrystal of CaO. The X-ray analysis device includes an X-ray tube (irradiation device) 3, a filter device 2, first and second spectroscopic elements 4A and 4B, and first and second
Measuring instruments 5A and 5B.

【0012】上記フィルタ装置2は、X線管3の出射窓
の近傍に設けられており、図2に示すように、複数のフ
ィルタ2a,2b、透過窓21およびコリメータ20を
備えている。各フィルタ2a,2b、透過窓21および
コリメータ20は、0点を中心に回転して、図1の励起
X線B1の光路に挿入される。上記各フィルタ2a,2
b(図2)は、互いに異なる元素を含んでおり、蛍光X
線分析の際に用いられ、X線B1のうちバックグラウン
ドとなる所定の波長の成分を吸収するものである。一
方、上記コリメータ20(図2)は、X線B1を平行光
にして、試料1に入射するX線B1の角度の拡がりを小
さくするものである。第1および第2の測定器5A,5
Bは、それぞれ、蛍光X線検出器8Aおよび回折X線検
出器8Bと、第1および第2計数回路部9A,9Bとを
備えている。
The filter device 2 is provided in the vicinity of the emission window of the X-ray tube 3 and is provided with a plurality of filters 2a and 2b, a transmission window 21 and a collimator 20, as shown in FIG. Each of the filters 2a and 2b, the transmission window 21, and the collimator 20 rotate about the 0 point and are inserted into the optical path of the excitation X-ray B1 in FIG. Each of the above filters 2a, 2
b (FIG. 2) contains elements different from each other, and fluorescence X
It is used at the time of line analysis and absorbs a component of a predetermined wavelength that becomes a background in the X-ray B1. On the other hand, the collimator 20 (FIG. 2) collimates the X-ray B1 to reduce the angular spread of the X-ray B1 incident on the sample 1. First and second measuring instruments 5A, 5
B includes a fluorescent X-ray detector 8A and a diffraction X-ray detector 8B, and first and second counting circuit units 9A and 9B, respectively.

【0013】X線管3は、試料1の表面に対向して配設
されている。このX線管3は、たとえばロジウムRhを
ターゲット材としており、RhKα線,RhKβ線およ
びRhLα線などの互いに波長の異なる複数種類の特性
X線を含むX線B1を出射するものである。X線B1を
受けた試料1は、原子が励起されて、試料1に含まれて
いる元素固有の蛍光X線B2を発生するとともに、Ca
Oの多結晶により、X線B1の一部を回折X線B3とし
て回折する。
The X-ray tube 3 is arranged so as to face the surface of the sample 1. The X-ray tube 3 uses, for example, rhodium Rh as a target material, and emits X-rays B1 including a plurality of types of characteristic X-rays having different wavelengths such as RhKα rays, RhKβ rays, and RhLα rays. In the sample 1 that has received the X-ray B1, the atoms are excited to generate the fluorescent X-ray B2 peculiar to the element contained in the sample 1 and Ca
Due to the polycrystal of O, a part of the X-ray B1 is diffracted as a diffracted X-ray B3.

