JPH07127466A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPH07127466A
JPH07127466A JP5294249A JP29424993A JPH07127466A JP H07127466 A JPH07127466 A JP H07127466A JP 5294249 A JP5294249 A JP 5294249A JP 29424993 A JP29424993 A JP 29424993A JP H07127466 A JPH07127466 A JP H07127466A
Authority
JP
Japan
Prior art keywords
intake
air
fresh air
intake port
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5294249A
Other languages
Japanese (ja)
Inventor
Tsugio Hatsuhira
次男 服平
Yoshihisa Nooi
芳尚 乃生
Toshihide Yamamoto
寿英 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP5294249A priority Critical patent/JPH07127466A/en
Publication of JPH07127466A publication Critical patent/JPH07127466A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To achieve stratification without damping a swirl by a method wherein the valve seat angle of an intake valve arranged in each of intake ports for introduction of fresh air and the feed of fuel-air mixture is set to a proper value. CONSTITUTION:An intake port for introduction of fresh air and an intake port for the feed of fuel-air mixture are provided for each cylinder. One intake port for introduction of fresh air forms a swirl generating port and a swirl is generated in a combustion chamber during low load running. The opening timing of an intake valve to open and close the intake port for the feed of fuel-air mixture is delayed from that of an intake valve to open and close the intake port for introduction of fresh air, and the valve seat angle theta2, of the intake valve on the fuel-air mixture feed side to the valve seat angle 9. of the intake valve on the fresh air introduction side is set to theta1>theta2. Thus stratification is promoted without damping a swirl through prevention of the occurrence of interference between fuel-air mixture and fresh air and lean combustion limit is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジンの吸気装置、特
に、新気供給用の吸気ポートとは別に混合気を生成し供
給するための専用の吸気ポートを設け、これら吸気ポー
トのバルブタイミングを異ならせることによって成層化
を図るためのエンジンの吸気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine intake device, and more particularly, to an intake port dedicated to generating and supplying an air-fuel mixture in addition to an intake port for supplying fresh air. The present invention relates to an engine intake device for achieving stratification by making them different.

【0002】[0002]

【従来の技術】エンジンにおいて気筒毎に吸気ポートを
二つ設けそれぞれに吸気弁を配置する場合に、一般には
各吸気弁は同径同リフトとし、バルブシート角すなわち
バルブシート当接面が燃焼室天井面に対してなす角度に
ついても差異を設けないのが普通であった。また、特殊
な場合として、二つの吸気弁のバルブシート角を異にし
たものも従来から知られている。例えば、実開昭61−
110837号公報に記載されたエンジンでは、二つの
吸気ポートの一方に対して燃料噴射弁から燃料を供給
し、他方の吸気ポートは新気のみを導入するようにした
ものにおいて、燃料を供給する方の吸気ポートを開閉す
る吸気弁のバルブシート角を新気導入用の吸気ポートを
開閉する吸気弁のバルブシート角よりも大きくするよう
な設定がなされている。
2. Description of the Related Art In an engine, when two intake ports are provided for each cylinder and an intake valve is provided for each cylinder, the intake valves generally have the same diameter and the same lift, and the valve seat angle, that is, the valve seat contact surface is the combustion chamber. It was usual that there was no difference in the angle made with respect to the ceiling surface. Further, as a special case, there has been conventionally known one in which two intake valves have different valve seat angles. For example, the actual exploitation 61-
In the engine described in Japanese Patent No. 110837, the fuel is supplied from the fuel injection valve to one of the two intake ports and only the fresh air is introduced into the other intake port. The valve seat angle of the intake valve that opens and closes the intake port is set to be larger than the valve seat angle of the intake valve that opens and closes the intake port for fresh air introduction.

【0003】[0003]

【発明が解決しようとする課題】気筒毎に吸気ポートを
複数設けるもので、吸気ポートの一つを混合気供給用と
し、他の吸気ポートは新気導入用として、新気導入用の
吸気ポートに対し混合気供給用の吸気ポートの開時期が
遅くなるようバルブタイミングを設定し、また、新気導
入用吸気ポートは燃焼室内にスワールを生成するものと
して、スワールを生成しつつ成層化を促進しようする試
みがなされているが、この場合に、スワールの生成と成
層化の促進を共に達成できるようにするためには、混合
気供給用吸気ポートに配置する吸気弁のバルブシート角
が重要なパラメータであり、バルブシート角が適切でな
いと、吸気干渉によってスワールが減衰されたしまい、
また、混合気が新気エアと混合されてしまって成層化が
達成できないことが判明した。
A plurality of intake ports are provided for each cylinder. One of the intake ports is used for supplying the air-fuel mixture, and the other intake port is used for introducing fresh air, and the intake port for introducing fresh air. On the other hand, the valve timing is set so that the opening time of the intake port for supplying the air-fuel mixture is delayed, and the intake port for introducing fresh air is designed to generate swirl in the combustion chamber, promoting swirl formation and stratification. Attempts have been made to do so, but in this case, the valve seat angle of the intake valve arranged in the intake port for supplying the air-fuel mixture is important in order to achieve both generation of swirl and promotion of stratification. It is a parameter, and if the valve seat angle is not appropriate, the swirl will be attenuated due to intake interference,
It was also found that stratification cannot be achieved because the air-fuel mixture is mixed with fresh air.

【0004】本発明は上記問題点を解決するためのもの
であって、新気導入用と混合気供給用の各吸気ポートに
配置する吸気弁のバルブシート角を適切なものとし成層
化を十分に達成できるようにすることを目的とする。
The present invention is intended to solve the above problems, and the valve seat angles of the intake valves arranged at the intake ports for introducing fresh air and for supplying the air-fuel mixture are made appropriate to achieve sufficient stratification. The purpose is to be able to achieve.

【0005】また、本発明はスワールの減衰を防止しつ
つ成層化を達成できるようにすることを目的とする。
It is another object of the present invention to achieve stratification while preventing swirl attenuation.

【0006】[0006]

【課題を解決するための手段】本発明は、気筒毎に新気
導入用と混合気供給用の2種類の吸気ポートを設けて、
それぞれにポペットタイプの吸気弁を配置し、新気導入
用の吸気ポートに対し混合気供給用の吸気ポートの開時
期が遅くなるようバルブタイミングを設定したエンジン
の吸気装置に係るものであって、混合気供給用の吸気ポ
ートに配置する吸気弁のバルブシート当接面が燃焼室天
井面に対してなす角度(バルブシート角)を新気導入用
の吸気ポートに配置する吸気弁のバルブシート当接面が
燃焼室天井面に対してなす角度(バルブシート角)より
小さくしたことを特徴とする。
According to the present invention, two types of intake ports for introducing fresh air and for supplying air-fuel mixture are provided for each cylinder.
The present invention relates to an engine intake device in which a poppet-type intake valve is arranged in each, and the valve timing is set so that the opening timing of the intake port for supplying the air-fuel mixture is delayed with respect to the intake port for introducing fresh air. The angle at which the valve seat abutment surface of the intake valve arranged in the intake port for supplying the air-fuel mixture makes an angle (valve seat angle) with the ceiling surface of the combustion chamber in the intake port for introducing fresh air. It is characterized in that the contact surface is smaller than the angle (valve seat angle) with respect to the combustion chamber ceiling surface.

【0007】また、成層化を促進するためには、混合気
供給側の開弁時に新気エアの下向きの流れが確立されて
いることが望ましく、そのためには、混合気供給用の吸
気ポートに配置する吸気弁の開弁開始が新気導入用の吸
気ポートに配置する吸気弁の最大リフト時近傍となるよ
うバルブタイミングを設定するのがよい。
Further, in order to promote stratification, it is desirable that a downward flow of fresh air is established when the valve on the air-fuel mixture supply side is opened. For that purpose, an intake port for air-fuel mixture supply is provided. It is preferable to set the valve timing so that the start of opening the intake valve to be placed is near the maximum lift time of the intake valve to be placed in the intake port for fresh air introduction.

【0008】また、本発明は、特に新気導入用として第
1と第2の二つの吸気ポートが設けられ、第1の吸気ポ
ートは燃焼室内にシリンダ軸周りのスワール流を生成す
るものとされ第2の吸気ポートは高負荷時にのみ新気を
導入するものとされたエンジンに適用するのが有利であ
る。
Further, according to the present invention, the first and second intake ports are provided especially for introducing fresh air, and the first intake port is supposed to generate a swirl flow around the cylinder axis in the combustion chamber. It is advantageous to apply the second intake port to an engine that is designed to introduce fresh air only when the load is high.