【0014】上記両分光素子4A,4BおよびX線検出
器8A,8Bは、たとえば真空雰囲気やヘリウムのよう
な希ガスの雰囲気に保持された分光室に収納されてお
り、全てのX線B1,B2,B21,B3は、かかる雰
囲気内を通過する。第1の分光素子4Aは、図示してい
ないが複数個設けられており、試料1からの蛍光X線B
2および回折X線B3のうち、測定しようとする元素の
蛍光X線B21を分光する。一方、第2の分光素子4B
は、試料1からの蛍光X線B2および回折X線B3のう
ち、波長の長い特性X線であるRhLα線(回折X線B
3)を分光する。これら第1および第2の分光素子4
A,4Bで分光された蛍光X線B21および回折X線B
3は、それぞれ、第1および第2のX線検出器8A,8
Bに入射する。なお、回折X線B3(RhLα線)の取
出角βは、測定対象であるCaOの多結晶の格子面間隔
dおよび検出する回折X線B3の波長から上記ブラッグ
の式に従って算出された2θ(145.69°)に基づ
いて設定される。たとえば、X線B1の入射角αを90
°とすると、取出角βは55.69°になる。
Both the spectroscopic elements 4A, 4B and the X-ray detectors 8A, 8B are housed in a spectroscopic chamber maintained in, for example, a vacuum atmosphere or an atmosphere of a rare gas such as helium, and all X-rays B1, B2, B21, B3 pass through such an atmosphere. Although not shown, a plurality of first spectroscopic elements 4A are provided, and the fluorescent X-rays B from the sample 1 are provided.
Of 2 and the diffracted X-ray B3, the fluorescent X-ray B21 of the element to be measured is separated. On the other hand, the second spectroscopic element 4B
Of the fluorescent X-rays B2 and diffracted X-rays B3 from the sample 1 is a characteristic X-ray with a long wavelength, that is, a RhLα ray (diffracted X-ray
3) is dispersed. These first and second spectroscopic elements 4
Fluorescent X-ray B21 and diffracted X-ray B, which are spectrally separated by A and 4B
3 is the first and second X-ray detectors 8A, 8 respectively.
It is incident on B. The extraction angle β of the diffracted X-ray B3 (RhLα ray) was calculated according to the Bragg equation from the lattice spacing d of the CaO polycrystal to be measured and the wavelength of the diffracted X-ray B3 to be detected. .69 °). For example, the incident angle α of X-ray B1 is 90
If the angle is °, the take-out angle β becomes 55.69 °.

【0015】上記第1および第2のX線検出器8A,8
Bは、それぞれ、入射した蛍光X線B21および回折X
線B3(RhLα線)を検出して、検出出力e1,e2
を第1および第2計数回路部9A,9Bに出力する。第
1および第2計数回路部9A,9Bは、それぞれ、検出
出力e1,e2をカウントして、蛍光X線B21および
回折X線B3(RhLα線)の強度を測定信号x1,x
2として第1および第2の演算器6A,6Bに出力す
る。第1および第2の演算器6A,6Bは、それぞれ、
上記測定信号x1,x2を受けて、蛍光X線B21およ
び回折X線B3(RhLα線)の測定強度に基づいて、
試料中の元素の濃度およびCaOの結晶状態を求める。
The above-mentioned first and second X-ray detectors 8A, 8
B is the incident fluorescent X-ray B21 and the diffraction X-ray B21, respectively.
The line B3 (RhLα line) is detected, and the detection outputs e1 and e2
Is output to the first and second counting circuit units 9A and 9B. The first and second counting circuit sections 9A and 9B respectively count the detection outputs e1 and e2 to measure the intensities of the fluorescent X-ray B21 and the diffracted X-ray B3 (RhLα ray) as measurement signals x1 and x.
2 is output to the first and second arithmetic units 6A and 6B. The first and second arithmetic units 6A and 6B are respectively
Upon receiving the measurement signals x1 and x2, based on the measurement intensities of the fluorescent X-ray B21 and the diffracted X-ray B3 (RhLα ray),
The concentration of elements in the sample and the crystalline state of CaO are obtained.

【0016】つぎに、分析方法について説明する。ま
ず、蛍光X線分析を行う際には、図2のフィルタ2a,
2bまたは透過窓21を選択して、図1のX線管3の出
射窓に対向させる。つづいて、X線管3から拡がりのあ
るX線B1を励起X線として試料1に照射する。X線B
1を受けた試料1は、RhKα線やRhKβ線などによ
って原子が励起されて、元素固有の蛍光X線B2が発生
する。蛍光X線B2は、第1の分光素子4Aにより測定
対象の波長の蛍光X線B21が回折されて、蛍光X線検
出器8Aで検出され、周知の蛍光X線分析がなされる。
これにより、試料1の組成の分析がなされる。
Next, the analysis method will be described. First, when performing the fluorescent X-ray analysis, the filter 2a of FIG.
2b or the transmission window 21 is selected to face the emission window of the X-ray tube 3 in FIG. Next, the sample 1 is irradiated with the spread X-ray B1 from the X-ray tube 3 as an excited X-ray. X-ray B
In the sample 1 which received 1, the atoms are excited by the RhKα ray and the RhKβ ray, and the fluorescent X-ray B2 peculiar to the element is generated. The fluorescent X-rays B2 are diffracted by the first spectroscopic element 4A into the fluorescent X-rays B21 having the wavelength to be measured, and are detected by the fluorescent X-ray detector 8A, and the known fluorescent X-ray analysis is performed.
Thereby, the composition of the sample 1 is analyzed.