【0009】[0009]

【作用】本発明によれば、新気導入用の吸気ポートに対
し混合気導入用の吸気ポートの開時期が遅くされたこと
により、燃焼室の上部に混合気層が形成される。そし
て、混合気供給側の吸気弁のバルブシート角が新気導入
側の吸気弁のバルブシート角よりも小さくされたことに
より、新気導入用の吸気ポートから導入される新気エア
は下向きのベクトル成分の大きい流れとなって燃焼室内
に流入し、混合気供給用の吸気ポートから供給される混
合気は横向きのベクトル成分の大きい流れとなって燃焼
室内に流入する。それにより、新気エアと混合気との干
渉がなくなり、新気エアの流れが混合気によって乱され
減衰することによる燃焼性の悪化が防止され、また、混
合気が新気エアと混合されてしまい成層化が妨げられる
のが防止される。
According to the present invention, since the opening timing of the intake port for introducing the air-fuel mixture is delayed with respect to the intake port for introducing the fresh air, the air-fuel mixture layer is formed in the upper portion of the combustion chamber. Since the valve seat angle of the intake valve on the air-fuel mixture supply side is made smaller than the valve seat angle of the intake valve on the fresh air introduction side, the fresh air air introduced from the intake port for fresh air introduction is directed downward. The flow having a large vector component flows into the combustion chamber, and the air-fuel mixture supplied from the intake port for supplying the air-fuel mixture flows into the combustion chamber as a lateral flow having a large vector component. As a result, the interference between the fresh air and the air-fuel mixture is eliminated, the deterioration of the combustibility due to the flow of fresh air being disturbed and attenuated by the air-fuel mixture is prevented, and the air-fuel mixture is mixed with the fresh air. This prevents the stratification from being hindered.

【0010】また、特に、新気導入側の吸気弁が最大リ
フトで新気の流れが確立された後で混合気供給側の吸気
弁が開かれることにより、混合気は開弁初期で流速が大
きい時でも新気エアと干渉することなく燃焼室に供給さ
れ、混合気の燃焼室内上部への流入による成層化が促進
される。
Further, in particular, since the intake valve on the fresh air introduction side is opened after the intake valve on the fresh air introduction side has established a maximum lift and the flow of fresh air is established, the air-fuel mixture has a flow velocity at the initial stage of valve opening. Even when it is large, it is supplied to the combustion chamber without interfering with fresh air, and the stratification is promoted by the mixture flowing into the upper part of the combustion chamber.

【0011】また、特に新気導入用に第1と第2の二つ
の吸気ポートが設けられて第1の吸気ポートは燃焼室内
にシリンダ軸周りのスワール流を生成するものとされ第
2の吸気ポートは高負荷時にのみ新気を導入するものと
されたエンジンの場合には、第2の吸気ポートが遮断さ
れてスワールが生成される運転領域での混合気と新気エ
アの干渉をなくしてスワールによる燃焼性向上を図りつ
つ成層化によるリーンリミット(希薄燃焼限界空燃比)
を向上させることができる。
In addition, first and second intake ports are provided for introducing fresh air, and the first intake port is supposed to generate a swirl flow around the cylinder axis in the combustion chamber. If the engine is designed to introduce fresh air only when the load is high, eliminate the interference between the air-fuel mixture and fresh air in the operating region where the second intake port is blocked and swirl is generated. Lean limit (lean combustion limit air-fuel ratio) by stratification while improving combustibility by swirl
Can be improved.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は本発明の実施例のエンジンの上部縦
断面図であり、図2は同エンジンの燃焼室をシリンダヘ
ッド下面から見た図である。
FIG. 1 is a vertical cross-sectional view of an upper portion of an engine according to an embodiment of the present invention, and FIG. 2 is a view of a combustion chamber of the engine seen from a lower surface of a cylinder head.

【0014】図において、1はシリンダヘッドであり、
2はシリンダヘッド1に形成された燃焼室である。シリ
ンダヘッド1はシリンダブロック3に固定され、シリン
ダブロック3に設けられた各シリンダボア4の上端にそ
れぞれ上記燃焼室2が配置されている。シリンダボア4
にはそれぞれピストン5が配置され、各ピストン5は図
示しないコネクティングロッドにより所定の位相でクラ
ンク軸に連接されている。
In the figure, 1 is a cylinder head,
Reference numeral 2 is a combustion chamber formed in the cylinder head 1. The cylinder head 1 is fixed to a cylinder block 3, and the combustion chamber 2 is arranged at the upper end of each cylinder bore 4 provided in the cylinder block 3. Cylinder bore 4
Each of the pistons 5 is disposed in each of the cylinders, and each piston 5 is connected to the crankshaft at a predetermined phase by a connecting rod (not shown).

【0015】シリンダヘッド1には、気筒毎に第1およ
び第2の二つの新気導入用吸気ポート6,7と混合気供
給用吸気ポート8が設けられ、また、第1と第2の二つ
の排気ポート9,10が設けられている。そして、燃焼
室2の中心よりやや排気側に位置するようシリンダヘッ
ド1にプラグ穴11が設けられ、該プラグ穴11には点
火プラグ12が装着されている。また、上記混合気供給
ポートは燃焼室2の中心に対し上記プラグ穴11と略対
称の位置に開口部が位置するよう配置され、第1の新気
導入用吸気ポート6と第2の新気導入用吸気ポート7
は、吸気側半部において混合気供給用ポート8の開口部
とプラグ穴11を結ぶ線に対し対称の位置に開口部が位
置するよう配置されている。また、排気ポート9,10
は、排気側半部において混合気供給用ポート8の開口部
とプラグ穴11を結ぶ線に対し対称の位置に開口部が位
置するよう配置されている。
The cylinder head 1 is provided with two intake air ports 6 and 7 for introducing fresh air and an intake port 8 for supplying air-fuel mixture for each cylinder. Two exhaust ports 9 and 10 are provided. A plug hole 11 is provided in the cylinder head 1 so as to be located slightly on the exhaust side of the center of the combustion chamber 2, and an ignition plug 12 is attached to the plug hole 11. Further, the air-fuel mixture supply port is arranged such that the opening is located at a position substantially symmetrical to the plug hole 11 with respect to the center of the combustion chamber 2, and the first fresh air intake port 6 and the second fresh air are introduced. Intake port 7 for introduction
Is arranged such that the opening is located at a symmetrical position with respect to a line connecting the opening of the air-fuel mixture supply port 8 and the plug hole 11 in the intake side half. Also, the exhaust ports 9 and 10
Is arranged so that the opening is located symmetrically with respect to the line connecting the opening of the mixture supply port 8 and the plug hole 11 in the exhaust side half.

【0016】上記各ポートの開口部にはクランク軸同期
で駆動されるポペットタイプの弁がそれぞれ配設されて
いる。すなわち、第1の新気導入用吸気ポート6の開口
部には第1の吸気弁13が設けられ、第2の新気導入用
吸気ポート7の開口部には第2の吸気弁14が設けら
れ、混合気供給用吸気ポート8の開口部には第3の吸気
弁15が設けられている。また、第1の排気ポート9に
は第1の排気弁16が設けられ、第2の排気ポート10
には第2の排気弁17が設けられている。
Poppet-type valves driven in synchronism with the crankshaft are provided at the openings of the respective ports. That is, the first intake valve 13 is provided at the opening of the first fresh air intake port 6, and the second intake valve 14 is provided at the opening of the second fresh air intake port 7. A third intake valve 15 is provided at the opening of the intake port 8 for supplying air-fuel mixture. A first exhaust valve 16 is provided in the first exhaust port 9 and a second exhaust port 10 is provided.
A second exhaust valve 17 is provided in the.

【0017】第1の新気導入用吸気ポート6はスワール
生成ポートであって、燃焼室2に対し接線方向に開口す
るよう形成されている。一方、第2の新気導入用吸気ポ
ート7は燃焼室2に対し略ストレートに開口するもの
で、その開口部上流には低負荷時に閉じて高負荷時に開
くスワールコントロールバルブ18が配置されている。
低負荷時にはスワールコントロールバルブ18が閉じて
第1の新気導入用吸気ポート6からのみ新気が導入さ
れ、図2に矢印で示すように燃焼室2内にスワールが生
成される。また、混合気供給用吸気ポート8には図示し
ない過給機から加圧エアが供給され、また、開弁前に燃
料噴射弁19から燃料が噴射される。そして、燃料と加
圧エアが閉空間で混合することにより比較的圧力の高い
混合気が生成され、第3の吸気弁15が開かれたときに
混合気が燃焼室2の上部に供給される。また、高負荷時
にはスワールコントロールバルブ18が開かれて二つの
新気導入用吸気ポート6,7から新気が導入され、それ
により、吸気充填量が増大し高出力が確保される。
The first fresh air intake port 6 is a swirl generating port and is formed so as to open tangentially to the combustion chamber 2. On the other hand, the second fresh air intake port 7 opens substantially straight to the combustion chamber 2, and a swirl control valve 18 that closes at low load and opens at high load is arranged upstream of the opening. .
When the load is low, the swirl control valve 18 is closed and fresh air is introduced only from the first fresh air intake port 6, and swirl is generated in the combustion chamber 2 as indicated by the arrow in FIG. Further, pressurized air is supplied to the mixture air intake port 8 from a supercharger (not shown), and fuel is injected from the fuel injection valve 19 before opening the valve. Then, the fuel and the pressurized air are mixed in the closed space to generate a mixture having a relatively high pressure, and the mixture is supplied to the upper portion of the combustion chamber 2 when the third intake valve 15 is opened. . Further, when the load is high, the swirl control valve 18 is opened to introduce fresh air from the two fresh air intake ports 6 and 7, thereby increasing the intake charge amount and ensuring high output.