【0017】つぎに、X線回折分析を行う際には、図2
のコリメータ20を選択して、図1のX線管3の出射窓
に対向させる。つづいて、X線管3からコリメータ20
を通して平行なX線B1を試料1に照射する。X線B1
を受けた試料1は、蛍光X線B2を発生するとともに、
試料1に含まれる結晶の格子で、X線B1を種々の方向
に回折させる。回折X線B3は、2θが所定の角度に設
定されているので、試料1中に含まれる結晶の格子との
関係上、所定の波長の特性X線(たとえばRhLα線)
のみが、第2の分光素子4Bに向かう。第2の分光素子
4Bは、入射した蛍光X線B2および回折X線B3のう
ち、ブラッグの式に従って、回折X線(RhLα線)B
3のみを分光する。分光されたRhLα線B3は、回折
X線検出器8Bで検出され、周知のX線回折分析がなさ
れる。これにより、試料1の結晶構造を知ることができ
る。
Next, when performing the X-ray diffraction analysis, as shown in FIG.
The collimator 20 is selected so as to face the emission window of the X-ray tube 3 in FIG. Next, from the X-ray tube 3 to the collimator 20
The sample 1 is irradiated with parallel X-rays B1 through. X-ray B1
The sample 1 that received the light emits fluorescent X-ray B2 and
The crystal lattice contained in the sample 1 diffracts the X-ray B1 in various directions. Since 2θ is set to a predetermined angle in the diffracted X-ray B3, a characteristic X-ray (for example, RhLα ray) having a predetermined wavelength is taken into consideration in relation to the crystal lattice contained in the sample 1.
Only towards the second dispersive element 4B. Of the incident fluorescent X-rays B2 and diffracted X-rays B3, the second spectroscopic element 4B follows the Bragg equation and the diffracted X-rays (RhLα rays) B
Only 3 is separated. The separated RhLα ray B3 is detected by the diffraction X-ray detector 8B, and the well-known X-ray diffraction analysis is performed. Thereby, the crystal structure of Sample 1 can be known.

【0018】このように、このX線分析装置は、X線管
3から出射されたX線B1のうち、波長の長い特性X線
であるRhLα線を第2の分光素子4Bにより分光する
から、前述のブラッグの式から分かるように、2θが大
きくなる。そのため、X線管3からのX線B1の入射角
αが大きくても回折X線B3(RhLα線)を試料1の
表面側に取り出すことができる。したがって、X線管3
を試料1に対向させる蛍光X線分析装置を用いて、X線
回折分析を行うことができる。
As described above, since the X-ray analysis apparatus disperses the RhLα rays, which are characteristic X-rays having a long wavelength, out of the X-rays B1 emitted from the X-ray tube 3, by the second spectroscopic element 4B, As can be seen from the above Bragg equation, 2θ becomes large. Therefore, even if the incident angle α of the X-ray B1 from the X-ray tube 3 is large, the diffracted X-ray B3 (RhLα ray) can be extracted to the surface side of the sample 1. Therefore, the X-ray tube 3
X-ray diffraction analysis can be performed by using a fluorescent X-ray analyzer in which the sample is opposed to the sample 1.