【0018】また、新気導入用吸気ポート6,7を開閉
する第1と第2の吸気弁13,14に対し、混合気供給
用吸気ポート8を開閉する第3の吸気弁15は遅れて開
弁するよう設定されている。図3はこれら吸気弁13,
14,15のリフト特性図である。第3の吸気弁15は
第1および第2の吸気弁13,14の最大リフト近傍で
開き始める。その結果、まず、第1および第2の吸気弁
13,14が開き、低負荷時には第1の新気導入用吸気
ポート6から燃焼室2内に新気エアが導入されてスワー
ルが生成され、また、高負荷時には第1と第2の両新気
導入用吸気ポート6,7から新気エアが導入され、その
後に遅れて混合気供給用吸気ポート8が開いて混合気が
供給され、燃焼室2の上部で点火プラグ12の周囲に混
合気層が形成される。
Further, the third intake valve 15 for opening and closing the mixture air intake port 8 is delayed with respect to the first and second intake valves 13, 14 for opening and closing the fresh air introduction intake ports 6, 7. It is set to open the valve. FIG. 3 shows these intake valves 13,
It is a lift characteristic figure of 14 and 15. The third intake valve 15 starts to open near the maximum lift of the first and second intake valves 13 and 14. As a result, first, the first and second intake valves 13 and 14 are opened, and when the load is low, fresh air is introduced into the combustion chamber 2 from the first fresh air intake port 6, and swirl is generated. Further, at the time of high load, fresh air is introduced from both the first and second fresh air intake ports 6 and 7, and after that, the air-fuel mixture intake port 8 opens and the air-fuel mixture is supplied to burn the air. A mixture layer is formed in the upper part of the chamber 2 around the spark plug 12.

【0019】また、図4の(a)のθ1は、新気導入側
の第1および第2の吸気弁13,14のバルブシート角
であり、同じく(b)のθ2は混合気供給側の第3の吸
気弁15のバルブシート角であって、θ1>θ2に設定さ
れている。この場合、第1および第2の吸気弁13,1
4が開いたときに新気導入用の吸気ポート6,7から導
入される新気エアの流れは図5に矢印で示すように排気
側に偏向し、かつ下向きのベクトル成分の大きい流れと
なる。それに対し、第3の吸気弁15が開いて混合気供
給用の吸気ポート8から供給される混合気の流れは図6
に矢印で示すように横向きのベクトル成分の大きい流れ
となり燃焼室2の天井面に沿って広がる。
Further, θ 1 in FIG. 4A is the valve seat angle of the first and second intake valves 13 and 14 on the fresh air introduction side, and θ 2 in FIG. 4B is the mixture supply. It is the valve seat angle of the third intake valve 15 on the side and is set to θ 1 > θ 2 . In this case, the first and second intake valves 13, 1
When 4 is opened, the flow of fresh air introduced from the intake ports 6 and 7 for introducing fresh air is deflected to the exhaust side as shown by the arrow in FIG. 5 and becomes a large downward vector component. . On the other hand, the flow of the air-fuel mixture supplied from the air-fuel mixture intake port 8 when the third intake valve 15 is opened is as shown in FIG.
As shown by the arrow, the flow becomes a large horizontal vector component and spreads along the ceiling surface of the combustion chamber 2.