【0019】ところで、RhLα線のように波長の長い
X線は、空気などにより吸収される。そのため、通常、
大気で分析を行うX線回折装置の場合には、RhLα線
などの波長の長いX線を用いてX線回折分析を行うこと
はできない。これに対し、このX線分析装置は、一般の
蛍光X線分析装置を流用するものであるから、X線B
1,B2,B3が真空雰囲気内や希ガスの雰囲気内を通
過するので、波長の長いRhLα線であっても吸収され
るおそれがない。したがって、X線B1に含まれる波長
の長い特性X線を用いてX線回折分析を行うことができ
る。
By the way, X-rays having a long wavelength such as RhLα rays are absorbed by air or the like. Therefore, usually
In the case of an X-ray diffractometer that performs analysis in the atmosphere, X-ray diffraction analysis cannot be performed using long-wavelength X-rays such as RhLα rays. On the other hand, since this X-ray analyzer is a general fluorescent X-ray analyzer, the X-ray B
Since 1, B2, B3 pass through the vacuum atmosphere or the atmosphere of the rare gas, there is no possibility that RhLα rays having a long wavelength will be absorbed. Therefore, the X-ray diffraction analysis can be performed using the characteristic X-ray having a long wavelength contained in the X-ray B1.

【0020】なお、上記実施例では、図2のフィルタ装
置2にコリメータ20を設けて、蛍光X線分析とX線回
折分析とを別々に行ったが、必ずしも、コリメータ20
を設ける必要はない。たとえば、X線回折に関する精度
が低くてもよい場合などは、X線回折を行う際にX線B
1を平行光にする必要はなく、この場合、フィルタ2
a,2bまたは透過窓21を用いて蛍光X線分析とX線
回折分析とを同時に行うことができる。
In the above-described embodiment, the collimator 20 is provided in the filter device 2 of FIG. 2 to perform the fluorescent X-ray analysis and the X-ray diffraction analysis separately, but the collimator 20 is not always necessary.
Need not be provided. For example, when the accuracy of X-ray diffraction may be low, the X-ray B
1 does not need to be parallel light, in this case the filter 2
The fluorescent X-ray analysis and the X-ray diffraction analysis can be simultaneously performed by using a, 2b or the transmission window 21.

【0021】また、上記実施例では、波長の長い特性X
線として、図1のX線管3から発生したRhLα線を用
いたが、必ずしもX線管3から発生した特性X線を用い
る必要はない。たとえば、X線管3からのX線B1で図
2のフィルタ2a,2bの原子が励起されて発生した蛍
光X線であって、上記X線管3からのL線よりも波長の
長い、たとえばジルコニウムのL線のような特性X線を
用いて、X線回折分析を行ってもよい。この場合、フィ
ルタ装置2およびX線管3によって、照射装置が構成さ
れる。
In the above embodiment, the characteristic X with a long wavelength is used.
Although the RhLα ray generated from the X-ray tube 3 in FIG. 1 is used as the ray, it is not always necessary to use the characteristic X-ray generated from the X-ray tube 3. For example, it is a fluorescent X-ray generated by exciting the atoms of the filters 2a and 2b of FIG. 2 with the X-ray B1 from the X-ray tube 3, and has a longer wavelength than the L-ray from the X-ray tube 3, for example, X-ray diffraction analysis may be performed using characteristic X-rays such as zirconium L-rays. In this case, the filter device 2 and the X-ray tube 3 constitute an irradiation device.

【0022】[0022]

【発明の効果】以上説明したように、この発明によれ
ば、特性X線のうち波長の長い特性X線を用いてX線回
折分析を行うので、回折角が大きくなる。そのため、X
線を大きな入射角度で試料に入射させても、試料の表面
から回折X線を取り出すことが可能となる。したがっ
て、励起X線を大きな入射角で試料に入射させる蛍光X
線分析装置を用いて、X線回折分析を行うことができ
る。
As described above, according to the present invention, since the X-ray diffraction analysis is performed using the characteristic X-ray having the long wavelength among the characteristic X-rays, the diffraction angle becomes large. Therefore, X
Even if a ray is incident on the sample at a large incident angle, it is possible to extract the diffracted X-ray from the surface of the sample. Therefore, the fluorescent X that causes the excitation X-ray to enter the sample at a large incident angle.
X-ray diffraction analysis can be performed using a line analyzer.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示すX線分析装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of an X-ray analysis apparatus showing an embodiment of the present invention.