【0020】このように、新気導入用の吸気ポート6,
7から新気エアが下向きのベクトル成分の大きい流れと
なって燃焼室2内に流入し、その新気導入用の吸気ポー
ト6,7に配置された吸気弁13,14の最大リフト近
傍で混合気供給用の吸気ポート8が開かれて混合気が横
向きのベクトル成分の大きい流れとなって流入するよう
構成されたことにより、混合気が新気エアと干渉するの
を防止することができ、特に、低負荷時にスワールの減
衰を防ぐとともに成層化を促進して燃焼を安定させ、希
薄燃焼限界を向上させることができる。なお、θ1は通
常45゜程度である。また、θ2はθ1の2/3程度が適
切である。
In this way, the intake port 6 for introducing fresh air
The fresh air flows from 7 into a large downward vector flow into the combustion chamber 2 and mixes in the vicinity of the maximum lift of the intake valves 13 and 14 arranged in the intake ports 6 and 7 for introducing the fresh air. Since the intake port 8 for air supply is opened and the air-fuel mixture is made to flow in as a flow having a large lateral vector component, it is possible to prevent the air-fuel mixture from interfering with fresh air. In particular, when the load is low, it is possible to prevent the swirl from decaying, promote stratification, stabilize combustion, and improve the lean burn limit. Note that θ 1 is usually about 45 °. Further, it is appropriate that θ 2 is about 2/3 of θ 1 .

【0021】図7は、バルブシート角の設定がθ1>θ2
の場合とθ1<θ2の場合について低負荷でエンジン回転
数1500rpmの時のリーンリミットを示している。
また、図8は、同じくθ1>θ2の場合とθ1<θ2び場合
について、理論空燃比で運転したときの低負荷域でエン
ジン回転数1500rpmにおけるHC排出量を示して
いる。図7および図8において縦軸はリーンリミットあ
るいはHC排出量をとり、横軸は空気流量割合をとって
いる。ここで、空気流量割合とは、流入する全空気量に
対し第3の吸気弁15を介して流入する空気量の割合を
いう。
In FIG. 7, the setting of the valve seat angle is θ 1 > θ 2
In the case of and the case of θ 12 , the lean limit at low engine load and engine speed of 1500 rpm is shown.
Further, FIG. 8 also shows the HC emission amount at an engine speed of 1500 rpm in the low load region when operating at the stoichiometric air-fuel ratio for the case of θ 1 > θ 2 and the case of θ 12 . 7 and 8, the vertical axis represents the lean limit or the amount of HC discharged, and the horizontal axis represents the air flow rate ratio. Here, the air flow rate ratio refers to the ratio of the amount of air flowing in through the third intake valve 15 to the total amount of air flowing in.

【0022】図7に示すように、空気流量割合が0〜1
0%ではθ1>θ2設定としてもリーンリミットは伸びな
い。これは、混合気供給側の第3の吸気弁15からの空
気量が少なく流入速度が小さくて気化・霧化が悪いため
である。図8に示すように空気流量割合が0〜10%の
ときはHC排出量も多いことがそれを裏付けている。
As shown in FIG. 7, the air flow rate is 0 to 1
At 0%, the lean limit will not increase even if θ 1 > θ 2 is set. This is because the amount of air from the third intake valve 15 on the air-fuel mixture supply side is small and the inflow speed is small, resulting in poor vaporization and atomization. As shown in FIG. 8, when the air flow rate ratio is 0 to 10%, the large amount of HC emission is also supported.

【0023】また、空気流量割合が10〜15%ではθ
1>θ2の場合にリーンリミットが大きく伸びている。空
気流量割合がこの程度になると、第3の吸気弁15を介
して燃焼室2内に流入する混合気は適度の流速でバルブ
シート当接面に沿って流入し、新気エアと混合してしま
うことなく燃焼室2の上部に偏在し成層化される。その
ため、リーンリミットが伸びる。また、空気流量割合が
この程度になると流速がある程度大きくなるため気化・
霧化が良くなり、図8に示すようにHC排出量が少なく
なる。そして、θ1>θ2の場合には成層化により燃焼が
安定するためにHC排出量がより少なくなる。
When the air flow rate is 10 to 15%, θ
When 1 > θ 2 , the lean limit is greatly extended. When the air flow rate reaches this level, the air-fuel mixture flowing into the combustion chamber 2 through the third intake valve 15 flows along the valve seat contact surface at an appropriate flow rate and mixes with the fresh air. It is unevenly distributed in the upper part of the combustion chamber 2 without being stored and stratified. Therefore, the lean limit is extended. In addition, when the air flow rate reaches this level, the flow velocity increases to some extent
The atomization is improved, and the HC emission amount is reduced as shown in FIG. Then, when θ 1 > θ 2 , combustion is stabilized by stratification, so that the amount of HC emission becomes smaller.

【0024】また、空気流量割合が15%を越えると、
θ1>θ2でもθ1<θ2でもリーンリミットは低下する。
これは、第3の吸気弁15を介して流入する混合気の流
速が大きすぎ、混合気がバルブシート当接面に沿わずに
一気に下方に流れて新気エアと混合されてしまい成層化
が達成できないためである。HC排出量は、混合気の流
速が大きくて燃料の微粒化が進むため図8に示すように
さらに少なくなる。
If the air flow rate exceeds 15%,
The lean limit is reduced for both θ 1 > θ 2 and θ 12 .
This is because the flow velocity of the air-fuel mixture that flows in through the third intake valve 15 is too high, and the air-fuel mixture flows downward at once without mixing with the valve seat contact surface and is mixed with fresh air, resulting in stratification. This is because it cannot be achieved. The HC discharge amount is further reduced as shown in FIG. 8 because the flow velocity of the air-fuel mixture is large and the atomization of the fuel progresses.

【0025】なお、上記実施例では低負荷時にスワール
を利用して燃焼性を改善するエンジンについて説明した
が、本発明はタンブル流を利用するエンジンに対しても
適用することができる。
In the above-mentioned embodiment, the engine in which the swirl is utilized to improve the combustibility when the load is low has been described, but the present invention can be applied to an engine utilizing the tumble flow.

【0026】また、新気導入用の吸気ポートおよび混合
気供給用の吸気ポートの配置は上記実施例のものに限ら
れるものではなく、適宜変更が可能である。
Further, the arrangement of the intake port for introducing fresh air and the intake port for supplying the air-fuel mixture is not limited to that in the above embodiment, but can be changed as appropriate.

【0027】[0027]

【発明の効果】本発明は以上のように構成されているの
で、新気導入用の吸気ポートと混合気供給用の各吸気ポ
ートに配置する吸気弁の開弁時期を異ならせるとともに
バルブシート角の設定を異ならせるという簡単な構成に
よって成層化を一層促進することができる。また、燃焼
室内に生成するスワールを減衰させることなく成層化を
達成できる。
Since the present invention is configured as described above, the opening timings of the intake valves arranged at the intake ports for introducing fresh air and the intake ports for supplying the air-fuel mixture are made different, and the valve seat angle is made different. Stratification can be further promoted by a simple configuration in which the setting of is different. In addition, stratification can be achieved without attenuating the swirl generated in the combustion chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のエンジンのシリンダヘッド部
縦断面図
FIG. 1 is a vertical sectional view of a cylinder head portion of an engine according to an embodiment of the present invention.

【図2】本発明の実施例のエンジンの燃焼室をシリンダ
ヘッド下面から見た図
FIG. 2 is a view of a combustion chamber of an engine according to an embodiment of the present invention as seen from a lower surface of a cylinder head.

【図3】本発明の実施例のエンジンの弁リフト特性図FIG. 3 is a valve lift characteristic diagram of the engine of the embodiment of the present invention

【図4】本発明の実施例のエンジンにおける吸気弁の傘
部拡大図
FIG. 4 is an enlarged view of a cap portion of an intake valve in the engine according to the embodiment of the present invention.

【図5】図2のA−A断面図5 is a sectional view taken along line AA of FIG.

【図6】図2のB−B断面図6 is a sectional view taken along line BB of FIG.

【図7】本発明の実施例の設定によるリーンリミットを
比較例と対比して示すグラフ
FIG. 7 is a graph showing a lean limit set according to an example of the present invention in comparison with a comparative example.

【図8】本発明の実施例の設定によるHC排出量を比較
例と対比して示すグラフ
FIG. 8 is a graph showing the amount of HC discharged according to the setting of the example of the present invention in comparison with the comparative example.

【符号の説明】[Explanation of symbols]

2 燃焼室 6,7 新気導入用吸気ポート 8 混合気供給用吸気ポート 12 点火プラグ 13,14,15 吸気弁 2 Combustion chamber 6,7 Fresh air introduction intake port 8 Mixture supply intake port 12 Spark plug 13,14,15 Intake valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 29/08 E 31/02 C F02M 69/00 360 B C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F02B 29/08 E 31/02 C F02M 69/00 360 BC