【図2】フィルタ装置の斜視図である。FIG. 2 is a perspective view of a filter device.

【図3】X線の入射角と取出角の関係を示す正面図であ
る。
FIG. 3 is a front view showing a relationship between an X-ray incident angle and an X-ray extraction angle.

【符号の説明】[Explanation of symbols]

1…試料、3…X線管、4A…第1の分光素子、4B…
第2の分光素子、8A…蛍光X線検出器、8B…回折X
線検出器、B1…X線、B2,B21…蛍光X線、B3
…回折X線。
1 ... Sample, 3 ... X-ray tube, 4A ... 1st spectroscopic element, 4B ...
Second spectroscopic element, 8A ... Fluorescent X-ray detector, 8B ... Diffraction X
X-ray detector, B1 ... X-ray, B2, B21 ... Fluorescent X-ray, B3
… Diffracted X-rays.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 互いに波長の異なる複数種類の特性X線
を含むX線を試料に照射する照射装置と、 上記試料から発生した蛍光X線を分光する第1の分光素
子と、 この第1の分光素子によって分光された蛍光X線を検出
する蛍光X線検出器と、 上記特性X線のうち波長の長い特性X線であって上記試
料により回折されて反射された特性X線を分光する第2
の分光素子と、 この第2の分光素子によって分光された波長の長い特性
X線を検出する回折X線検出器とを備えたX線分析装
置。
1. An irradiation device for irradiating a sample with X-rays including a plurality of types of characteristic X-rays having different wavelengths, a first spectroscopic element for separating fluorescent X-rays generated from the sample, and A fluorescent X-ray detector for detecting fluorescent X-rays dispersed by the spectroscopic element, and a spectral X-ray detector for separating characteristic X-rays having a long wavelength among the characteristic X-rays, which is diffracted and reflected by the sample. Two
An X-ray analysis apparatus comprising: the spectroscopic element and the diffractive X-ray detector that detects the characteristic X-ray having a long wavelength that is dispersed by the second spectroscopic element.
JP29736293A 1993-11-02 1993-11-02 X-ray analyzer Expired - Fee Related JP3160135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29736293A JP3160135B2 (en) 1993-11-02 1993-11-02 X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29736293A JP3160135B2 (en) 1993-11-02 1993-11-02 X-ray analyzer

Publications (2)

Publication Number Publication Date
JPH07128263A true JPH07128263A (en) 1995-05-19
JP3160135B2 JP3160135B2 (en) 2001-04-23

Family

ID=17845520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29736293A Expired - Fee Related JP3160135B2 (en) 1993-11-02 1993-11-02 X-ray analyzer

Country Status (1)

Country Link
JP (1) JP3160135B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350373A (en) * 2001-05-29 2002-12-04 Seiko Instruments Inc Complex x-ray analyzing apparatus
JP2007155651A (en) * 2005-12-08 2007-06-21 Rigaku Industrial Co Multi-element simultaneous type fluorescent x-ray analyzer
JP2009236622A (en) * 2008-03-26 2009-10-15 Tohken Co Ltd High-resolution x-ray microscopic apparatus with fluorescent x-ray analysis function
JP2011089987A (en) * 2009-10-22 2011-05-06 Panalytical Bv X-ray diffraction and fluorescence
JP2013224923A (en) * 2012-03-23 2013-10-31 Rigaku Corp X-ray composite device
CN107238620A (en) * 2017-07-26 2017-10-10 中国地质大学(武汉) A kind of XRF diffraction integrated analysis instrument of rotatable sample
WO2020008727A1 (en) * 2018-07-04 2020-01-09 株式会社リガク Luminescent x-ray analysis device
JP2021189088A (en) * 2020-06-02 2021-12-13 株式会社島津製作所 Analyzer and method for analysis