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 気筒毎に新気導入用と混合気供給用の2
種類の吸気ポートを設けて、それぞれにポペットタイプ
の吸気弁を配置し、新気導入用の吸気ポートに対し混合
気供給用の吸気ポートの開時期が遅くなるようバルブタ
イミングを設定したエンジンの吸気装置であって、前記
混合気供給用の吸気ポートに配置する吸気弁のバルブシ
ート当接面が燃焼室天井面に対してなす角度を前記新気
導入用の吸気ポートに配置する吸気弁のバルブシート当
接面が燃焼室天井面に対してなす角度より小さくしたこ
とを特徴とするエンジンの吸気装置。
1. Two for introducing fresh air and for supplying air-fuel mixture for each cylinder
There are three types of intake ports, poppet type intake valves are installed in each, and the intake timing of the engine is set so that the opening timing of the intake port for supplying the air-fuel mixture is delayed relative to the intake port for introducing fresh air. A valve of an intake valve, wherein an angle formed by a valve seat contact surface of an intake valve arranged in the intake port for supplying the air-fuel mixture with respect to a combustion chamber ceiling surface is arranged in the intake port for introducing fresh air. An intake device for an engine, characterized in that a seat contact surface is smaller than an angle formed with respect to a combustion chamber ceiling surface.
【請求項2】 混合気供給用の吸気ポートに配置する吸
気弁の開弁開始が新気導入用の吸気ポートに配置する吸
気弁の最大リフト時近傍となるようバルブタイミングを
設定した請求項1記載のエンジンの吸気装置。
2. The valve timing is set such that the opening of the intake valve arranged in the intake port for supplying the air-fuel mixture is started near the maximum lift of the intake valve arranged in the intake port for introducing fresh air. Intake device for the engine described.
【請求項3】 新気導入用に第1と第2の二つの吸気ポ
ートが設けられ、第1の吸気ポートは燃焼室内にシリン
ダ軸周りのスワール流を生成するものであり、第2の吸
気ポートは高負荷時にのみ新気を導入するものである請
求項1または2記載のエンジンの吸気装置。
3. A first intake port and a second intake port are provided for introducing fresh air, the first intake port generating a swirl flow around the cylinder axis in the combustion chamber, and the second intake port. The intake system for an engine according to claim 1, wherein the port introduces fresh air only when the load is high.
JP5294249A 1993-10-29 1993-10-29 Intake device for engine Pending JPH07127466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5294249A JPH07127466A (en) 1993-10-29 1993-10-29 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5294249A JPH07127466A (en) 1993-10-29 1993-10-29 Intake device for engine

Publications (1)

Publication Number Publication Date
JPH07127466A true JPH07127466A (en) 1995-05-16

Family

ID=17805286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5294249A Pending JPH07127466A (en) 1993-10-29 1993-10-29 Intake device for engine

Country Status (1)

Country Link
JP (1) JPH07127466A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040045752A (en) * 2002-11-25 2004-06-02 현대자동차주식회사 Exhaust valve of c.n.g engine
JP2012012939A (en) * 2010-06-29 2012-01-19 Mazda Motor Corp Cylinder head structure of engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040045752A (en) * 2002-11-25 2004-06-02 현대자동차주식회사 Exhaust valve of c.n.g engine
JP2012012939A (en) * 2010-06-29 2012-01-19 Mazda Motor Corp Cylinder head structure of engine

Similar Documents

Publication Publication Date Title
US4703734A (en) Multi-valve internal combustion engine
KR100363852B1 (en) Automotive Lean Burn Engine
US4196701A (en) Internal combustion engine intake system having auxiliary passage bypassing main throttle to produce swirl in intake port
JPH06200836A (en) Jump-spark ignition internal combustion engine
US20020011223A1 (en) Fuel injection system for a two-stroke engine
KR20030022040A (en) Controller for spark ignition type direct injection engine
JP2002242716A (en) Control device for cylinder injection engine
JPH0586992A (en) Egr control device for inter-cylinder fuel-injection type engine
JP2000008913A (en) Variable mixture concentration distribution control method for spark-ignition engine
JPH10317975A (en) Direct cylinder injection spark ignition engine
JP3956503B2 (en) In-cylinder injection spark ignition engine
JPH06146886A (en) Cylinder injection type internal combustion engine
JPH07127466A (en) Intake device for engine
JP2501556Y2 (en) Internal combustion engine intake system
JP2000265891A (en) Cylinder injection control device
JP2001003755A (en) Cylinder air flow generating method for internal combustion engine
JPH09242550A (en) Spark ignition engine of direct cylinder fuel injection type
JPH06147022A (en) Cylinder injection type internal combustion engine
JPH11343855A (en) Intake controller for in-cylinder injection type spark ignition engine
JPH06213081A (en) Exhaust gas recirculation system of engine
JPH05280343A (en) Spark ignition engine and method for supplying fuel therefor
JP3318355B2 (en) Intake system for direct injection diesel engine
KR100515254B1 (en) Internal injection engine
JPH02305319A (en) Combustion chamber structure of engine
JPH0424142Y2 (en)