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006984B4 (en) * 2009-01-31 2010-09-30 Bruker Axs Gmbh X-ray multichannel spectrometer
US8239119B2 (en) * 2009-06-02 2012-08-07 GM Global Technology Operations LLC Method and system for adapting small fuel injection quantities
CN106872504A (en) * 2017-04-28 2017-06-20 广西壮族自治区梧州食品药品检验所 A kind of x-ray fluorescence analysis are discerned the false from the genuine the method for cinnabar

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350373A (en) * 2001-05-29 2002-12-04 Seiko Instruments Inc Complex x-ray analyzing apparatus
JP2007155651A (en) * 2005-12-08 2007-06-21 Rigaku Industrial Co Multi-element simultaneous type fluorescent x-ray analyzer
JP2009236622A (en) * 2008-03-26 2009-10-15 Tohken Co Ltd High-resolution x-ray microscopic apparatus with fluorescent x-ray analysis function
JP2011089987A (en) * 2009-10-22 2011-05-06 Panalytical Bv X-ray diffraction and fluorescence
JP2013224923A (en) * 2012-03-23 2013-10-31 Rigaku Corp X-ray composite device
CN107238620A (en) * 2017-07-26 2017-10-10 中国地质大学(武汉) A kind of XRF diffraction integrated analysis instrument of rotatable sample
CN107238620B (en) * 2017-07-26 2023-03-24 中国地质大学(武汉) X-ray fluorescence diffraction integrated analyzer of rotatable sample
WO2020008727A1 (en) * 2018-07-04 2020-01-09 株式会社リガク Luminescent x-ray analysis device
JPWO2020008727A1 (en) * 2018-07-04 2021-07-08 株式会社リガク X-ray fluorescence analyzer
US11733185B2 (en) 2018-07-04 2023-08-22 Rigaku Corporation Fluorescent X-ray analysis apparatus comprising a plurality of X-ray detectors and an X-ray irradiation unit including a multi-wavelength mirror
TWI837133B (en) * 2018-07-04 2024-04-01 日商理學股份有限公司 X-ray fluorescence spectrometer
JP2021189088A (en) * 2020-06-02 2021-12-13 株式会社島津製作所 Analyzer and method for analysis

Also Published As

Publication number Publication date
JP3160135B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
JP6861469B2 (en) Quantitative X-ray analysis and matrix thickness correction method
Yappert et al. Correction of polychromatic luminescence signals for inner-filter effects
US5390229A (en) Lead-paint detector
JP3160135B2 (en) X-ray analyzer
US3402292A (en) Apparatus for x-ray analysis of a material having a specific filter in the primary x-ray beam path
EP0911627A1 (en) Analysis of chemical elements
EP3064932B1 (en) Quantitative x-ray analysis
JP2000504422A (en) X-ray analyzer having two collimator masks
JPH0288952A (en) Method and device for analyzing tissue
JP2017181309A (en) Fluorescent x-ray analyzer and fluorescent x-ray analysis method
JPH071311B2 (en) Method for peak separation of fluorescent X-ray spectrum
JPH05209847A (en) Fluorescent x-ray spectroscopy method and apparatus
JP3312001B2 (en) X-ray fluorescence analyzer
JPH05119000A (en) Fluorescent x-ray analyzing device
JP3673849B2 (en) Total reflection X-ray fluorescence analyzer
JP2759922B2 (en) Method for measuring high-order X-ray intensity
JPH05322809A (en) Instrument and method for total-reflection x-ray fluorescence analysis
JP2554104Y2 (en) X-ray fluorescence analyzer
SU609080A1 (en) Device for dispersionless x-ray fluorescent analysis
SU911265A1 (en) Device for x-ray fluorescent analysis
JP2002090319A (en) Fluorescent x-ray analysis device
Tanemura Analysis of adjacent elements in X-ray spectroscopy with radioisotopes
SU1224689A1 (en) Apparatus for x-ray fluorescence analysis of substance composition
SU1458782A1 (en) Method of determining structural characteristics of single crystals
JPS61202147A (en) Transmissive exafs measuring apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees